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1. Introduction

It is important to study the stability of the switched differ-
ential systems, since they are used in mathematical physics
of many fields such as power systems, gravity, motor engine
control, network control systems, constrained robotics, auto-
motive engineering [1-15]. One of the ways to examine the
stability of switched systems is to study the dwell and aver-
age dwell time of the system.

We consider the linear switched system described by

ẋ(t) = Aσ(t)x(t), σ ∈ S, t ≥ 0, (1)

where x (t) = (xi (t)) is l dimensional vector,
xi (t) (i = 1, 2, ..., l) are differentiable functions,P =
{1, 2, . . . , N}, {

Ap ∈ Cl×l, p ∈ P}
is matrix family, S =

{σ|σ : [0,∞) → P, σ switching signal}. The amount of
time passed between the consecutive switching events is
called dwell time of system (1).

Let us give the definition of globally asymptotically sta-
bility (GAS) for the pointx (t) = 0, which is the trivial solu-
tion and the equilibrium point of the switched system (1).

The trivial solution of the system (1) is GAS for a given
switching signalσ if (1) is

– Lyapunov stable, and

– uniformly globally asymptotically convergent,i.e., for
all r, ε > 0 there existsT (r, ε) > 0 such that
‖x (t)‖ < ε for all t > T (r, ε) whenever‖x0‖ < r.

If each subsystems are GAS then there exists a minimum
dwell time that guarantees GAS of the system (1). For the
system (1), let the following sets of switching signals be de-
fined, whereti’s are successive switching time instants and
Nσ(t) is the number of switchings before timet:

S = Sdwell [τ ] = {σ|tk+1 − tk ≥ τ} ,

S = Saverage[τ ,N0] =
{

σ|Nσ (t) ≤ N0 +
t

τ

}
.

Determination of the dwell or average dwell time is based
on the calculation of the infimum of the numbersτ or τ that
makes the switched system GAS [16-18].

There are many studies on the dwell and average dwell
time for the GAS of the system (1) [17-22]. These studies
are generally used the eigenvalues of the coefficient matri-
ces of the given system. It is well known that the eigenvalue
problem is an ill-posed problem for non-symmetric matrices
[23-25]. Moreover, if a matrix has multiple eigenvalues, or
is close to a matrix with multiple eigenvalues, then its Jor-
dan normal form is very sensitive to perturbations. This ill
conditioning makes it difficult to develop a robust numerical
algorithm for the Jordan normal form. So, the Jordan normal
form is usually avoided in numerical computations [24-25].

A new method is proposed to determine the dwell and
average dwell time without calculating the eigenvalue, in this
paper. The proposed method depends on theκ(A) parameter,
which shows the quality of the GAS of the systems of differ-
ential equations [26-30]. “Dwell time” and “average dwell
time” have not been studied depending on theκ(A) param-
eter yet, in the literature. Therefore, the results obtained in
this study are new and original.

This paper is structured as follows: In Sec. 2, preliminar-
ies are given. In Sec. 3, the dwell time and average dwell
time for GAS are determined. Finally, numerical examples
are given in Sec. 4.

2. Preliminaries

2.1. Criterions of global asymptotic stability

Let A ∈ Cl×l, x (t) = (xi (t)) is l dimensional vector and
xi (t) (i = 1, 2, ..., l) be differentiable functions. Consider
the following differential equation system:

ẋ(t) = Ax(t), t ≥ 0. (2)
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The differential equation system (2) is stable if for anyε > 0
there existsδ = δ (ε) such that‖x (t)‖ ≤ ε for t ∈ [0,∞)
whenever for‖x (0)‖ ≤ δ . Further, the system (2) is GAS if
it is stable and‖x (t)‖ → 0 with increaset to infinity for all
x (0).

If the real parts of all eigenvalues of the matrixA in the
system (2) is less than zero, then the matrixA is called a GAS
matrix and the system (2) is also called a GAS system. This
criterion is known as the “spectral criterion” in the literature
[26-31].

Lyapunov theorem, another criterion for GAS, is as fol-
lows.

“The matrixA (trivial solution of the system (2)) is GAS
if and only if there is a solutionH = H∗ > 0 of the Lya-
punov matrix equationA∗H + HA = −I”.

It means that if suchH does exist then all the eigenvalues
of matrixA lie strictly in the left-hand half-plane [26-30].

2.2. Global asymptotic stability parameter

As it is known, the eigenvalue problem is an ill-possed prob-
lem [23-25]. Therefore, instead of calculating eigenvalues,
it should be preferred to study with parameters revealing the
quality of the GAS.

GAS parameter of the system (2) is represented byκ(A)
and defined as:

κ(A) = 2 ‖A‖ ‖H‖ ,

where

H =

∞∫

0

etA∗etAdt

is the solution of Lyapunov matris equation,

‖A‖ = max
‖x‖=1

‖Ax‖

is the spectral norm of the matrixA and‖x‖ is Euclidean
norm for the vectorx = (x1, x2, ..., xl)

T . If κ(A) is finite,
then the system (2) is GAS. Otherwise, the system (2) is not
GAS and we setκ(A) = ∞ [26-30].

Now let’s consider the matrices

A1 =
( −1 0

0 −7

)

and

A2 =
( −1 9

0 −7

)

and illustrate that the parameterκ(A) represents the qual-
ity of GAS. The eigenvalues of both matrices are “−1 and
−7” and it can be easily seen that both matrices are GAS.
But knowledge of the eigenvalues does not give information
about the quality of the stability. However, sinceκ(A1) =
7 < κ(A2) = 28.0881, it is seen that the quality of GAS
of matrix A1 is better than the quality of GAS of matrixA2.
This means that the GAS of the matrixA2 deteriorates than
the GAS of matrixA1 with less perturbation. For example;
whenA1 andA2 matrices are perturbed with matrix

B =
(

0 0
1 0

)
,

matrixA1 + B is GAS, whileA2 + B is not GAS.
As can be seen, while eigenvalues do not give an idea

about the quality of GAS of a matrix, the parameterκ(A)
calculates the quality of GAS.

Now, let’s give the upper bound of the matrixeAt, which
depends on the parameterκ(A) given in [27-28].
Theorem 1. The following inequalitiy

∥∥eAt
∥∥ ≤

√
κ(A)e−

t‖A‖
κ(A) , (3)

is valid for the GAS matrix A[27-28].

2.3. Switching graph for switched linear differential sys-
tems

Let D be a digraph whose nodes are the subsystems
of (1) and arcs are admissible switching. Letε =
{(i, j) |switching fromi to j is admissible} whereP is the
index set for system (1). Let the weight functions of the
graphD be w+ andw−. In other words, for each switch-
ing, w+ andw− indicate the switching cost and switching
time, respectively on the setε. A weighted switching graph
is represented by notationD = {P, ε, w+, w−}.

The concepts to be used for theD graph are listed as follows.

SD,dwell [τ ] = {σ ∈ Sdwell [τ ] | (σk, σk+1) ∈ ε, k = 1, 2, ...} : signal set for dwell time (4)

SD,average[τ ,N0] = {σ ∈ Saverage [τ , N0] | (σk, σk+1) ∈ ε, k = 1, 2, ...} : signal set for average dwell time (5)

Wn = (σ1, σ2) , (σ2, σ3) , ..., (σn, σn+1) : cycle (walk, path) in the digraph D

w (Wn) =
n∑

k=1

w (pk, pk+1) : weight of a cycle for a weighted digraph D

ρ (C) =
w+ (C)
w− (C)

: cycle ratio of C
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C: set of all cycles in D
ρ∗ (D) = max

C∈C
ρ (C) : maximum cycle ratio

µ (C) =
w+ (C)
‖C‖ : Cycle mean of C

‖C‖: length of C

µ∗ (D) = max
C∈C

µ (C) : maximum cycle mean.

These concepts are available in Refs. [18,32-33].

3. Determination of dwell time for GAS

Let us give the following theorem, which gives the upper bound of the solution of the system (1) to use determining the dwell
time for GAS.
Theorem 2. The following equation is provided for the GAS matrixAp (p = 1, 2, ..., N) wherex (t) is the solution of the
system(1):

‖x (t)‖ ≤ (
κ(Aσn+1)κ(Aσ1)

) 1
4 e

−‖Aσn+1‖
κ(Aσn+1) (t−tn)

Φ ‖x (0)‖ (6)

where

Φ = e

n∑
i=1

[
1
4 ln(κ(Aσi+1 )κ(Aσi

))− ‖Aσi‖
κ(Aσi

) (ti−ti−1)

]

.

Proof. Let the system (1) be given with GAS matricesAp (p = 1, 2, ..., N). The solution of system (1) is expressed as

x (t) = eAσn+1 (t−tn)eAσn (tn−tn−1)...eAσ1 (t1−t0)x0, t ∈ [tn, tn+1)

or

x (t) = eAσn+1 (t−tn)

(
n∏

i=1

eAσi(ti−ti−1)

)
x0, t ∈ [tn, tn+1) (7)

wherex (0) = x0 is the initial value of the system (1). By taking the norm of the solution (7) and applying the triangle
inequality, the following inequality is obtained

‖x (t)‖ =

∥∥∥∥∥eAσn+1 (t−tn)

(
n∏

i=1

eAσi(ti−ti−1)

)
x0

∥∥∥∥∥ ≤
∥∥∥eAσn+1 (t−tn)

∥∥∥
n∏

i=1

∥∥∥eAσi(ti−ti−1)
∥∥∥ ‖x0‖ .

If we use inequality (3), the upper bound of the solution is obtained as:

‖x (t)‖ ≤
√

κ(Aσn+1)e
−

(t−tn)‖Aσn+1‖
κ(Aσn+1)

n∏

i=1

√
κ(Aσi)e

− (ti−ti−1)‖Aσi‖
κ(Aσi

) ‖x0‖

=
(
κ(Aσn+1)κ(Aσ1)

) 1
4 e

−
(t−tn)‖Aσn+1‖

κ(Aσn+1)

n∏

i=1

(
κ(Aσi+1)κ(Aσi)

) 1
4 e

− (ti−ti−1)‖Aσi‖
κ(Aσi

) ‖x (0)‖ .

Therefore,

‖x (t)‖ ≤ (
κ(Aσn+1)κ(Aσ1)

) 1
4 e

−‖Aσn+1‖
κ(Aσn+1) (t−tn)

e

n∑
i=1

[
1
4 ln(κ(Aσi+1 )κ(Aσi

))− ‖Aσi‖
κ(Aσi

) (ti−ti−1)

]

‖x (0)‖ ,

holds.
Theorem 3. The switched system(1) given by(4) is GAS for dwell times that provide the inequalityτ > ρ∗ (D), where
w+ (i, j) = (1/4) ln

(
κ(Aσj )κ(Aσi)

)
, w− (i, j) =

∥∥Aσj

∥∥/κ(Aσj).
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Proof. Suppose thatσ (t) has infinitely many switching. Because, when the switching signal has finitely switching, the system
works in one of the subsystems after the last switching. Thus, since each subsystem is stable, the system (1) is GAS.
Let α be the weight of the walkWn for the weight functionw (i, j) = w+ (i, j) − w− (i, j) in the switching graphD.
Any walk with m nodes consists of cycles and a path with a maximum length ofm − 1. Then it can be written asα (n) =
α∗ (n) +

∑m
i=2 αi (n). Here fori = 1, 2, . . . ,m, αi (n) indicate the sum of the weights of all cycles with lengthi andα∗ (n)

indicates the weight of the path. SinceP is finite,α∗ (n) is bounded.
Let take us

γ = max
i

(κ(Aσi
)κ(Aσ1))

1
4

and

α (n) =
n∑

i=1

[
1
4

ln
(
κ(Aσi+1)κ(Aσi

)
)− ‖Aσi

‖
κ(Aσi

)
(ti − ti−1)

]
.

So, we can write (6) by the equation

‖x (t)‖ ≤ γe
−‖Aσn+1‖

κ(Aσn+1) (t−tn)
eα(n) ‖x (0)‖ . (8)

By takingτ ≤ ti − ti−1 ande
−‖Aσn+1‖

κ(Aσn+1) (t−tn) ≤ 1 in (8), we obtain‖x (t)‖ ≤ γeα(n) ‖x (0)‖.
Let us consider

α (n) =
n∑

i=1

[
1
4

ln
(
κ(Aσi+1)κ(Aσi)

)− ‖Aσi‖
κ(Aσi)

τ

]
=

n∑

i=1

(
w+ (i, i + 1)−w− (i, i + 1) τ

)
,

for the walkWn. Sinceτ > ρ∗ (D) by the assumption, the limit ofα (n) asn approaches infinity is−∞. This means that
upper bound (8) of the solution approaches zero ast →∞. Then, in the case ofτ > ρ∗ (D), system (1) is GAS.
Theorem 4. The switched system(1) given by(5) is GAS for average dwell times that provide the inequalityτ > µ∗ (D)/w∗,
wherew∗ = min

i
{‖Aσi‖/κ(Aσi)}.

Proof. Assume thatσ (t) has infinitely many switching, as in Theorem3.
ConsiderWn as the walk for the weight functionw (i, j) = w+ (i, j) in the switching graphD. Similar to Theorem 3,

for any walk with m nodes, it can be written asβ (n) = β∗ (n) +
∑m

i=2 βi (n). Here for i = 1, 2, . . . , m, βi (n) indi-
cate the sum of the weights of all cycles with lengthi andβ∗ (n) indicates the weight of the path. Let us takeβ (n) =∑n

i=1 ln
(
κ(Aσi+1)κ(Aσi)

)1/4
and write the inequality (6) by the equation

‖x (t)‖ ≤ γeβ(n)−w∗t ‖x (0)‖ , (9)

using assumptionw∗ = min
i
{‖Aσi‖ /κ(Aσi)}.

If γ = γe
max

W
w+(W )

, then the inequality (9) can be written as

‖x (t)‖ ≤ γeβ2(n)+...+βm(n)−w∗t ‖x (0)‖ . (10)

Sinceβi (n) are cycles fori = 1, 2, . . . ,m, we get
∑m

i=2 βi (n) ≤ Nσ (t)µ∗ (D) ≤ N0µ
∗ (D) + t (µ∗ (D)/τ).

Let define usγ = γeN0µ∗(D) and rewrite (10). So, the following inequality is obtained:

‖x (t)‖ ≤ γe

(
µ∗(D)

τ −w∗
)

t ‖x (0)‖ .

Since(µ∗ (D)/τ)− w∗ < 0, the upper bound (10) of the solution approaches zero ast →∞. Then, system (1) is GAS.

4. Numerical examples

In this section, we give some numerical examples showing the efficiency of the results in Sec. 3.
Example 1.Let us consider the following system consisting three GAS subsystems:

A1 =
( −1 −9

5 −2

)
, A2 =

( −3 −2
8 −4

)
and A3 =

( −2 4
−4 −10

)
,

ẋ(t) = Aix (t) , x (0) = [−8, 8]T , t ≥ 0; i ∈ {1, 2, 3} , (11)

LetD be the switching graph of the system(1) given inFig. 1.
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FIGURE 1. Switching graphs of the Cauchy problem consisting of
three subsystems withA1, A2, andA3.

FIGURE 2. State trajectory withτ = 0.840262.

For the graphD, the minimum dwell time calculated in
Theorem 3 is obtained asτ = 0.840262. For this minimum
dwell time, if the system is switched for graphD, the solution
curves given in the graph below are obtained.

Example 2. Let us consider the systems (1) with four GAS
subsystems. Fori ∈ {1, 2, 3, 4}, let matricesAi be given as
follows

A1 =
( −11 0.1

0 −10

)
, A2 =

( −15 0.02
0 −14

)
,

A3 =
( −9 0.3

0 −9

)
and A4 =

( −8.3 1
−0.5 −8

)
.

For systems(1), the switching graphsD1,D2 andD3 are
given in Fig. 4.

In Table I, computed dwell and average dwell times for
the switching graphsDi (i = 1, 2, 3) are given.

FIGURE 3. State trajectory withx1 a) andx2 b) of system (11) .

FIGURE 4. Switching graphs of the linear switched systems (1) consisting of four subsystems withA1, A2, A3, andA4.
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TABLE I. Dwell and average dwell times for switching graphs of the linear switched systems (1) consisting of four subsystems withA1, A2,
A3 andA4.

Switching Dwell time Average Dwell time

Graph Theorem 3 Karabacak [18] Theorem 4 Karabacak [18]

D1 0.0037714 0.0300776 0.0050954 0.0395499

D2 0.00336263 * 0.00435395 *

D3 0.00479608 * 0.005875524 *

As illustrated in Table I, forD1 switching graph, our
dwell time (see Theorem 3) and average dwell time (see The-
orem 4) values are better than the ones obtained by Karaba-
cak [18]. Moreover, forD2 andD3 switching graphs, we
are able to calculate dwell time from Theorem 3 and average
dwell time from Theorem 4 although these values could not
be calculated in Ref. [18] (because theA3 is defective ma-
trix). The values which we cannot calculate are denoted by
the symbol * in Table I.

5. Conclusion

In this paper, dwell and average dwell time, which make dif-
ferential equation systems (1) GAS, are calculated in terms
of the κ(A) parameter without using eigenvalue. As far as
we know, “dwell time” and “average dwell time” have not
been studied depending on theκ(A) parameter in the litera-
ture. Therefore, the results obtained in this paper are new and
original.
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18. Ö. Karabacak,Dwell time and average dwell time methods
based on the cycle ratio of the switching graph, Systems Con-
trol Lett. 62 (2013) 1032.

19. S. Morse,Supervisory control of families of linear set-point
conrollers-part 1:exact matching, IEEE Trans. Autom. Control,
41 (1996) 1413.

20. J. C. Geromel, P. Colaneri,Stability and stabilization of
continuous-time switched linear systems, SIAM J. Control Op-
tim. 45 (2006) 1915.

21. P. Colaneri, J. C. Geromel, A. Astolfi,Stabilization of
continuous-time switched nonlinear systems, Systems Control
Lett. 57 (2008) 95.

Rev. Mex. Fis.68030702



A NEW COMPUTATION METHOD OF MINIMUM DWELL TIME FOR THE GLOBAL ASYMPTOTIC STABILITY OF SWITCHED . . . 7
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