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We present a theoretical framework to study equilibrium configurations of filaments within a spinor representation of curves. The curve
representing the filament is described by a unit two-component spinor field and its charge conjugate satisfying two-dimensional equations
coupled by the curvature and torsion. The spinor field replaces the Frenet-Serret frame, whereas its structure equations replace the Frenet-
Serret equations. Employing this spinorial description of curves, we derive the Euler-Lagrange equations of curves whose energies depend
on their curvature and torsion. We analyze the conservation laws of the spinors representing the balance of the forces and torques along the
filament. We illustrate this framework by applying these results to the Euler Elastica, whose bending energy is quadratic in the curvature.
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1. Introduction

Often the physical properties of filaments are mainly de-
scribed in terms of their geometry [1, 2]. The most relevant
modes of deformation being their bending and twist, penal-
ized by the squares of their curvature and of the sum of the
torsion and the arc length derivative of the twist angle. Usu-
ally, these degrees of freedom are analyzed employing a vec-
tor basis adapted to the curve, being the Frenet-Serret (FS)
frame the natural choice, although one can use any material
frame instead [2,3], or even a complexification of the normal
curvatures and normal vectors [4,5]. Furthermore, by means
of the homomorphism of the groupSU(2) onto SO(3), al-
ternatively one can consider a two component spinor basis
instead of the FS frame. In this approach a unit two compo-
nent spinor and its charge conjugate play the role of the FS
frame, whereas their structure equations correspond to the
spinorization of the FS equations [6–10].

Although this correspondence between vectors and
spinors has been studied in detail, their application to the
development of variational principles is not so straightfor-
ward. As shown by one of the authors for the case of sur-
faces described within the generalized Weierstrass-Enneper
representation, it is necessary to take into account the struc-
ture equations in the variational principles [11]. Furthermore,
as demonstrated before, for geometric variational principles
for curves and surfaces, the introduction of the definition of
the tangent vector as the derivative of the embedding func-
tions permits one to identify the vector or tensor representing
the forces or stresses on the curve or surface [12–16]. How-
ever it is not obvious how to implement the definition of the

embedding functions or the tangent vector in the variational
principle using these spinors.

In this work, using spinorial quantities we develop varia-
tional principles for curves whose associated energy depends
on their geometry. Although one could consider energies
with additional degrees of freedom such as the twist, stretch
or shear, whose equilibrium equations have been presented
before using the usual vectorial framework [16–19], to illus-
trate this spinorial framework it suffices to consider an energy
dependent only on the curvature and torsion. We enforce the
definition of the curvature and torsion by introducing spino-
rial Lagrange multipliers implementing the structure equa-
tions of the spinor basis. To implement the definition of the
tangent vector, we use its associated second rank spinor, as
well as the one associated to the embedding functions. The
definition of the former as the derivative of the latter spinor is
implemented in the variational principle usin another second
rank spinorial Lagrange multiplier. The vector associated to
this spinorial Lagrange multiplier is identified as the force
on the curve and is conserved. The normal projections of
the conservation law of this force vector provide the Euler-
Lagrange (EL) equations governing the equilibrium configu-
rations of the curve, [14, 16, 17]. Also, the rotational invari-
ance of the energy allows for the identification of the con-
served vector and its associated second rank spinor represent-
ing the torques along the curve. To exemplify this spinorial
framework, we apply it to the planar Euler-Elastica, whose
energy is quadratic in the curvature. We determine the com-
ponents of the complex force and EL equations, and we also
determine the components of the spinors corresponding to the
solutions describing wavelike curves.
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This paper is organized as follows. We begin in Sec. 2
by reviewing the spinor basis associated to the complex FS
frame adapted to a curve, along with their structure equa-
tions. Using this spinor representation we develop variational
principles for curves in Sec. 3. In Sec. 4 we examine the Eu-
clidean invariance of the energy leading to the identification
of the force and torque vectors, as well as their associated
spinors. These results are applied to the Euler Elastica in
Sec. 5. We close with the discussion of our results and poten-
tial applications of our framework.

2. FS spinorial representation

The filament is described by a curve in three-dimensional
spaceΓ : s → Y(s) = Yi(s)Ei ∈ E3, parametrized by
arc lengths. The geometric quantities of the curve are de-
scribed using the FS frame adapted toΓ, formed by the right-
handed basis given by the principal normal, the binormal and
the tangent vector,{N,B,T = Y′}, (′ = d/ds). The FS
equations, describing the change of the FS basis along the
filament in terms of the basis itself, are given by

N′ = −κT + τB , B′ = −τN , T′ = κN , (1)

whereκ andτ are the curvature and torsion ofΓ [20,21].
Instead of working with the FS frame, one can use the

complexification of the normal vectors

ν = N + iB , (2)

along with its complex conjugate (CC),̄ν (the overbar de-
notes complex conjugation) and the tangent vector, for they
constitute an orthogonal trihedron satisfying

ν = iT× ν , ν̄ = i ν̄ ×T , T =
i

2
ν × ν̄ . (3)

Therefore, the complex normal vector is orthogonal to itself
and to the tangent vector, while its norm is constant:

ν · ν = ν ·T = 0 ; ‖ν‖2 = ν · ν̄ = 2 . (4)

The structure equations of this complex basis are

ν′ = −κT− iτν , T′ = κRe ν , (5)

and the complex conjugate expression ofν′. Thus, the cur-
vature and torsion are given by by

κ = T′ · Re ν , τ =
1
2
Im (ν̄′ · ν) . (6)

Since the complex normal vectorν and its complex conju-
gate are isotropic, we can express them and the tangent vector
using a two-component spinor field and its charge conjugate
ψ(s) andψ̃(s) defined by [6,9]

ψ =
(

ψ1

ψ2

)
, ψ̃ =

( −ψ̄2

ψ̄1

)
, ψ1, ψ2 ∈ C . (7)

In terms of these spinors, the complex FS frame is given by
ν = ψ̃†σψ, ν̄ = ψ†σψ̃ andT = (1/2)

(
ψ†σψ − ψ̃†σψ̃

)
,

whereσ = σi ⊗ Ei, with σi the Pauli matrices andEi the
canonical Euclidean basis. In full they read

ν =




ψ 2
1 − ψ 2

2

i
(
ψ 2

1 + ψ 2
2

)
−2ψ1ψ2


 , (8a)

T =




2Re
(
ψ̄1ψ2

)
2 Im

(
ψ̄1ψ2

)
|ψ1|2 − |ψ2|2


 , (8b)

Since these spinor fields are orthogonal,ψ̃†ψ = 0, they are
linearly independent so they form a spinor basis. The con-
ditions thatν has norm2 and T is unit, impose the nor-
malization of these spinor fields, that is|ψ1|2 + |ψ2|2 = 1.
Thus we can express the completeness of this spinor basis as
ψψ† + ψ̃ψ̃† = I, whereI is the2× 2 identity matrix.

The spinorial structure equations are obtained by using
the spinorial expressions of the FS complex basis (8) in the
complex FS Eqs. (5), which read [6,9]

ψ′ =
1
2

(
−iτψ + κψ̃

)
, ψ̃′ =

1
2

(
iτ ψ̃ − κψ

)
, (9)

or in components

ψ′1 = −i
τ

2
ψ1 − κ

2
ψ̄2 , ψ′2 = −i

τ

2
ψ2 +

κ

2
ψ̄1 . (10)

Thus, similar to the vectorial case, the curvature and torsion
are given by the projections of the derivatives of the spinor
basisκ = ψ̃†ψ′ − ψ†ψ̃′ and τ = i

(
ψ†ψ′ − ψ̃†ψ̃′

)
, or in

terms of spinor components

κ = 2Re(ψ1ψ
′
2−ψ2ψ

′
1) , τ = 2Im(ψ1ψ̄

′
1 +ψ2ψ̄

′
2) . (11)

In the next section we develop variational principles for
curves within this spinor representation.

3. Spinorial variational principle: energy and
forces

The energy density may depend on the spinor basis, but it
should be in a manner that their combination transforms ap-
propriately. To avoid such complications, we consider en-
ergies whose dependence on the spinors occurs through the
curvature and torsion of the filament,i.e. in the formL(κ, τ).
For instance, in the harmonic approximation the principal en-
ergetic cost associated to a deformation of a filament is due
to bending, which is quadratic in the curvature. Furthermore,
one could also consider an energy penalizing the square of
the torsion. Thus, up to quadratic order, the local energy as-
cribed to the filament isL(κ, τ) = LB(κ)+LT (τ), withLB

andLT , given by [17–19]

LB(κ) =
k
2

(κ− κ0)
2

, LT (τ) =
t
2

(τ − τ0)
2

, (12)
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wherek andt are the bending and torsion moduli;κ0 andτ0

are the spontaneous curvature and torsion [1,2].
In the following we consider an arbitrary energy density

of the formL(κ, τ), which integrated along the length of the
curve provides the total energy,

L[Y] =
∫
L (κ, τ) ds , (13)

whereds is the line element ofΓ.
In the calculation of the variation of the total energyL

under a change of the filament’s embedding functionsY →
Y + δY, one has to take into account that the curvature and
torsion are related to the spinor basis by the spinorial struc-
ture equations. The simplest way would be to implement the
definitions ofκ andτ given in Eqs. (11) using two real La-
grange multipliers. However, as shown in Appendix A such
relations are insufficient, so the spinorial structure Eqs. (9)
must be implemented in the variational principle using two
spinor Lagrange multipliers,λ = (ψ1, ψ2)T and its charge
conjugatẽλ = (−ψ̄2, ψ̄1)T.

The identification of the forces on the curve in the vari-
ational principle involves the implementation of the defini-
tion of the tangent vector as the arc length derivative of the
embedding functions. To do this we could introduce a term
F · (T−Y′), whereF is a real vector. However, instead
of working with these real vectors, we can use the fact that
the scalar product of two vectors is equal to one half of the
trace of their associated second rank spinors. Thus the we
can express such term in spinorial form as

F · (T−Y′) =
1
2
tr[Φ(Θ−Υ′)] , (14)

whereΘ = T ·σ, Φ = F ·σ, andΥ = Y ·σ, are the second
rank spinors associated toT, F andY. Spanning these vec-
tors asF = FiEi andY = YiEi, i = 1, 2, 3, these matrices
can be recast as

Φ =
(

F3 φ̄
φ −F3

)
, φ = F1 + iF2 , (15a)

Θ =
( |ψ1|2 − |ψ2|2 2ψ1ψ̄2

2ψ̄1ψ2 |ψ2|2 − |ψ1|2
)

, (15b)

Υ =
(

Y3 ῡ
υ −Y3

)
, υ = Y1 + iY2 . (15c)

These matrices are traceless and Hermitian by construction,
so they have only three independent components [21,22].

We also have to impose the normalization of the spinor
basis, which implies the normalization of the tangent vec-
tor and this in turn implies the parametrization by arc-length.
This can be done by introducing a real Lagrange multiplierΛ
imposing the unit norm of the spinor basis.

Taking into account these facts, we consider the effective
spinorial energyLE =

∫ LEds, where the energy density is
defined by

LE = L+
1
2
tr[Φ(Θ−Υ′)]

+ λ†
(

ψ′ − 1
2

(
−iτψ + κψ̃

))

+ λ̃†
(

ψ̃′ − 1
2

(
iτ ψ̃ − κψ

))

+ Λ
(

1
2

(
ψ†ψ + ψ̃†ψ̃

)
− 1

)
, (16)

In full this effective energy reads

LE = L+ Re
[
φ

(
2ψ1ψ̄2 − ῡ′

)]

+ F3
(|ψ1|2 − |ψ2|2 −Y3′)

+ Re
[
λ̄1

(
2ψ′1 + iτψ1 + κψ̄2

)]

+ Re
[
λ̄2

(
2ψ′2 + iτψ2 − κψ̄1

)]

+ Λ
(|ψ1|2 + |ψ2|2 − 1

)
. (17)

Thus, we can vary independently the embedding functions,
the curvature, the torsion, the spinor components and their
CC.

The EL equations obtained from the variation of the
spinorsΦ, λ, andλ̃, reproduce the definition of the tangent
vector and the structure equations of the spinor basis, given
in Eqs. (9).

The EL equations obtained from the variations with re-
spect to the curvature and torsion are

εκ :=
δLE

δκ
= Lκ + Re(ψ2λ1 − ψ1λ2) = 0 , (18a)

ετ :=
δLE

δτ
= Lτ + Im

(
ψ̄1λ1 + ψ̄2λ2

)
= 0 , (18b)

where we have defined the the derivatives of the energy den-
sity with respect to the curvature and torsion by

Lκ =
∂L
∂κ

, Lτ =
∂L
∂τ

. (19)

Solving these equations we getλ = αψ + βψ̃ and λ̃ =
ᾱψ̃ − β̄ψ, or in components

λ1 = αψ1 − βψ̄2 , λ2 = αψ2 + βψ̄1 , (20)

and their CC expressions, where we have defined

α = r1 − iLτ , β = Lκ + ir2 , (21)

and r1, r2 ∈ R are two real scalar functions to be deter-
mined.
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Using these results in the EL equation for the spinor com-
ponents, we obtain

ε1 :=
δLE

δψ1
= ψ̄1 (F3 − r′1 + Λ− i (L′τ + κr2))

+ ψ2 (L′κ − τr2 + i(κLτ − τLκ − r′2))

+ φψ̄2 = 0 , (22a)

ε2 :=
δLE

δψ2
= ψ̄2 (−F3 − r′1 + Λ− i(L′τ + κr2))

− ψ1 (L′κ − τr2 + i(κLτ − τLκ − r′2))

+ φ̄ψ̄1 = 0 . (22b)

The EL equations for the CC spinors,ε̄1 := δLE/δψ̄1 = 0
andε̄2 := δLE/δψ̄2 = 0 provide the CC of Eqs (22).

The combinationIm(ψ1ε1 + ψ2ε2) = 0 determinesr2

r2 = −L
′
τ

κ
. (23)

From the variations with respect to the embedding spinors we
get that the components ofΦ are conserved

δLE

δυ
= φ̄′ = 0 ,

δLE

δY3
= F3′ = 0 . (24)

along with the CC of the first equation. ThusΦ′ = 0 or
F′ = 0. In terms of these components we can express the
vector asF = Re(φ̄E) + F3E3, whereE = E1 + iE2. The
componentsφ andF3 can be determined from the combina-
tionsψ2ε1 + ψ̄1ε̄2 = 0 andRe (ψ1ε1 − ψ2ε2) = 0, respec-
tively. However, it is more convenient to span the vectorF in
the complex FS basis{ν, ν̄,T}, asF = Re(Fν ν̄) + FT T.

To determine the normal complex componentsFν and its
CC, as well as the tangential componentFT , we express them
in terms of their Euclidean counterparts as

Fν = φψ2
1 − φ̄ψ2

2 − 2F3ψ1ψ2 , (25a)

FT = 2Re(φψ1ψ̄2) + F3(|ψ1|2 − |ψ2|2) . (25b)

Using these expressions, along with Eq. (23) in the combi-
nationsψ1ε̄2 − ψ2ε̄1 = 0 andRe(ψ1ε1 + ψ2ε2) = 0, where
the EL derivativesεi, i = 1, 2, are defined in Eqs. (22), we
get that the complex normal componentFν and the tangential
componentFT are given by

Fν = L′κ +
τ

κ
L′τ − i

([L′τ
κ

]′
+ κLτ − τLκ

)
, (26a)

FT = r′1 − Λ . (26b)

Having determined the complex normal component, we can
readily obtain the real components along the principal nor-
mal and the binormal, given byFN = F · N = ReFν and
FB = F ·N = ImFν .

At this pointr1 andΛ cannot be determined from a com-
bination of the EL equations, because as as shown in Ap-
pendix B, they can be determined from the definition of the

torques on the curve, defined below in Sec. 4. Despite this
fact, the tangential componentFT can be determined from
the structure equations of the complex FS frame. We have
that arc-length derivative ofF is F′ = Re (εν ν̄) + εT T = 0,
where

εν = Fν ′ + iτFν + κFT , (27a)

εT = FT ′ − κReFν . (27b)

Using the identity

L′ = (κLκ + τLτ )′ − κL′κ − τL′τ , (28)

and Eq. (26a) we get that

κReFν = (κLκ + τLτ − L)′ . (29)

ThusεT is a total derivative, which permits us to determine
the tangential component

FT = κLκ + τLτ − L− µ , (30)

whereµ is a constant of integration. This constant of inte-
gration can be identified as the Hamiltonian density associ-
ated to the energy density, whose conservation stems from
the fact thatL does not depend explicitly ons [14,23]. Also,
one could consider the energy densityL + µ and obtain the
same EL equations, but in such caseµ would be interpreted
as a global Lagrange multiplier fixing the total lenght of the
curve.

This completes the determination of the components of
the spinorΦ.

The EL equations governing the critical points of the en-
ergy are given by Eq. (27a) and its CC, which upon substi-
tution of the components given in Eqs. (26a) and (30), read
εν = εN + iεB = 0, where

εN = L′′κ + 2τ

(L′τ
κ

)′
+ τ ′

(L′τ
κ

)

+ (κ2 − τ2)Lκ + 2κτLτ − κ(L+ µ) = 0 , (31a)

εB = −
(L′τ

κ

)′′
−

(
κ− τ2

κ

)
L′τ

+ τ ′Lκ − κ′Lτ + 2τL′κ = 0 , (31b)

are the EL equations corresponding to directions along the
FS normal [17]. Thus the vanishing of the real and imaginary
parts reproduce the EL for the FS frame, just as in the case
where the complex FS frame is used [5]. It is straightforward
to verify that these EL equations agree with the EL Eqs. (24).

Rev. Mex. Fis.68030701



SPINOR REPRESENTATION OF CURVES AND COMPLEXIFIED FORCES ON FILAMENTS 5

4. Identification of the force and torque
spinors

The change of the energy has two contributions due to the
variations of the bulk and the boundary, given by

δL =
∫ (

1
2
tr(Φ′δΥ) + δQ

)
, (32)

whereδQ = −(1/2)tr(ΦδΥ) + λ†δψ + λ̃†δψ̃. In compo-
nents, we have

δL =
∫ [

Re
(
ενδȲν

)
+ δQ′] ds , (33)

where

δQ = Re
[
2

(
λ̄1δψ1 + λ̄2δψ2

)− φδῡ
]− F3δΥ3 . (34)

In equilibriumεν = 0, so the first order variation of the en-
ergy is given by the boundary terms.

Taking into account that the energy depends only on the
curvature and torsion, we have that it is invariant under trans-
lations and rotations.

The translational invariance of the energy applied to the
boundary terms reproduces the conservation law ofΦ. In-
stead, we consider a constant infinitesimal translation of a
boundary of the curve,δΥ = δΥ0, the FS frame and its asso-
ciated spinor basis do not change,δψ = δψ̃ = 0. Therefore,
the change in the energy due to the boundary change is

δL =
1
2
tr (ΦδΥ0) = F · δY , (35)

so the constant vectorF (or its associated spinorΦ) is identi-
fied as the force on the boundary [17, 24]. On account of the
conservation ofF along the curve, we have that it represents
the force exerted by a line element of the curve on its neigh-
bor segment with greater arc lenght. Moreover, its constant
norm,1/2trΦ2 = F · F = F2, which in full reads

F2 =
(
L′κ +

τ

κ
L′τ

)2

+

([L′τ
κ

]′
+ κLτ − τLκ

)2

+ (κLκ + τLτ − L− µ)2 , (36)

provides a first integral of the EL Eqs. (31).
We now consider the energy invariance under rotations.

Under a rotation defined by the constant vectorω =
Re (ων ν̄) + ωT T, the change in the embedding functions
is δY = ω × Y. In terms of the their associated sec-
ond rank spinorsΩ = ω · σ andΥ, such change is given
by their commutatorδΥ = 1/(2i)[Ω,Υ]. Under a rotation
the spinors transform asψ → Uψ and ψ̃ → Uψ̃, where
U = e−1/2ω·σ ∈ SU(2), is the second rank spinor as-
sociated to the rotation. For an infinitesimal constant vec-
tor δω, the spinor is given byδU = − i

2δω · σ, where
δω ·σ = Re(δωνN†)+δωT Θ, with N = ν ·σ andΘ = T·σ

as defined by Eq. (15b). Therefore, under a constant infinites-
imal rotation of the curve, the changes in the components of
the spinor basis are given by

δψ1 = − i

2
(
δωT ψ1 − δωνψ̄2

)
, (37a)

δψ2 = − i

2
(
δωT ψ2 + δωνψ̄1

)
. (37b)

Under this change of the spinor basis the curvature and tor-
sion do not change,δκ = 0 andδτ = 0.

Using these expressions, we have that under a constant
infinitesimal rotation of the curve, the change in the energy is
given by

δL =
1
2

∫
tr (δΩM′) ds , (38)

where we have defined the second rank spinor,

M =
1
2i

[Υ, Φ] + Σ , (39)

with

Σ = Re
([L′τ

κ
+ iLκ

]
N†

)
+ LτΘ . (40)

It follows from Eq. (38) that M is conservedM′ = 0. In
consequence the derivative ofΣ is given by

Σ′ =
1
2i

[Φ,E3] . (41)

The vector associated to the spinorM is

M = Y × F + S , (42)

whereS = Re (Sν ν̄) + ST T, with

Sν =
L′τ
κ

+ iLκ , ST = Lτ . (43)

By an argument similar to the one used to identify the force
spinor, the consideration of the rotation of one boundary of
the curve leads to identification ofM andM as the vector and
spinor describing the torques on the curve.

From the conservation of the force and torque spinors we
have a second conserved quantity,J = (1/2)Tr(ΦM) =
F ·M = F · S = Re

(
Fν S̄ν

)
+ FT ST , which in full reads

J = L′κ
(L′τ

κ

)
− Lκ

(L′τ
κ

)′

+ τ

([L′τ
κ

]2

+ L2
κ + L2

τ

)
− Lτ (L+ µ) . (44)

In the derivation of the force and torque spinors it was un-
necesary to determine the Lagrange multiplierΛ and the
scalar functionr1. However, they can be determined from
the definition of the intrinsic torque spinorΣ as shown in
Appendix B.

In the next section we apply this framework to derive the
complex forces and the equilibrium equations of the Euler
Elastica.

Rev. Mex. Fis.68030701
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5. Planar Euler Elastica

For the classic Euler-Elastica, the associated energy is due to
bending,L = LB , defined in Eq. (12). In this case we have
Lκ = k(κ− κ0) andLτ = 0. The scaled components of the
complex force vector,fν := Fν/k andfT := FT /k, are

fν = κ′ + iτ(κ− κ0) , fT =
1
2

(
κ2 − κ2

0

)− ζ , (45)

whereζ = µ/k. The complex EL equation reads

εν

k
= κ′′ + (κ− κ0)

(κ

2
(κ + κ0)− τ2

)
− ζκ

+ i ((κ− κ0)τ ′ + 2κ′τ) = 0 . (46)

The real and the imaginary parts provide the EL associated
with deformations along the two normal directions. The
rescaled first integrals,f := F/k andj := J/k are

f2 = (κ′)2 + τ2(κ− κ0)2 +
(

κ2 − κ2
0

2
− ζ

)2

, (47a)

j = τ (κ− κ0)
2

. (47b)

It is straightforward to check that the combination of their
derivatives reproduce the real and imaginary parts of the com-
plex EL Eq. (46). The second equation determines the torsion
as a function of the curvature, which substituted in the first
equation results in a quadrature for the curvature,

(κ′)2 +
(

κ2 − κ2
0

2
− ζ

)2

+
j2

(κ− κ0)
2 = f2 , (48)

whose solutions are given in terms of Jacobi elliptic func-
tions [25, 26]. Having determined the curvature and the tor-
sion one has to solve the Eqs. (9) to determine the spinor
basis. For instance, let us consider planar curves of null spon-
taneous curvature,i.e. with τ = 0 (or j = 0) andκ0 = 0.
Forf2 > ζ2, the solution corresponds to a wavelike Elastica,
whose curvature is given by [23,25,26]

κ = 2
√

mq cn(qs,m) , 0 ≤ m ≤ 1 , (49)

wherecn(u,m) is the cosine Jacobi elliptic function of argu-
mentu and parameterm [27]. The scaled constant force and
the integration constant are given in terms of the wavenumber
q and the parameterm by f2 = q2 andζ = q2(2m− 1).

Since the torsion vanishes, the spinorial structure Eqs. (9)
simplify to

ψ′1 = −κ

2
ψ̄2 , ψ̄′2 =

κ

2
ψ1 , (50)

along with their CC expressions. The solutions of these equa-
tions for the curvature given in Eq. (49) are

ψ1 = −c1

√
m sn(qs, m) + c2 dn(qs, m) , (51a)

ψ̄2 = c1 dn(qs, m) + c2

√
m sn(qs, m) , (51b)

wheresn(u,m) anddn(u,m) are the sine and delta Jacobi
elliptic functions with argumentu and parameterm, related

by dn2(u,m) = 1 −m sn2(u,m); c1, c2 ∈ C are two con-
stants of integration. The other two components are obtained
from the CC expressions of these two components. The nor-
malization of the spinors imposes the constraint

|c1|2 + |c2|2 = 1 . (52)

Let us consider that the curve is on the planeX − Y . Since
the principal normal and the binormal are on and orthogonal
to the plane, from Eqs. (8) we have

N ·E3 = Reν ·E3 = Re(ψ1ψ2) = 0 , (53a)

B ·E3 = Imν ·E3 = Im(ψ1ψ2) = 1 . (53b)

These two conditions imply the following three equations

|c1|2 = |c2|2 , Re(c1c̄2) = 0 , Im(c1c̄2) =
1
2

. (54)

Combining the first equation with Eq. (52) we have|c1|2 =
|c2|2 = 1/2. Using this result and combining the last two
equations, we getc2 = ic1.

The planar curve can be parametrized by the complex co-
ordinatez = x + iy and its CC. From Eq. (8), we have that
the components of the tangent vector arex′ = 2Re(ψ̄1ψ2)
andy′ = 2Im(ψ̄1ψ2), soz′ = 2ψ̄1ψ2, or in full

z′ = −2ic̄2
1

(
dn(qs, m)− i

√
msn(qs,m)

)2
. (55)

Since the constant−2ic̄2
1 is just a global scale factor, we can

set it to one, such that̄c2
1 = i/2. Integrating we get

z =
1
q

(2E(am(qs,m),m)− qs)

+ i
2
q

√
mcn(qs, m) + z0 . (56)

whereE(u,m) andam(u, m) are the incomplete elliptic in-
tegral of the second kind and the Jacobi amplitude with argu-
mentu and parameterm [27]; z0 is a constant of integration.
The cartesian coordinates of the curve are given by the real
and imaginary parts ofz.

6. Discussion and conclusions

We have presented a variational framework in which the
spinor basis corresponding to the complexification to the FS
frame is used for the examination of the equilibria of curves,
thus offering an alternative to the usual framework employing
the FS frame or its complexification.

We have shown that in order to obtain the EL equations
correctly for energies depending on the curvature and torsion,
it suffices to implement the spinorial structure equations in
the variational principle, very similar to the variational prin-
ciple using the generalized Weierstrass-Enneper representa-
tion of surfaces [11]. Their introduction allows for their in-
dependent variation, so there is no need to calculate how the
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curvature and torsion vary under a change of the spinors. We
also identified the force and torque spinors from the change of
the boundary energy under Euclidean motions. One benefit
of working with these complex vectors is that their compo-
nents are the CC one of the other. To illustrate this spinorial
framework we determined the spinors corresponding to the
wavelike solutions of the planar Euler Elastica. Here we spe-
cialized our results to wavelike planar curves, but this frame-
work could also be applied to analyze closed planar curves
with constraints such as fixed total area [28, 29], or to the
study three dimensional curves [25,26].

Thre are several directions in which this spinorial frame-
work could be generalized. It could be extended to acco-
modate more general energies, for instance depending on the
material curvatures as in the case of Kirchhoff rods [24, 30],
or to include an explicit dependence on the spinor basis, as it
would be for paramagnetic filaments [31–33]. Furthermore,
this spinorial framework could be employed to study not only
the statics, but also the dynamics of filaments. In this work
we considered spinors parametrized only by arc-length, but
for the study of their temporal evolution they could also be
parametrized by time. In such case, besides the spatial struc-
ture equations, additional equations, with time derivatives re-
placing arc length derivatives, will govern the kinematics of
the filaments [10, 30]. It would also be interesting to extend
this framework to higher dimensions, for instance, for ener-
gies of curves representing the worldlines of particles in a
four dimensional ambient space, which would be described
in terms of a tetrad constructed out of a 4-spinor and its ad-
joint spinor [8].

Appendix

A. Sufficiency of the Lagrange multipliers

If instead of implementing the spinorial structure equation
we implement the definition of the curvature and torsion, as
in the vectorial framework [14], in the form

λκ (2Re(ψ1ψ
′
2 − ψ2ψ

′
1)− κ)

+ λτ

(
2Im(ψ1ψ̄

′
1 + ψ2ψ̄

′
2)− τ

)
, (A.1)

we obtain the following EL equations

ε1 =
(
ξ + F3 + Λ

)
ψ̄1 + ηψ2 + φ ψ̄2 = 0 , (A.2a)

ε2 =
(
ξ − F3 + Λ

)
ψ̄2 − ηψ1 + φ̄ ψ̄1 = 0 , (A.2b)

where we have defined

ξ = −iλ′τ + τλτ + κλκ , η = λ′κ − iτλκ + iκλτ . (A.3)

However, the combinationIm
(
ψ̄1ε̄1 + ψ̄2ε̄2

)
= λ′τ = 0,

implies the incorrect result thatλτ is constant. Hence, the
implementation of the definition of the curvature and torsion
though Eqs. (A.1) does not suffice for the enforcement of
their relation with the spinor basis.

B. Determination of the Lagrange multipliers

The spinorΣ can be written as the outer product of the spinor
basis and the Lagrange multiplierλ and its charge conjugate
asΣ = (1/2i)

(
ψλ† + ψ̃λ̃†

)
, or explicitly

Σ =
1
2i

(
ᾱψψ† + αψ̃ψ̃† + β̄ψψ̃† − βψ̃ψ†

)
. (B.1)

In order to be associated to a real vector, this spinor should
be Hermitian,Σ = Σ†. Calculating the latter spinor we get
Σ† = −(1/(2i))

(
λψ† + λ̃ψ̃†

)
, or

Σ† =
1
2i

(
−αψψ† − ᾱψ̃ψ̃† + β̄ψψ̃† − βψ̃ψ†

)
. (B.2)

Thus, this requirement imposes the conditionα = −ᾱ or
Re(α) = r1 = 0. Furthermore, from Eq. (26b), we have
thatΛ = −FT . This Lagrange multiplier did not play a rel-
evant role in the determination of the tangential component
of the force, because we obtained it from the reparametrizar-
ion invariance of the energy. On account of this fact, it might
seem that we could have omitted the implementation of the
normalization of the spinor basis, but in such case we would
have obtained from Eqs. (22) the wrong result that the tan-
gential component must vanish.
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