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Study on a falling metal drop in a perpendicular magnetic field
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A theoretical and experimental study of a falling metal drop which interacts with a perpendicular non-localized magnetic field is addressed.
As the metal drops traverses the magnetic field, it suffers a braking due to induced electromagnetic effects. An analytical solution for the
velocity of the falling drop is obtained thought a balance of forces which affect its motion. A numerical solution from the incompressible
Navier-Stokes equations for two phase flows is also obtained. A numerical model for the solution of the incompresible Navier-Stokes for
two-phase flows is also implemented. This model is based in the fron-tracking/finite volume method. The simulation allows observe a more
detailed dynamics such as the deformation of the drop. Both the theoretical and numerical results validate the experimental data obtained
through the Particle Image Velocimetry.
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1. Introduction

Magnetohydrodynamics (MHD) is concerned with the in-
teraction of flowing fluids and magnetic fields. The
fluid in question must be electrically conducting and non-
ferromagnetic such as metal-based fluids, plasmas and elec-
trolytes [1]. Theoretical models of MHD flows are formu-
lated by coupling the Navier-Stokes equations and Maxwell’s
equations, both systems of equations couple via the Lorentz
force. Numerous studies have already been conducted on
MHD flows for industrial applications such as heat sinks in
nuclear reactors, pumps, batteries and levitating liquid met-
als.

On the interaction between liquid metal and magnetic
fields, numerous experimental investigations of metal fluids
flowing through a channel to which an artificial external mag-
netic field is applied have been performed [2–4]. A fluid elec-
trically conducting that flows trough a channel in the presence
of an external magnetic field produced by a magnet suffers a
magnetic braking in it’s momentum by Lorentz force,i.e., in-
duced electrically currents are produced inside the entire fluid
flow due the relative movement to the applied magnetic field,
thus the Lorentz force results in an induced magnetic force in
the opposite direction of fluid flow, thereby causing the fluid
to slow its motion. This effect has also been observed ex-
perimentally in the case of a rising single helium bubble in

a metal liquid environment like mercury under vertical mag-
netic field [5], which demonstrate that the rise velocity of
helium bubble decreases monotonically with the increase of
the magnetic field. The latter results were confirmed with
numerical simulations by means of two-phase interface treat-
ment [6,7].

In particular, the dynamics of liquid metal jets/drops is
important, for example, in the development of alternative
energy sources such as new plasma-based fusion reactors
like the Tokamak [8], or the development of revolutionary
three-dimensional printing based on liquid metal generated
by melting which is printed using an ink-jetting process [9].
Furthermore, studies of exoplanet atmospheres such as those
of the giant exoplanet WASP-76b [10] demonstrate the pos-
sibility of molten iron raining as droplets. It is suspected that
this rainfall is affected by induced MHD effects.

The effect on the motion of a liquid metal drop falling in
presence of a magnetic field was studied first by [11]. The au-
thors computed the force promoted by the interaction of the
induced electric currents generated into the drop and the ap-
plied magnetic field. They concluded that no matter the sign
of the magnetic field gradient, the electromagnetic force is
always in the opposite direction of the drop motion, acting as
an electromagnetic drag. More recently, the study of a falling
metal drop was performed by a numerical simulation [12],
where a drop fell into a metal liquid layer in the
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FIGURE 1. Sketch of the experimental set-up, not drawn to scale. a) Hele-Shaw cell. The flow promoted by falling drop is visualized in the
x-y plane thorough the PIV technique. b) Diagram of the liquid metal droplet dosing system and its components. Blue lines indicate the flow
of control signals and red lines indicate the flow of electrical current.

presence of imposed vertical magnetic field, such results re-
vealed an interesting behaviour on metal liquid layer for a
strong magnetic field, spreading was substantially reduced
and a swelling of free surface after collision were observed.
An interesting investigation is presented in Ref. [13], where
numerical simulations were performed of a falling droplet in
the presence of a positive and negative magnetic field gradi-
ent.

In contrast to previous works, we present a theoretical and
experimental study of a falling metal drop under the effect of
a perpendicular magnetic field. The experimental set-up is
rather simple and useful which does not require expensive
high speed cameras since it is a liquid-liquid phase experi-
ment. Additionally, in the numerical simulations a real dis-
tribution of the magnetic field was used in order to compare
the phenomenon with the experimental observations.

2. Experimental procedure

The experiment set up consist of a liquid metal drop falling
in a Hele-Shaw cell. The cell consist of two sheets of tem-
pered glass glued to an O-ring and kept fixed with aluminium
forceps. The cell’s dimensions are 230 mm long 110 mm
width and a separation between sheets of 2.5 mm. The cell
is vertically placed and is open in the upper side, see Fig. 1.
A rectangular parallelepiped Neodynium magnet with a side
length of 50.8 mm, height of 25.4 mm is placed in the geo-
metrical center outside the cell. Thez−axis of the magnet
is perpendicular to the cell. The perpendicular component
of the magnetic field was measured with a Teslameter F.W.
BELL, model 4048. The maximum strength of the magnetic
field at the cell’s centre is 0.22 T, as seen in Fig. 2.

The formation of liquid metal drops was carried out by
automating a 5 ml syringe. It was manually filled with liq-

FIGURE 2. Perpendicular componentB0
z of the magnetic field as

a function of they-coordinate in the PIV observation zone. Dots
denote experimental measurements.

uid metal during testing, later it is placed on a screw linear
actuator (six centimeters of travel), the which implements a
stepper motor (nema 17) to linearly move the plunger of the
syringe. The volume of the drop (V = 0.022 ml) is controlled
by varying the angular velocity and the number of steps of
the motor, for this purpose, an Arduino Nano microcontroller
and the DRV8825 driver are used. The latter generated liquid
metal drops with diameterd = 3.4 mm. Figure 1b) shows
the components used for dosing drops of liquid metal. The
measures of the cell were calculated so that its boundaries
are sufficiently far away from the metal drop.

In order to obtain low Reynolds flows, the cell was filled
with glycerin rather than air, thus the drag is increased. The
working fluids are at room temperature (20◦ C). The drop is
an eutectic alloy of Gallium, Indium and Tin (GaInSn) that
is liquid at room temperature; its mass density, kinematic
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viscosity and electrical conductivity areρ1 = 6360 Kg/m3,
ν = 3.4 × 10−7 m2/s andσ = 3.46 × 106 S/m, respec-
tively. The glycerin (ρ2 = 1261 Kg/m3) is seeded with
hollow glass spheres, with an approximated diameter of 10
µm. The high surface tension between glycerin and the liquid
metal (537±13 mN/m [14]) promotes that the flow is domi-
nated by the surface tension force and the drops take an ap-
proximately a circular and / or elliptical shape within the Hele
Shaw cell. Since the drop reaches small velocities because of
the drag with the glycerin, images of the falling metal drop
were recorded with a common photographic camera rather
than a high speed camera. We used a Nikon D90 with a AF
micro-nikkor 60mm f/2.8D lens. For the tracking of the drop,
an image analysis algorithm was used to detect the pixels that
correspond to the boundary of the drop in the plane of the cell
(Circular Hough algorithm). The Particle Image Velocimetry
(PIV) technique was used in order to obtain velocity vector
fields. The actual area of the captured image was 0.03 m
× 0.06 m in the central part of the cell, where the drop has
reached a terminal velocity. The images had1280× 720 pix-
els resolution. Avoiding the transient flow, we obtained 24
snapshots per second. The PIVlab software was used to per-
form the analysis [15]; we used interrogation areas of32×32
pixels with 50% overlap in the horizontal and vertical direc-
tions, and vector validation. The error in the experimental
data was obtained by adjusting a normal distribution to the
data at sample points. The relative error is smaller than 18%.

3. Theoretical model

3.1. Numerical solution

Consider a two dimensional fluid composed by two-
immiscible fluids (a continuous phase and a liquid metal
droplet) in presence of the acceleration of gravity. The dis-
tribution of the magnetic field is modeled as in Ref. [16] that
corresponds to the distribution found experimentally, as seen
in Fig. 2. The drop falls due to its weight and the continuous
phase is displaced by the moving drop. The surface tension
between the two fluids is taken into account in the model, and
the geometry of the interface is calculated by considering the
normal and tangential stresses that arise due to the interaction
of the drops and the surrounding liquid. Due to the complex-
ity of the problem, it was approached numerically by a finite
volume/front-tracking method where a single set of conserva-
tion equations [17] are solved for the entire domain, including
the liquid metal drop and the continuous phase. The details
of the numerical implementation can be found in Ref. [18].
The equations that describe the motion of the drops and the
surrounding are mass and momentum conservation coupled
with electromagnetic equations for computing the induced
magnetic field with the low magnetic Reynolds number ap-
proximation [1, 19]. Considering that the two fluids are in-
compressible, the mass conservation is given by:

∇ · u = 0, (1)

whereu is the fluid velocity. The momentum conservation
equation is written in a form that includes the different fluids
and the surface tension force:

∂ρu
∂t

+∇· ρuu = −∇p +∇·µ(∇u +∇T u)

+
∫

σκ′n′δβ(x− x′)ds′ + (ρ− ρf )g + j × B0. (2)

The pressure is denoted byp, µ is the dynamic viscosity,g is
the gravity vector,ρf is the density of the continuous phase,
σ is the surface tension coefficient,k is the curvature,j is the
electric current andB0 is the applied magnetic field. The ef-
fect of the interface is accounted in the integral term that rep-
resents the surface tension force concentrated at the boundary
of the two fluids. Since this force is calculated only at the in-
terface this can be represented as two-dimensional delta func-
tion δβ(x− x′) = δ(x− x′)δ(y − y′), wherex is the point at
which the equations are evaluated andx′ is a point in the in-
terface. The equation for computing the induced magnetic
field is given by:

0 = η∇2b +
(
B0 · ∇)

u− (u · ∇) B0, (3)

whereη is the magnetic diffusivity,b andB0 are the induced
and applied magnetic fields, respectively. Additionally, both
the applied and induced magnetic field are solenoidal and sat-
isfy:

∇ · b = 0, ∇ · B0 = 0. (4)

Once the induced magnetic field is calculated, the induced
electric current can be found as:

∇× b = µm j i, (5)

whereµm is the magnetic permeability. The set of Eqs. (1)-
(5) were discretized using a mesh with1024 × 2048 grid
points that are uniformly spaced in thex− and y− direc-
tions and the finite volume method was implemented in an in-
house code. A second order predictor-corrector method was
implemented for the integration in time. We considered non-
slip walls the top and bottom boundaries, and are separated
64 drop diameters apart. The lateral walls are also considered
solid walls and are located 32 drop diameters away from each
other, therefore, the computational domain is similar in size
with respect to the experimental Hele Shaw cell. For solv-
ing the induction Eq. (3), the zero boundary conditions on
b are imposed at all the walls of the computational domain.
The numerical simulations were carried out for similar condi-
tions of the experimental observations. We must note that the
applied magnetic field distribution is not constant, thus the
motion of the conducting drop thorough the magnetic field
will promote the existence of the induced magnetic field and
consequently the induced currents according to Eqs. (3) and
(5), respectively, which will generate a Lorentz force that will
brake the motion of the metal drop.
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FIGURE 3. Force diagram on the liquid metal drop.

3.2. Analytical solution

Following the approach for the dynamics a spherical particle
to a one-dimensional flow by Morsi [20], a simple approach
of the drop dynamics is the balance of the forces (as seen in
Fig. 3) which act on the liquid metal drop

F = Fd + Fb + Fm + Ff + Fw, (6)

whereFd is the drag,Fb is the buoyancy,Fm is the induced
magnetic force,Ff is the friction doe to the walls of the cell
andFw is the weight. The latter forces can be mathematically
expressed as

m
dv

dt
=

1
2
CDρ2Av2 + ρ2V g + σV vB0

z
2 + kv− ρ1V g, (7)

wherem is the mass of the metal drop,v is the velocity,t
denotes time,CD is the drag coefficient,A is the superficial
area of the drop,V is the volume andg is the gravity accel-
eration,σ is the electrical conductivity,B0 is the magnetic
field intensity,ρ1 andρ2 is the metal drop and the medium
density, respectively, andk is a friction coefficient.

The total magnetic force (or Lorentz force) in the drop
due to the induced currents is~Fm =

∫
(~ji × ~B0)dV . From

the MHD point of view, the induced electric currents can
be obtained through two different formulations, namely, the
ϕ-formulation and theB-formulation. The first one departs
from the Ohm’s law, that is

~ji = σ( ~E + ~u× ~B0). (8)

Considering that only the component of the applied mag-
netic field normal to the plane of motion is relevant,B0

z ,
and the drop moves in the negativey-direction,−v, the in-
ternal velocity is the one of the drop as it moves as a non-
deformable solid. Since we know that the induced currents
are generated in response to fluid motion in the applied mag-
netic field and not due to electric fields. Thus the main com-
ponent of the induced current isji

x = −σvB0
z . The cross

product of the electric density current and the applied mag-
netic field (~ji × ~B0) is σvB0 2

z . Finally, the magnetic force
is σvB0 2

z V . The second formulation departs from the induc-
tion Eq. (3), which for thex− y plane it reads

0 =
1

µ0σ

(
∂2bz

∂x2
+

∂2bz

∂y2

)
− u

∂B0
z

∂x
− v

∂B0
z

∂y
, (9)

considering that the drop only moves in the negativey- direc-
tion and the induced magnetic field only depends the vertical
direction, it goes as

1
µ0σ

∂2bz

∂y2
= v

∂B0
z

∂y
. (10)

By integration by parts and assuming low acceleration
(v′ < 1) and the drop moves in the negativey-direction

∂bz

∂y
≈ −µ0σvB0

z , (11)

From Amṕere’s law (Eq. (5))

ji
x =

1
µ0

∂bz

∂y
= −σvB0

z . (12)

Consequently, the magnetic force (~ji × ~B0) in the posi-
tive y−direction isσvB0 2

z , which is the same result as the
ϕ-formulation. As seen in Eq. (10), there should be a gradi-
ent of the applied magnetic field in order that the magnetic
braking force exist. Rearranging Eq. (7) with m = ρ1V , and
definingρr = ρ2/ρ1 we get

dv

dt
=

3CDρr

d
v2 +

(
σB0

z
2

ρ1
+

k

ρ1

)
v + g(ρr − 1), (13)

whered is the diameter of the drop. By scaling the velocity
and time withv0 andd/v0, respectively, wherev0 is a charac-
teristic velocity, the dimensionless equation for the velocity
of the falling drop reads

dv

dt
= 3CDρr v2 +

(
Ha2

Re
+ K

)
v + G(ρr − 1), (14)

where the dimensionless parametersRe, Ha, K andG de-
notes the Reynolds number, Hartmann number and the di-
mensionless friction and gravity acceleration, respectively,
which are defined as

Re =
v0d

ν
, Ha = dB0

z

√
σ

ρ1ν
,

K =
kd

ρ1v0
, G =

gd

v2
0

, (15)

whereν is the kinematic viscosity. We note that, the behavior
of MHD flows can be characterized by the Hartmann num-
ber, that represent a relation between magnetic with respect
the viscous forces. The solution to the Eq. (14) is

v(t) =
b−√b2 + 4ac

2a
tanh

(√
b2 + 4ac

2
t

)
, (16)
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FIGURE 4. First row: Snapshots of the falling metal drop forHa = 0 at different time instantst = 0.5 s,t = 3.5 s andt = 6.8 s. b) Second
row: PIV velocity fields of the drop for the latter time instants. Experimental observations.

where the initial condition is zero. The parametersa, b andc
are defined as

a = 3CDρr, b =
Ha2

Re
+ K, c = G(ρr − 1). (17)

The drag coefficientCD can be obtained from [20]

CD =
k1

Re
+

k2

Re2
+ k3. (18)

Finally, if the solution for the velocity (Eq. (16)) is inte-
grated, we can obtain the position of the drop as a function of
time

y(t)=
log

(
cosh

[
1
2

√
b2+4ac t

]) (
2b−2

√
b2+4ac

)

2a
√

b2+4ac
. (19)

We must note that, this is an idealized model that can

only be compared with the experiments in a qualitative level
as will be shown in next section.

4. Results

Figure 4 show the experimental snapshots of the falling metal
drop (first row) along with the vector fields (second row) for
different time instants. The vector fields allows to easily iden-
tify the flow structure as the metal drop falls surrounded with
the glycerin, namely, a dipole vortex. Moreover, the vector
fields allow us also to identify the direction of the flow and
its magnitude.

The tracking of the metal drop allows to obtain the posi-
tion of the drop in every frame of the recorded video, Fig. 5
shows the position of the drop as a function of time. We can
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FIGURE 5. Vertical positiony of the metal drop as a function of
time t. a) Experimental data. b) Numerical simulation. c) Analyti-
cal solution from Eq. (19).

observe that for the hydrodynamics case, that isHa = 0, the
drop traverses the domain presented in Fig. 5a) (l = 0.06 m)
in t = 7.3 s, meanwhile it lastst = 9.1 s when the induced
magnetic effects are present, in this case the Hartmann num-
ber isHa = 30. The above shows the braking effect on the
drop due to the presence of the magnetic field gradient. Be-
cause the relative motion of the droplet with respect to the
magnetic field, induced currents are generated. The interac-
tion of the induced currents and the applied magnetic field
produce a Lorentz force in the metal drop. This electromag-
netic force is produced in the opposite direction of accelera-

FIGURE 6. Velocity of the dropv as a function of timet. Numeri-
cal simulation.

tion of gravity and as a consequence slows down the motion
of the drop. From the latter data, we can calculate a mean
velocity: vm = −7.7 × 10−3 m/s andvm = −6.2 × 10−3

m/s, forHa = 0 is andHa = 30, respectively.
The Reynolds number for the experiments isRe =

vmd/ν = 76, which demonstrates that the flow regime is
laminar and can be compared with the theoretical models.
Correspondingly, the position of the drop as a function of
time from the numerical simulations forHa = 0 andH = 30
is shown in Fig. 5b). The braking of the metal drop when the
induced effects are present is also observed and the agree-
ment with the experimental results is quantitative. Concern-
ing the analytical solution, Fig. 5c) shows the position of the
drop from calculated form Eq. (19). Taking the characteristic
velocity is the mean velocity of the experimental falling drop
in the hydrodynamics case,v0 = vm and the friction factor is
k = 0.143 Kg/s, we obtainG = 555 andK = 442. The coef-
ficients for the drag coefficient arek1 = 46.5, k2 = −116.67
andk3 = 0.6167, since10 < Re < 100. As it is shown, the
theoretical results are qualitatively consistent to that found
experimentally (Fig. 5a)). The braking effect promoted by
the Lorentz force on the drop is clearly observed for the case
of Ha = 30 with respect to the purely hydrodynamic flow
(Ha = 0), and as the Hartmann number is increased the brak-
ing is larger (Ha = 90).

Simulations are able to give a deep insight in the drop
motion and flow generated function of time. In Fig. 6, the
velocity of the metal drop as function of time is presented
computed from the numerical simulations. The vertical lines
mark the instants of time in which the metal drop enters and
leaves the magnetic field. Additionally, the instant where the
drop is in the area where the field produced by the magnet
permanently is maximum is also marked. As it can be ob-
served, once the metal drop enters in the magnetic field, the
extra drag promoted by the Lorentz force causes a decelera-
tion of the drop, in this zone a high magnetic field gradient
promotes that the Lorentz force be intense. Once the drop
leaves the magnetic field, it accelerates until reaches the ap-
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FIGURE 7. Velocity field (black arrows) and falling metal drop (red
color). a)Ha = 0. b) Ha = 30. Numerical simulations.

proximately the same velocity of theHa = 0 case. The in-
teraction found is consistent with the analytical and numeri-
cal results reported by [11, 13], respectively, but in this case,
the effect of the Lorentz force on the metal drop dynamics
is shown for a case that can be reproduced by an experiment
using an approximation of a real magnetic field distribution
generated for a given permanent magnet.

Figure 7, the falling metal drop and the velocity field are
shown at the same instant of time forHa = 0 andHa = 30.
For both cases the flow formed around the drop is a dipole
vortex, as seen in the experimental PIV results (second row
in Fig. 4). Due the low Reynolds number, for both simula-
tions, the metal drop follows an approximately straight path
along its fall, which matches with the one-dimensional flow
assumption in the analytic solution. In the case ofHa = 0,
the drop tends to remain with a circular shape during all the
trajectory, while forHa = 30, the drop shape changes to
an ellipse due to the Lorentz force promoted by the interac-
tion of the induced current and the applied magnetic field.
As it was commented, the Lorentz force acts in the opposite
direction of the gravity acceleration in the zones where the
applied magnetic field gradient is intense, and this force acts
as a brake on the motion of the drop.

In order to explain how the Lorentz force produces a brak-
ing effect on the drop’s motion, the electric current density
vector and contours of the induced magnetic fields inside the
metal drop are shown in Fig. 8. The induced current manly
points in the negativex−direction, while the magnetic field is
in thez-direction, thus the magnetic force is in they-direction
which is contrary to the drop’s motion. As can be appreci-
ated, due to the deformation and the internal flow inside the

FIGURE 8. Induced magnetic field contour plot and induced cur-
rent density vector field inside the falling metal drop,Ha = 30.
Numerical simulations.

drop, the electric currents form non-axisymmetric closed
loops along polar axis. The small deviation from a rectilinear
path due to the Reynolds number reached by the drop pro-
motes that it does not pass through out the central line of the
permanent magnet making the electric currents and induced
magnetic field not symmetric with respect to the longitudinal
axis of the metal drop. The symmetric case for the induced
currents occurs the drop is a non-deformable solid [11].

5. Concluding remarks

The falling metal drop falling in a localized magnetic field
has been studied theoretically and experimentally in the lam-
inar regime (Re = 76). The metal drop falling in glycerin
was observed experimentally through PIV and image track-
ing. An analytical solution for the falling drop under sev-
eral body forces was derived. A numerical solution based
on the so-called front-tracking method for the incompressible
Navier-Stokes equations was implemented. The simulations
were performed for a size similar to the experimental Hele-
Shaw cell in order to analyze the complete trajectory of the
metal drop, including the zone where it interacts with the ap-
plied magnetic field. It was found that at the zones in which
is a intense magnetic field gradient, the drop decelerates due
to the generated Lorentz force that counteracts the gravity ac-
celeration, however, in the zone where the applied magnetic
field is approximately constant, there is no electromagnetic
interaction between the metal drop and the permanent mag-
net.The flow and electrical current were also analyzed and it
was found that at the presented flow conditions, the Lorentz
force tends to deform the drop, also, the unbalance in the
pressure gradient promoted by the reached Reynolds num-
ber deviates the drop from a rectilinear path and as a con-
sequence, the induced currents and magnetic field inside the
drop are non symmetric with respect to the longitudinal axis
of the metal drop. The analytical and numerical solutions
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8 F. GARZÓN, G. RAMÍREZ, S. PIEDRA AND A FIGUEROA

represent qualitatively the experimental problem. To the best
of our knowledge, this is the first reported experimental study
for liquid metal drops falling in the presence of a perpendic-
ular non-uniform magnetic field.
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