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In this paper, we investigate the new approximate bound state solution of deformed Klein–Gordon, Dirac and Schrödinger equations in
the symmetries of extended relativistic quantum mechanics ERQM and extended nonrelativistic quantum mechanics ENRQM have been
obtained with a newly proposed potential called improved Hellmann-generalized Morse potential (IHGMP, for short). To the best of our
knowledge, this problem is examined in literature in the usual RQM and NRQM with Hellmann-generalized Morse potential. The potential
is a superposition of Hellmann potential, generalized Morse or Deng-Fan potential, and some other exponential terms. By employing the
improved approximation to deal with the centrifugal term, Bopp’s shift and standard perturbation theory method. The new approximate
analytical energy shift and the corrections of bound state energy eigenvalues in ERQM and ENRQM are obtained for some selected diatomic
molecules such as (HCl, LiH, H2, ScH, TiH, VH, CrH, CuLi, TiC, NiC, ScN and ScF). The new values that we get are sensitive to the
quantum numbers(j, l, s, m), the potential depths of the improved Hellmann-generalized Morse potential (a, b), the range of the potentialα,
the dissociation energyDe, the equilibrium bond lengthre, and noncommutativity parameters(Θ, σ, χ). We have highlighted three physical
phenomena that automatically generate a result of the topological properties of noncommutativity, the first physical phenomena are the
perturbative spin-orbit coupling, the second the magnetic induction while the third corresponds to the rotational proper phenomena. In both
relativistic and nonrelativistic problems, we show that the corrections on the spectrum energy are smaller than the main energy in the ordinary
cases of quantum field theory and quantum mechanics. In the new symmetries of NCQM, it is not possible to get the exact analytical solutions
for l = 0 and l 6= 0, the approximate solutions are available. Four special cases,i.e., l wave are investigated in the context of deformed
Klein-Gordon and Schrödinger theories. The relativistic energy equations and the new nonrelativistic energy for some potentials such as
improved Hellmann potential and improved generalized Morse potential have also been obtained by varying some potential parameters. We
have clearly shown that the Schrödinger and Klein Gordon equations in the new symmetries can physically describe each of the two Dirac
equations and the Duffin-Kemmer equation under the effect of IHGMP.
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1. Introduction

Two scientific revolutions took place at the beginning of the
last century; the first was embodied by the general and special
theories of relativity and the second was the development of
quantum mechanics. The Schrödinger equation was the first
used to probe matter at the smallest scales [1], after which
came the Klein-Gordon, Duffin-Kemmer, and Dirac equa-
tions. For the case of neutral or charged particles with spin
zero, one can deal with the Klein-Gordon equation [2, 3]. In
contrast, for the case of a particle with spin-1, the Duffin-
Kemmer equation [4] is necessary for mesons. As for the
case in the case of spin-1/2 as electrons and their antagonists
(positron), the Dirac equation [5] is the tool used to access
the physical and chemical information of the system. All
fundamental equations that we have referred to are normally
solved using different potentials, depending on the nature of

the problem being studied. Exponential potentials have been,
and still are, the tool through which researchers have sought
to study molecules. We will devote our current study to two
types of potentials of great importance in this field, the Hell-
mann and generalized Morse potential. Many researchers
have previously studied them in different energy levels, ei-
ther separately for each of them or in combination, but it was
in the framework of usual nonrelativistic quantum mechan-
ics (NRQM) and relativistic quantum mechanics (RQM). Our
study will be the focus of a case for combining them in the
framework of a large quantum symmetry that is known by
nonrelativistic noncommutative quantum mechanics (or ex-
tended nonrelativistic quantum mechanics, ENRQM) and rel-
ativistic noncommutative quantum mechanics (ERQM) sym-
metries (or extended relativistic quantum mechanics) using
deformed Schr̈odinger, Klein-Gordon, and Dirac equations.
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It is well known that the Hellmann potential [6–8], is a su-
perposition of the attractive Coulomb potential and a Yukawa
potential [9]. Ikhdairet al. [10] have studied the bound state
energies of the Hellmann potential by using the SUSY pertur-
bation formalism. In 2007, Koncaket al. [11] studied the ra-
dial Schr̈odinger equation for the Hellmann potential within
the framework of the asymptotic iteration method and ob-
tained the bound state energy eigenvalues. This potential has
many important applications; we mention one of the solid-
state physics [12–14], alkali hydride molecules [15], inner-
shell ionization problem [16], nuclear physics [17], among
other applications. Furthermore, it was studied in both rel-
ativistic and non-relativistic quantum mechanics (see,e.g.,
[17–20]).

Deng-Fan potential originally appeared many decades
ago. This potential was proposed by Deng and Fan [21]
as a molecular potential, which improved the Morse poten-
tial [22], is known as the generalized Morse potential. Dong
has used this potential as a suitable alternative potential to
the Morse potential in the study of diatomic molecules to de-
scribe the vibrational spectrum and electromagnetic transi-
tions [23,24]. Moreover, it can be used to study the diatomic
molecular and obtain their energy spectra [25]. In 2008,
Dong and Gu [26] obtained a bound state solution of the
Schr̈odinger equation with the Deng-Fan molecular potential.
Dong [27] trained the relativistic of spinless particles subject
to a rotating Deng-Fan Oscillator. Oluwadareet al. [24] ob-
tained the exactl-wave solutions of the Klein–Gordon and
Dirac equations with equally mixed scalar and vector Deng-
Fan molecular potentials, the normalized wave function, and
the corresponding energy equations. Hassanabadiet al. ana-
lyzed the relativistic spinless particles under Deng-Fan poten-
tial [28]. By using the asymptotic iteration method, Ortakaya
et al. [29] obtained the approximate analytical solutions of
the Dirac equation with the Deng-Fan potential including a
Coulomb tensor interaction in the presence of spin symme-
try and pseudo-spin symmetry. In 2009, Zhanget al. [30]
obtained the approximate analytical solutions of the Dirac
equation with the generalized Morse potential model in the
presence of spin symmetry and pseudo-spin symmetry by us-
ing the supersymmetric shape invariance formalism. Also,
Daif [31] obtainedl-state solutions of the Feynman propaga-
tor with the Deng-Fan molecular potential. Moreover, Magh-
soodiet al. obtained. By employing the Pekeris-type approx-
imation, Oyewumiet al. [32] obtained bound state solutions
of the Deng–Fan molecular potential using the Nikiforov–
Uvarov method for diatomic molecules (HCl, LiH, H2, ScH,
TiH, VH, CrH, CuLi, TiC, NiC, ScN and ScF). Very recently,
Ekwevugbe [33] obtained a nonrelativistic energy spectrum
of the Deng-Fan Oscillator via the WKB approximation. Cur-
rently, the idea of combining more than two potentials has
attracted interest. This combination expands the application
scope to include new fields. And as a successful model for
this combination, Okoiaet al. and Ebomwonyiet al. stud-
ied the Hellmanngeneralized and Morse potentials in the case
of the relativistic Klein-Gordon equation, Dirac equation, and

nonrelativistic Schr̈odinger equation; this combination can be
applied in different branches of physics, including molecular
and atomic physics [34,35].

In recent work, we combine Hellmann-generalized Morse
potentials and explore the corresponding deformed Klein-
Gordon, Dirac, and Schrödinger equations in the symmetries
of ERQM and ENRQM. The idea of non-commutative quan-
tum mechanics is old and dates to the early years of ordi-
nary quantum mechanics, originally from Snyder [36] and
later developed. The non-commutative quantum theory con-
tributed positively to overcoming many problems that ordi-
nary quantum mechanics could not solve. Quantum grav-
ity, string theory, and the divergence problem of the standard
model new data made this new quantum theory a refuge for
physicists to find solutions and discoveries hoped for on the
other hand [38–48]. In recent years, a lot attention has been
drawn to this development [49–59].

Concerning the combination of Hellmann and general-
ized Morse potentials, the subject of the current study, I
have previously dealt with the non-specific study of each of
them separately, but I have not dealt with them in a com-
bined way, and neither has any other researcher done so far.
We have treated the generalized Hellmann potential in the
symmetries of NERQM [60]. Moreover, we have applied
the Hellmann potential on the Mirror Nuclei17O and 17F
in the symmetries of NERQM [61]. Moreover, we have
studied the deformed Schrödinger equation with the gen-
eralized Hellmann–Kratzer potential model in the symme-
tries of ENRQM [62]. Very recently, we have investigated
the bound-state solutions of the deformed Klein–Gordon and
Schr̈odinger equations for arbitrary l-states with the modified
Morse potential in the symmetries of noncommutative quan-
tum mechanics [54]. From what we have seen so far that most
of the studies concerning improved Hellmann-generalized
Morse potential were within the framework of ordinary quan-
tum mechanics. The above works motivated us to investigate
the approximate solutions of the 3-dimensional deformed
Klein-Gordon equation, Dirac and Schrödinger equations for
improved Hellmann-generalized Morse potential offered in
Refs. [34, 35] in RQM and NRQM. The potential focus of
study and interest can be applied for some selected diatomic
molecules such as (HCl, LiH, H2, ScH, TiH, VH, CrH, CuLi,
TiC, NiC, ScN and ScF) in ERQM and ENRQM symmetries.
The research reported in the present article was motivated by
the fact that the study of the MHGPs in the ERQM and EN-
RQM symmetries has not been reported in the available lit-
erature. Here, our focus was on the MHGPs, which has the
following form in the new symmetry:

(V, S)hmp(r) = (De, Se)

[
1 +

−a + be−αr

r (De, Se)

− 2
(

eαre − 1
eαr − 1

)
+

(
eαre − 1
eαr − 1

)2
]
, (1.1)
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(V, S)hmp(rnc) = (V, S)hmp(r)

− ∂ (V, S)hmp(r)

∂r

LΘ
2r

+ O
(
Θ2

)
, (1.2)

where(De, Se) are the dissociations energies,re is the equi-
librium bond length, (a andb) are the potential strengths,α is
the screening parameter,rnc andr is the distance between the
two particles in EQM and QM symmetries, respectively. The
coupling equalsLΘ ≡ −→L−→Θ equalsLx, Θ12 + Ly Θ23 + Lz

Θ13 with Lx, Ly andLz are present the usual components
of the angular momentum operatorL while the new non-
commutativity parameterΘij equalsθij/2. The new alge-
braic structure of noncommutative covariant canonical com-
mutations relations NCNCCRs in the three representations
of Schr̈odinger, Heisenberg, and interactions pictures, as fol-
lows (It should be noted that, in our calculation, we have used
the natural units~ = c = 1) [63–70]:





[
x

(S,H,I)
µ , p

(S,H,I)
ν

]
= i~δµν

=⇒
[
xnc

(S,H,I)
µ

∗,pnc
(S,H,I)
ν

]
= i~δµν

, (2.1)





[
x

(S,H,I)
µ , x

(S,H,I)
ν

]
= 0

=⇒
[
xnc

(S,H,I)
µ

∗,xnc
(S,H,I)
ν

]
= iθµν

. (2.2)

While the uncertainty relations will be changed into the
following formula in the new symmetries as follows:

∣∣∣∆x(S,H,I)
µ ∆p(S,H,I)

ν

∣∣∣ > ~δµν

2

=⇒
{

∆x
(S,H,I)
µ ∆p

(S,H,I)
ν > ~eff δµν

2∣∣∣∆x
(S,H,I)
µ ∆p

(S,H,I)
ν

∣∣∣ > |~θµν |
2

. (3)

With x
(S,H,I)
ncµ =

(
xS

ncµ, xH
ncµ, xI

ncµ

)
are the general-

ized coordinates in NCQM symmetries andp(S,H,I)
ncµ =(

pS
ncµ, pH

ncµ, pI
ncµ

)
are the corresponding generalizing coor-

dinates in the usual QM symmetries. It is important to note
that Eq. (2.2) is a covariant equation (the same behavior
of x

(S,H,I)
µ ) under Lorentz transformation, which includes

boosts and/or rotations of the observer’s inertial frame. We
are generalizing the NCNCCRs to include Heisenberg and
interaction pictures. Here~eff

∼= ~ is the effective Planck
constant,θµν = εµνθ (θ is the non-commutative parameter)
which is an infinitesimal parameter if compared to the en-
ergy values and elements of antisymmetric3 × 3 real ma-
trices andδµν is the identity matrix. The symbol∗ de-
notes the Weyl Moyal star product, which is generalized be-
tween two ordinary functionsf(x)h(x) to the new deformed
form f̂(xnc)ĥ(xnc) which expressed with the Weyl Moyal

star productf(x) ∗ h(x) in the symmetries of NCQM as
follows θµν = εµνθ (θ is the non-commutative parameter)
which is an infinitesimal parameter if compared to the en-
ergy values and elements of antisymmetric3 × 3 real ma-
trices andδµν is the identity matrix. The symbol∗ denotes
the Weyl Moyal star product, which is generalized between
two ordinary functionsA(x)B(x) to the new deformed form
Â(xnc)B̂(xnc) which expressed with the Weyl Moyal star
productA(x) ∗ B(x) in the symmetries of NCQM as fol-
lows [37–43]:

(A ∗B) (x) = exp
(
iεµνθ∂x

µ∂x
µ

)
(AB) (x) ≈ (fh) (x)

− iεµνθ

2
∂x

µA∂x
µBcxµ=xν + O

(
θ2

)
. (4)

The indices(µ, ν = 1, 2, 3) andO
(
θ2

)
stand for the sec-

ond and higher-order terms of the NC parameter. Physically,
the second term in Eq. (4) presents the effects of space-
space noncommutativity. Furthermore, it is possible to unify
the operatorsX̂H

µ (t) =
(
xH

ncµ ∨ pH
ncµ

)
(t) and X̂I

µ (t) =(
xI

ncµ ∨ pI
ncµ

)
(t) in the Heisenberg and the interaction pic-

tures using the following projection relations, respectively:

XH
µ (t) = exp(iĤhmp

rncT )XS
µ exp(−iĤhmp

rncT )︸ ︷︷ ︸
QM-symmetry

(5.1)

⇒ X̂H
µ (t) = exp(iĤhmp

rncT )X̂S
µ exp(−iĤhmp

rncT )︸ ︷︷ ︸
NCQM-symmetry

, (5.2)

and

XI
µ (t) = exp(iĤhmp

or T )XS
µ exp(−iĤhmp

or T )︸ ︷︷ ︸
QM-symmetry

(6.1)

⇒ X̂I
µ (t) = exp(iĤhmp

nc−orT )X̂S
µ exp(−iĤhmp

nc−orT )︸ ︷︷ ︸
NCQM-symmetry

. (6.2)

Moreover, the dynamics of new systemsdX̂I
µ (t)/dt can

be described by the following motion equations in the de-
formed Heisenberg picture as follows:

dXH
µ (t)
dt

=
[
XH

µ (t) , Ĥhmp

]
+

∂XH
µ (t)
∂t︸ ︷︷ ︸

QM-symmetry

(7.1)

=⇒ dX̂I
µ (t)
dt

=
[
X̂I

µ (t) ∗,Ĥhmp
nc

]
+

∂X̂I
µ (t)
∂t︸ ︷︷ ︸

Extended QM-symmetry

. (7.2)
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Here (Ĥhmp
or andĤhmp

nc−or) are the free and total Hamiltonian operators for equal vector scalar of the Hellmann-generalized
Morse potential in QM and EQM symmetries, while (Ĥhmp andĤhmp

nc ) the Hamiltonians in QM and EQM symmetries. The
purpose of this paper is to investigate the l-state solution of the deformed Klein-Gordon and Schrödinger equations within
Bopp’s shift and standard perturbation theory methods to generate an accurate new energy spectrum in ERQM and ENRQM
symmetries. Our current work is structured in eight sections. The first one includes the scope and purpose of our investiga-
tion, while the remaining parts of the paper are structured as follows. A review of the Klein-Gordon, Dirac and Schrödinger
equations with Hellmann-generalized Morse potential is presented in Sec. 2. Section 3 is devoted to studying the deformed
Klein-Gordon equation by applying the ordinary Bopp’s shift method and the Greene and Aldrich approximation for the cen-
trifugal term to obtain the effective potential of the improved Hellmann-generalized Morse potential in RNCQM symmetries.
Besides, via perturbation theory, we find the expectation values of some radial terms to calculate the energy shift produced by
the effect of the perturbed effective potential of the improved Hellmann-generalized Morse potential. Section 4 is devoted to
present the global energy shift and the global energy spectra produced by improved Hellmann-generalized Morse potential in
the deformed Klein-Gordon symmetries. In Sec. 5, we examine some particular relativistic important cases in the context of
the deformed Klein-Gordon theory. In the next section, we derive the global energy shift and the global energy spectra pro-
duced with improved Hellmann-generalized Morse potential in the deformed Dirac symmetries. In Sec. 7, we apply our study
for determining the energy spectra of some selected diatomic molecules such as (HCl, LiH, H2, ScH, TiH, VH, CrH, CuLi,
TiC, NiC, ScN and ScF) in the ENRQM under improved Hellmann-generalized Morse potential, also, to study the composite
systems. In Sec. 8, our conclusive remarks and future directions are given.

2. Revised of Klein-Gordon, Dirac and Schr̈odinger equations under Hellmann-generalized Morse
potential

Before we start constructing the new solutions of the deformed Klein-Gordon, Dirac, and Schrödinger equations under the
improved Hellmann-generalized Morse potential MGHPs, we give a summary of the corresponding usual solutions in ordinary
relativistic quantum mechanics and nonrelativistic quantum mechanics. The Hellmann-generalized Morse potential in the
symmetries of RQM and NRQM is given by [34,35]:

Vhmp(r) = De

[
1 +

−a + be−αr

rDe
− 2

(
eαre − 1
eαr − 1

)
+

(
eαre − 1
eαr − 1

)2
]

, (8)

and

Shmp(r) = Se

[
1 +

−a + be−αr

rSe
− 2

(
eαre − 1
eαr − 1

)
+

(
eαre − 1
eαr − 1

)2
]

. (9)

The 3-dimensional Klein-Gordon equation, Dirac equation with a scalar potentialShmp(r) and a vector potentialVhmp(r),
and the Schr̈odinger equation with the vector potentialVhmp(r) for the diatomic molecule (or fermionic particles) with reduced
massM and wave functionΨnk (r,Ω) are given as:

(
−∆ + (M + Shmp(r))2 − (Enl − Vhmp(r))2

)
Ψ(r,Ω) = 0, (10.1)

(αp + β (M + Shmp(r)))Ψnk (r,Ω) = (Enk − Vhmp(r))Ψnk (r,Ω) , (10.2)
(
− ∆

2M
+ Vhmp(r)

)
Ψ(r,Ω) = Enr

nl Ψ(r,Ω) . (10.3)

Here∆ is the ordinary 3-dimensional Laplacian operator, the vector potentialVhmp(r) due to the four-vector linear momen-
tum operatorAµ (Vhmp(r) ,A = 0) and space-time scalar potentialShmp(r) due to the mass,(Enl,Enk) andEnr

nl are represents
the relativistic and nonrelativistic energy eigenvalues,(n, l) are the principal and orbital quantum numbers, respectively.

αi =
(

0 σi

σi 0

)
, β =

(
I2×2 0

0 I2×2

)
,

andσi are the usual Pauli matrices. Since the Hellmann-generalized Morse potential has spherical symmetry, allowing the solu-
tions of the time-independent Klein-Gordon equation and Schrödinger equation of the known formΨ(r,Ω) = (ψnl (r)/r)Y m

l (Ω)
to separate the radialψnl (r) and angular partsY m

l (Ω) of the wave functionΨ (r,Ω). For the Dirac equation,

Ψnk (r,Ω) =
1
r

(
Fnk (r) Y l

jm (Ω)
iGnk̃ (r)Y l̃

jm (Ω)

)
,
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whereFnk (r) andGnk (r) represent the upper and lower components of the Dirac spinorsΨnk (r,Ω) while Y l
jm (Ω) and

Y l̃
jm (Ω) are the spin and pseudospin spherical harmonics andm is the projection on the z-axis. Thus, Eqs. (10.1), (10.2) and

(10.3) can be expressed as:

(
d2

dr2
− [

M2 − E2
nl

]− 2 [EnlVhmp{r}+ MShmp{r}] + V 2
hmp [r]− S2

hmp [r]− l[l + 1]
r2

)
ψnl (r) = 0, (11.1)




d2

dr2
− k [k + 1]

r2
− [M + Enk −∆ {r}] [M − Enk + Σ {r}] +

d∆(r)
dr

[
d

dr
+

k

r
− ψ {r}

]

[M + Enk −∆ {r}]


 Fnk(r) = 0, (11.2)




d2

dr2
− k [k − 1]

r2
− [M + Enk −∆ {r}] [M − Enk + Σ {r}] +

dΣ(r)
dr

[
d

dr
− k

r
+ ψ {r}

]

(M + Enk − Σ (r))


Gnk̃ (r) = 0, (11.3)

(
d2

dr2
+ 2M

[
Enr

nl − Vhmp{r} − l{l + 1}
2Mr2

])
ψnl (r) = 0. (11.4)

Using the shorthand notationEhmp
eff = M2 − E2

nl and:

V hmp
eff (r) = 2 (EnlVhmp(r) + MShmp(r))− V 2

hmp(r) + S2
hmp(r) +

l(l + 1)
r2

, (12.1)





Σ(r) = De1 + −a+be−αr

rDe
− 2

(
eαre−1
eαr−1

)
+

(
eαre−1
eαr−1

)2

and d∆(r)
dr = 0 =⇒ ∆ (r) = Cs

For Spin Symmetry Limit

∆(r) = De

[
1 + −a+be−αr

rDe
− 2

(
eαre−1
eαr−1

)
+

(
eαre−1
eαr−1

)2
]

and dΣ(r)
dr = 0 =⇒ Σ(r) = Cps

For Pseudospin Symmetry Limit

(12.2)

V hmp
eff−nr (r) = Vhmp(r) +

l(l + 1)
r2

. (12.3)

We obtain the following second-order Schrödinger-like equation in RQM and NRQM symmetries, respectively:

(
d2

dr2
−

[
Ehmp

eff + V hmp
eff (r)

])
ψnl(r) = 0, (13.1)

(
d2

dr2
− k (k + 1)

r2
− [M + Es

nk − Cs]

[
M − Es

nk −
a

r
+

be−αr

r
+ De

{
1 +

q

e−αr − 1

}2
])

Fnk (r) = 0, (13.2)

(
d2

dr2
− k (k − 1)

r2
− [M − Eps

nk + Σc]

[
M + Eps

nk +
a

r
− be−αr

r
−De

{
1− q

e−αr − 1

}2
])

Gnk̃ (r) = 0, (13.3)

(
d2

dr2
+ 2M

[
Enr

nl − V hmp
eff−nr {r}

])
ψnl (r) = 0. (13.4)

With k (k − 1) = l̃(l̃ − 1) andk (k + 1) = l (l + 1). When the vector potential is equal to the scalar potentialVmp (r) =
Smp (r) the effective potential leads to the following simple form

V hmp
eff (r) = 2 (Enl + M)Vhmp(r) +

l(l + 1)
r2

. (14)

The authors of Refs. [34, 35] using both Nikiforov-Uvarov method and the Greene and Aldrich approximation for the
centrifugal term to obtain the expressions for the wave function as hypergeometric polynomials and the corresponding energy
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values for improved Hellmann-generalized Morse potential, in RQM and NRQM symmetries as,

Ψ(r,Ω) =
n!Γ (n + Anl + 1) Nnl

Γ (2Anl + 1)
sAnl/2 (1− s)Vnl+

1
2

2F1 (−n, n + Vnl + Anl + 1; 1 + Anl; s)Y m
l (Ω) , (15.1)

Fnk (r) =
Nnk (2ωnk + 1)n

n!
sωnk (1− s)λnk+ 1

2
2F1 (−n, n + 2ωnk + 2λnk + 1; 1 + ωnk; s)Y m

l (Ω) , (15.2)

Gnk̃ (r) =
Nnk (2Ωnk + 1)n

n!
sΩnk (1− s)βnl+

1
2

2F1 (−n, n + 2Ωnk + 2βnl + 1; 1 + Ωnk; s)Y m
l (Ω) , (15.3)

and

E2
nl −M2 = (De − αa) (Enl + M) + α2l (l + 1)− 1

4




α
[
n + 1

2 + δnl

]− [Enl + M ]
[
a− b + 2

De

α
{eαre − 1}

]

n + 1
2 + l [l + 1]

−
[Enl + M ]

[
De

α
{eαre − 1}2 + αl {l + 1}

]

n +
1
2

+ l [l + 1]




2

, (16.1)

Enr
nl = De − αa +

α2l (l + 1)
2M

− α2

8M

(
Λ (n, l)− 2Mη (l)

Λ (n, l)

)2

. (16.2)

For the spin symmetry, the equation of energy is given by:

(M + Esp
nk − Cs) (M − Esp

nk + De) = (M + Esp
nk − Cs)αa− α2k (k + 1)

+
α2

4

(
Λ2

s [n, k] + [M − Esp
nk + De] ηs [k]

Λs [n, k]

)2

. (16.3)

For the pseudospin symmetry, the equation of energy is given by:

(De −M − Eps
nk) (M − Eps

nk − Cps) = (M − Eps
nk − Cps)αa− α2k (k − 1)

+
α2

4

(
Λ2

s [n, k] + [M − Eps
nk + De] ηs [k]

Λs [n, k]

)2

, (16.4)

with

δnl =

√
1
4

+
De

α2
(Enl + M) (eαre − 1)2 + αl (l + 1), (17.1)

Anl =
√

εnl − a

α2
(Enl + M) + 4l (l + 1), (17.2)

Vnl =

√
εnl +

Deq2

α2
(Enl + M) + 4l (l + 1), (17.3)

ωnk =

√
(M + Esp

nk − Cs) (M − Esp
nk + De)

α2
− (Esp

nk + M) a

α
+ k (k + 1), (17.4)

Ωnk =

√
(M + Eps

nk −De) (M − Eps
nk + Cps)

α2
− (Eps

nk + M + Cps) a

α
+ k (k − 1), (17.5)

βnk =

√
1
4

+
De

α2
(M − Eps

nk + Cps)Deq2 + l (l + 1), (17.6)

ηl =
b

α
− 2Deq

2

α2
− α

α
+

2Deq
2

α2
+ l (l + 1) , (17.7)
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Λnl = n +
1
2

+

√
1
4

+
Deq2

α2
+ αl (l + 1), (17.8)

Λs (n, k) = n +
1
2

+

√
1
4

+
De

α2
(M + Esp

nk − Cs) + k (k + 1), (17.9)

Λps (n, k) = n +
1
2

+

√
1
4

+
De

α2
(M + Eps

nk − Cps) + k (k − 1), (17.10)

and

ηs (k) =
b

α
− 2Deq

2

α2
−

(α

α

)2

+
2Deq

2

α2
+ k (k + 1) , (18.1)

ηp (k) =
b

α
− 2Deq

2

α2
−

(α

α

)2

+
2Deq

2

α2
+ k (k − 1) . (18.2)

The Pochhammer symbol is(m)n = Γ [m + n]/Γ [m + n], ands = e−αr , Nm2
nl andNnkl are the normalization constants,

(see Refs. [34,35]).

3. The new solutions of DKGE under IHGMP in the EQM

3.1. Review of Bopp’s shift method

Let us begin in this subsection by finding the deformed Klein Gordon equation (DKGE) in the symmetries of relativistic
noncommutative quantum mechanics or the extended quantum mechanics under the improved Hellmann-generalized Morse
potential (IHGMP). Our goal is achieved by applying the new principles which we have seen in the introduction, Eqs. (2.1),
(2.2) and (3), summarized in new relations and the notion of the Weyl-Moyal star product. These data allow us to rewrite the
usual radial Klein-Gordon equation in Eq. (13.1) in the ERQM symmetries as follows [54–57,76–85]:

(
d2

dr2
−

[
Ehmp

eff + V hmp
eff (r)

])
∗ ψnl (r) = 0. (19)

It is established extensively in the literature that star products can be simplified by Bopp’s shift method. The physicist
Fritz Bopp was the first to consider pseudo-differential operators obtained from a symbol by the quantization rulesx → x −
(i/2)(∂/∂p), andp → p+(i/2)(∂/∂x) instead of the ordinary correspondencex → x andp → (i/2)(∂/∂x). This is known by
Bopp’s shifts and this quantization procedure is called Bopp quantization [85–87]. It is known to the specialists that Bopp’s shift
method has been applied effectively and has succeeded in simplifying the three basic equations: the deformed Klein-Gordon
equation [54-57,76-85], deformed Dirac equation [88-91], deformed Schrödinger equation [92-95] and Duffin-Kemmer-Petiau
equation [81,82] with the notion of star product to the Klein-Gordon equation, the Dirac equation and the Schrödinger equation
with the notion of ordinary product. Thus, Bopp’s shift method is based on reducing second order linear differential equations
of the deformed Klein-Gordon equation, the deformed Dirac equation, and the deformed Schrödinger equation with star product
to second-order linear differential equations of Klein-Gordon equation, Dirac equation, and Schrödinger equation without star
product with simultaneous translation in the space-space. The CNCCRs with star product in Eqs. (2.1) and (2.2) become new
CNCCRs without the notion of star product as follows (see,e.g., [54–57,76–85]):

[
xnc

(S,H,I)
µ , pnc

(S,H,I)
ν

]
= xnc

(S,H,I)
µ pnc

(S,H,I)
ν − pnc

(S,H,I)
ν xnc

(S,H,I)
µ = i~effδµν , (20.1)

[
xnc

(S,H,I)
µ , xnc

(S,H,I)
ν

]
= xnc

(S,H,I)
µ xnc

(S,H,I)
ν − xnc

(S,H,I)
ν xnc

(S,H,I)
µ = iθµν . (20.2)

The generalized positions and momentum coordinatesx
(S,H,I)
ncµ =

(
xS

ncµ, xH
ncµ, xI

ncµ

)
andp

(S,H,I)
ncµ =

(
pS

ncµ, pH
ncµ, pI

ncµ

)
,

in the symmetries of ERQM are defined in terms of the corresponding coordinates in the symmetries of RQMx
(S,H,I)
µ =(

xS
µ , xH

µ , xI
µ

)
andp

(S,H,I)
µ =

(
pS

µ , pH
µ , pI

µ

)
via, respectively [54–57,76–85]:

xnc
(S,H,I)
µ = x(S,H,I)

µ −
3∑

ν=1

iθµν

2
p(S,H,I)

ν and pnc
(S,H,I)
µ = p(S,H,I)

µ . (21)

This allows us to find the operatorr2
nc equalr2 − LΘ in NCQM symmetries [54–57, 76–85]. New effective potential for

MHGPs in ERQM symmetries
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3.2. The new effective potential of the improved Hellmann-generalized Morse potential model in DRKGT symmetries

According to the Bopp shift method, Eq. (19) with star product becomes similar to the following like the Schrödinger equation
(without the notions of star product):

(
d2

dr2 −−
(
M2 − E2

nl

)− l(l+1)
r2

nc−Vhmp(rnc) (Enl + M)

)
ψnl (r) = 0. (22)

The new operatorsVhmp(rnc) and(l (l + 1)/r2
nc) are expressed as in ERQM symmetries as follows:

Vhmp(rnc) = De − a

r
+

be−αr

r
− 2

Deqe
−αr

1− e−αr
+

Deq
2e−2αr

(1− e−αr)2
− ∂Vhmp(r)

∂r

LΘ
2r

+ O
(
Θ2

)
, (23)

and

l (l + 1)
r2
nc

=
l (l + 1)

r2
+

l (l + 1)
r4

LΘ + O
(
Θ2

)
. (24)

Hereq = eαre − 1. Therefore, we can rewrite:

2Vhmp(rnc) (Enl + M) = 2Vhmp(r) (Enl + M)−
(

Enl + M

r

)
∂Vhmp(r)

∂r
LΘ + O

(
Θ2

)
. (25)

Moreover, to illustrate the above equation in a simple mathematical way and attractive form, it is useful to enter the
following symbolV hmp

nc−eff (r), thus the radial Eq. (22) becomes:
(

d2

dr2
−

[
Ehmp

eff + V hmp
nc−eff (r)

])
ψnl (r) = 0, (26)

with:

V hmp
nc−eff (r) = V hmp

eff (r) + V hmp
pert (r) . (27)

Moreover,V hmp
pert (r) is given by the following relation:

V hmp
pert (r) =

(
l (l + 1)

r4
− Enl + M

r

∂Vhmp(r)
∂r

)
LΘ + O

(
Θ2

)
. (28)

It should be noted that whenl = 0 the Eq. (13.1) can be exactly solved analytically for the casel 6= 0, the authors of
Refs. [34,34] approximatively solved the equation using the Greene and Aldrich approximation in relativistic and nonrelativistic
quantum mechanics symmetries. In the new form of radial like-Schrödinger equation written in Eq. (26), we have observed new
terms including ((1/r), (1/r4) and other Columbia-like terms) which make this equation impossible to solve analytically for
and, it can only be solved approximately. From this point of view, we can consider the Greene and Aldrich approximation [96].
It is also used in many other works [97–99]:

1
r2
≈ α2

(1− e−2αr)2
=

α2

(1− s)2
. (29)

It is important to mention here that the above approximations are valid in short whenαr ¿ 1. This allows us to obtain:

1
r
≈ α

1− e−2αr
=

α

1− s
. (30)

After straightforward calculations(∂Vhmp(r)/∂r) we obtain as follows:

∂Vhmp(r)
∂r

=
a

r2
− bαe−αr

r
− bαe−αr

r2
− 2

Deαqe−αr

1− e−αr
+

Deq (1− q) e−2αr

(1− e−αr)2
− 2

Deαq2e−3αr

(1− e−αr)3
. (31)

Upon invoking the Greene–Aldrich approximation scheme, the expression(Enl + M/r)(∂Vhmp(r)/∂r) reduces to the
form:

Enl+M

r

∂Vhmp(r)
∂r

=α (Enl+M)

(
a

(1−s)3
− bαs

(1−s)3
+(2Deq−b)

αs

(1−s)2
+2

Deαq (1−q) s2

(1−s)3
−2

Deαq2s3

(1− s)4

)
. (32)
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By making the substitution Eq. (32) into Eq. (28), we find the perturbed effective potentialV hmp
pert (s) generated from

noncommutativity properties of space-space that produced by the effect of IHGMP in the symmetries of ERQM as follows:

V hmp
pert (s) =

(
l (l + 1) α4

(1− s)4
− α (Enl + M)

[
a

(1− s)3
− bαs

(1− s)3

+(2Deq − b)
αs

(1− s)2
+ 2

Deαq (1− q) s2

(1− s)3
− 2

Deαq2s3

(1− s)4

])
LΘ + O

(
Θ2

)
. (33)

We have replaced the term(l [l + 1]/r4) with the Greene and Aldrich approximation in Eq. (28). The equal scalar
and vector improved Hellmann-generalized Morse potentials are extended by including new terms proportional to the radial
terms(1/[1− s]4), (1/[1− s]3), (s/[1− s]3, (s/[1− s]2) , (s2/[1− s]3) and(s3/[1− s]4) become the improved Hellmann-
generalized Morse potential in ERQM symmetries. The generated new effective potentialV hmp

pert (s) is also proportional to the
infinitesimal vectorΘ. This allows us to consider the new additive part of the effective potentialV hmp

pert (s) as a perturbation
potential compared with the main potentialV hmp

eff (s)(the parent potential operator in the symmetries of ERQM, that is, the

inequality has become achievedV hmp
pert (s) ¿ V hmp

eff (s). That is all physical justifications for applying the time-independent
perturbation theory become satisfied. This allows us to give a complete prescription for determining the energy level of the
generalizednth excited states.

3.3. The expectation values under IHGMP in the deformed Klein-Gordon symmetries

In this subsection, we want to apply the perturbative theory, in the case of ERQM symmetries, we find the expectation values of
the radial terms(1/[1− s]4), (1/[1− s]3), (s/[1− s]3, (s/[1− s]2) , (s2/[1− s]3) and(s3/[1− s]4) taking into account the
wave function which we have seen previously in Eq. (15.1). Thus after straightforward calculations, we obtain the following
results:

〈
1

(1− s)4

〉

(nlm)

= Nm2
nl

+∞∫

0

s2

(1− s)4
sAnl (1− s)2Vnl+1 [2F1 (−n, n + Vnl + Anl + 1; 1 + Anl; s)]

2
dr, (34.1)

〈
1

(1− s)3

〉

(nlm)

= Nm2
nl

+∞∫

0

1
(1− s)3

sAnl (1− s)2Vnl+1 [2F1 (−n, n + Vnl + Anl + 1; 1 + Anl; s)]
2
dr, (34.2)

〈
s

(1− s)3

〉

(nlm)

= Nm2
nl

+∞∫

0

s

(1− s)3
sAnl (1− s)2Vnl+1 [2F1 (−n, n + Vnl + Anl + 1; 1 + Anl; s)]

2
dr, (34.3)

〈
s

(1− s)2

〉

(nlm)

= Nm2
nl

+∞∫

0

s

(1− s)2
sAnl (1− s)2Vnl+1 [2F1 (−n, n + Vnl + Anl + 1; 1 + Anl; s)]

2
dr, (34.4)

〈
s2

(1− s)3

〉
= Nm2

nl

+∞∫

0

s2

(1− s)3
sAnl (1− s)2Vnl+1 [2F1 (−n, n + Vnl + Anl + 1; 1 + Anl; s)]

2
dr, (34.5)

〈
s3

(1− s)4

〉
= Nm2

nl

+∞∫

0

s3

(1− s)4
sAnl (1− s)2Vnl+1 [2F1 (−n, n + Vnl + Anl + 1; 1 + Anl; s)]

2
dr, (34.6)

with Nm2
nl = (n!Γ [n + Anl + 1] Nnl/Γ [2Anl + 1])2 and we have used useful abbreviations〈X〉(nlm) = 〈n, l, m X n, l, m〉

to avoid the extra burden of writing equations. Furthermore, we have applied the property of the spherical harmonics, which
has the form

∫
Y m

l (Ω′) Y m′
l′ (Ω) d2Ω = δll′δmm′ . We haves = e−αr , this allows us to obtaindr = −(1/α)(ds/s). From

the asymptotic behavior ofs = e−αr when (r → 0) (s → +1)and when (r → +∞) (s → 0), this allows to reformulate
Eqs.(34, i = 1, 6) as follows:
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〈
1

(1− s)4

〉

(nlm)

=
Nm2

nl

α

+1∫

0

sAnl−1 (1− s)2Vnl−3 [2F1 (−n, n + Anl + Vnl + 1; 1 + Anl, s)]
2
ds, (35.1)

〈
1

(1− s)3

〉

(nlm)

=
Nm2

nl

α

+1∫

0

sAnl−1 (1− s)2Vnl−2 [2F1 (−n, n + Anl + Vnl + 1; 1 + Anl, s)]
2
ds, (35.2)

〈
s

(1− s)3

〉

(nlm)

=
Nm2

nl

α

+1∫

0

sAnl (1− s)2Vnl−2 [2F1 (−n, n + Anl + Vnl + 1; 1 + Anl, s)]
2
ds, (35.3)

〈
s

(1− s)2

〉

(nlm)

=
Nm2

nl

α

+1∫

0

sAnl (1− s)2Vnl−1 [2F1 (−n, n + Anl + Vnl + 1; 1 + Anl, s)]
2
ds, (35.4)

〈
s2

(1− s)3

〉
=

Nm2
nl

α

+1∫

0

sAnl+1 (1− s)2Vnl−2 [2F1 (−n, n + Anl + Vnl + 1; 1 + Anl, s)]
2
ds, (35.5)

〈
s3

(1− s)4

〉
=

Nm2
nl

α

+1∫

0

sAnl+2 (1− s)2Vnl−3 [2F1 (−n, n + Anl + Vnl + 1; 1 + Anl, s)]
2
ds. (35.6)

We can use the method proposed by Donget al. [100] and applied by Zhang [101], we calculate the integrals in Eqs.(35, i =
1, 6). With the help of the special integral formula

+1∫

0

sξ−1 (1− s)σ−1 [2F1 (c1, c2; c3; s)]
2
ds =

Γ (ξ) Γ (σ)
Γ (ξ + σ) 3F2 (c1, c2, σ; c3, σ + ξ; 1) , (36.1)

here2F1 (c1, c2; c3; s) is the generalized hypergeometric function:

3F2 (c1, c2, σ; c3, σ + ξ; 1) =
+∞∑
n=0

(c1)n (c2)n (σ)n

(c3)n (σ + ξ)n!
. (36.2)

Is obtained from the generalized hypergeometric function which has parametersp of type 1 andq parameters of type 2 of
the form the following formula:

pFq (α1, α2, ..., αp;β1, β2, ..., β1; 1) =
+∞∑
n=0

(α1)n ... (αp)n

(β1)n ... (βp)n n!
, (36.3)

for p = 3 and1 = 2 while Γ (σ) denoting the usual Gamma function. We obtain from Eqs.(35, i = 1, 6) the following results:

〈
1

(1− s)4

〉

(nlm)

= Nvir
nl

Γ (Anl) Γ (2Vnl − 2)
Γ (Knl − 2) 3F2 (−n, n + Anl + Vnl + 1, 2Vnl − 2; 1 + Anl,Knl − 2; 1) , (37.1)

〈
1

(1− s)3

〉

(nlm)

= Nvir
nl

Γ (Anl) Γ (2Vnl − 1)
Γ (Knl − 1) 3F2 (−n, n + Anl + Vnl + 1, 2Vnl − 1; 1 + Anl,Knl − 1; 1) , (37.2)

〈
s

(1− s)3

〉

(nlm)

= Nvir
nl

Γ (Anl + 1)Γ (2Vnl − 1)
Γ (Knl)

3F2 (−n, n + Anl + Vnl + 1, 2Vnl − 1; 1 + Anl,Knl; 1) , (37.3)

Rev. Mex. Fis.68020801



DIATOMIC MOLECULES AND FERMIONIC PARTICLES WITH IMPROVED HELLMANN-GENERALIZED. . . 11

〈
s

(1− s)2

〉

(nlm)

= Nvir
nl

Γ (Anl + 1)Γ (2Vnl)
Γ (Knl + 1) 3F2 (−n, n + Anl + Vnl + 1, 2Vnl − 1; 1 + Anl, Knl + 1; 1) , (37.4)

〈
s2

(1− s)−3

〉

(nlm)

=Nvir
nl

Γ (Anl+2) Γ (2Vnl−1)
Γ (Knl+1) 3F2 (−n, n + Anl + Vnl + 1, 2Vnl − 1; 1 + Anl,Knl + 1; 1) , (37.5)

〈
s3

(1− s)4

〉

(nlm)

= Nvir
nl

Γ (Anl+3)Γ (2Vnl−2)
Γ (Knl+1) 3F2 (−n, n+Anl+Vnl+1, 2Vnl − 1; 1+Anl,Knl+1; 1) , (37.6)

with Nvir
nl = (n!Γ (n + Anl + 1) Nnl/Γ (2Anl + 1))2 (1/α) andKnl = Anl + 2Vnl.

3.4. The energy shift for the MHGPs in ERQM symmetries

The global relativistic energy shift for the improved Hellmann-generalized Morse potential model in ERQM symmetries is
composed of three principal parts. The first one is produced from the effect of the generated spin-orbit effective potential. This
effective potential is obtained by replacing the coupling of the angular momentum operator and the noncommutative vector
LΘ with the new equivalent couplingΘLS (with Θ2 = Θ2

12 + Θ2
23 + Θ2

13). This degree of freedom comes considering
that the infinitesimal noncommutative vectorΘ is arbitrary. We have chosen it to a parallel of the spinS of the diatomic
molecules under Hellmann-generalized Morse potential. Furthermore, we replace the new spin-orbit couplingΘLS with the
corresponding physical form(Θ/2)G2, with G2 = J2−L2−S2. Moreover, in quantum mechanics, the operators (Ĥhmp

rnc ,J2,
L2, S2 andJz ) forms a complete set of conserved physics quantities, the eigenvalues of the operatorG2 are equal to the
valuesτ (j, l, s) = [j(j + 1)− l(l + 1)− s(s + 1)] /2, with |l − s| ≤ j ≤ |l + s|. As a direct consequence, the partial
energy shift∆Eso

hmp(n, α, a, b, De, re, Θ, j, l, s) due to the perturbed effective potentialV hmp
pert (s) produced for thenth excited

state, in DRKGT symmetries as follows:

∆Eso
hmp(n, α, a, b,De, re,Θ, j, l, s) = Θ (j(j + 1)− l(l + 1)− s(s + 1)) 〈Z〉RHMP

(nlm) (n, n, α, a, b,De, re) . (38)

The global expectation value〈Z〉RHMP
(nlm) (n, n, α, a, b, De, re) is determined from the following expression:

〈Z〉RHMP
(nlm) (n, n, α, a, b, De, re) =


l (l + 1) α4

〈
1

(1− s)4

〉

(nlm)

− (Enl + M) α

[
a

〈
1

(1− s)3

〉

(nlm)

−b

〈
s

(1− s)3

〉

(nlm)

+ (2Deq − b)

〈
s3/2

(1− s)4

〉

(nlm)

+ 2αDeq (1− q)

〈
s2

(1− s)3

〉

(nlm)

−2αDeq
2

〈
s3

(1− s)4

〉

(nlm)

]
 . (39)

The second part is obtained from the magnetic effect of the perturbative effective potentialV hmp
pert (s) under the improved

Hellmann-generalized Morse potential model. This effective potential is achieved when we replace both (LΘ andΘ12) by
(σℵLz andσℵ), respectively, here (ℵ andσ) are symbolize the intensity of the magnetic field induced by the effect of the
deformation of space-space geometry and a new infinitesimal noncommutativity parameter, so that the physical unit of the
original noncommutativity parameterΘ12 (length)2 is the same unit ofσℵ, we have also need to apply〈n′, l′,m′ Lz n, l,m〉 =
mδm′mδl′lδn′n ( −l′ ≤ m′ ≤ l and−l ≤ m ≤ l). All of this data allows for the discovery of the new energy shift
∆Emag

hmp (n, α, a, b, De, re, σ,m)due to the perturbed Zeeman effect which created by the influence of the improved Hellmann-
generalized Morse potential model for thenth excited state in ERQM symmetries as follows:

∆Emag
hmp (n, n, α, a, b, De, re, σ, j, l, s) = σℵ 〈Z〉RHMP

(nlm) (n, n, α, a, b, De, re)m. (40)

Now, for our purposes, we are interested in finding a new third automatically important symmetry for the improved
Hellmann-generalized Morse potential model at zero temperature in ERQM symmetries. This physical phenomenon is in-
duced automatically from the influence of a perturbed effective potentialV hmp

pert (s) which we have seen in Eq. (33). We
discover these important physical phenomena when our studied system consists of non-interacting is considered as Fermi gas,
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it is formed from all the particles in their gaseous state (HCl, LiH, H2, ScH, TiH, VH, CrH, CuLi, TiC, NiC, ScN and ScF)
undergoing rotation with angular velocityΩ if we make the following two simultaneous transformations to ensure that the
previous calculations are not repeated:

Θ → χΩ and LΘ → χLΩ. (41)

Hereχ is just infinitesimal real proportional constants. We can express the effective potentialV hmp−rot
pert (s) which induced

the rotational movements of the diatomic molecules as follows:

V hmp-rot
pert (s) =

(
l (l + 1) α4

(1− s)4
− α (Enl + M)

[
a

(1− s)3
− bαs

(1− s)3

+(2Deq − b)
αs

(1− s)2
+ 2

Deαq (1− q) s2

(1− s)3
− 2

Deαq2s3

(1− s)4

])
χLΩ. (42)

To simplify the calculations without compromising physical content, we choose the rotational velocityΩ parallel to the
(Oz) axis. Then we transform the spin-orbit coupling to the new physical phenomena as follows:

Λ(s)LΩ =χΛ(s)ΩLz. (43)

With

Λ(s)=
l (l + 1) α4

(1− s)4
− α (Enl+M)

(
a

(1− s)3
− bαs

(1− s)3
+ (2Deq − b)

αs

(1− s)2
+2

Deαq (1− q) s2

(1− s)3
−2

Deαq2s3

(1− s)4

)
. (44)

All of this data allows for the discovery of the new energy shift∆Ef−rot
hmp (n, n, α, a, b,De, re, χ,m) due to the perturbed

Fermi gas effectV hmp−rot
pert (r) which generated automatically by the influence of the Hellmann-generalized Morse potential for

thenth excited state in REQM symmetries as follows:

∆Ef−rot
hmp (n, α, a, b, De, re, χ, m) = χ 〈Z〉RHMP

(nlm) (n, α, a, b,De, re, V2)Ωm. (45)

It is worth mentioning that the authors in Refs. [102,103] studied a rotating isotropic and anisotropic harmonically confined
ultra-cold Fermi gas in a two and three-dimensional space at zero temperature, but in this study, the rotational term was added
to the Hamiltonian operator, in contrast to our case, where this rotation termχΛ(s)LΩ automatically appears due to the large
symmetries resulting from the deformation of space-phase.

4. Relativistic results of IHGMP in the deformed Klien-Gordon theory symmetries

In this section of the paper, we summarize our obtained results∆Eso
hmp(n, α, a, b, De, re, j, l, s) , ∆Emag

hmp (n, α, a, b, De, re,m)
and∆Ef−rot

hmp (n, α, a, b,De, re,m)) for the nth excited state due to the spin-orbital coupling, modified Zeeman effect, and

perturbed Fermi gas potential induced byV hmp
pert (s) on based to the superposition principle in the deformed relativistic Klein-

Gordon theory under the improved Hellmann-generalized Morse potential model. This allows us to deduce the additive energy
shift ∆Etot

hmp(n, α, a, b, De, re, j, l, s, m) under the influence of the improved Hellmann-generalized Morse potential model in
ERQM symmetries as follows

∆Etot
hmp(n, α, a, b, De, re, Θ, σ, χ, j, l, s, m) = 〈Z〉RHMP

(nlm) (n, α, a, b,De, re) (Θτ (j, l, s) + σℵm + χΩm) . (46)

The above results present the global energy shift, which generated with the effect of noncommutativity properties of space-
space; it depended explicitly on the noncommutativity parameters(Θ, σ, χ), the parameters of the Hellmann-generalized Morse
potential(n, α, a, b,De, re) in addition to the atomic quantum numbers(j, l, s, m). We observed that the obtained global
effective energy under the Hellmann-generalized Morse potential has a carry unit of energy because it is combined with the
carrier of energy (M2 − E2

nl). As a direct consequence, the energyEhmp
r−nc (n, n, α, a, b, De, re, j, l, s, m) produced with the

improved Hellmann-generalized Morse potential model, in the symmetries of ERQM is the sum of the root quart of the shift
energy∆[Ef−rot

hmp (n, n, α, a, b, De, re, χ, m)]1/2 and the relativist energyEnl produced by the effect due to the effect of the
Hellmann-generalized Morse potential in RQM, as follows:

Ehmp
r−nc (n, n, α, a, b, De, re,Θ, σ, χ, j, l, s,m)=Enl+

[
〈Z〉RHMP

(nlm) (n, n, α, a, b,De, re) (Θτ (j, l, s)+σℵm+χΩm)
]1/2

.

(47)

The relativistic energyEnl is determined from the energy Eq. (16.1).
Equation (47) describes the relativistic energy of some diatomic molecules such as HCl, LiH, H2, ScH, TiH, VH, CrH,

CuLi, TiC, NiC, ScN and ScF under the improved Hellmann-generalized Morse potential model in the DRKGT symmetries.

Rev. Mex. Fis.68020801



DIATOMIC MOLECULES AND FERMIONIC PARTICLES WITH IMPROVED HELLMANN-GENERALIZED. . . 13

4.1. Relativistic particular cases under IHGMP in ERQM symmetries

After examining the bound state solutions of any l-state DKGE with IHGMP, our task is now to discuss some particular cases
below. By adjusting potential parameters for each case, some familiar potentials, which are useful for other physical systems,
can be obtained:

1. SettingDe to zero the potential in Eq. (8) turns to the Hellmann potential [6–8], in RQM symmetries, as follows:

Vhmp(r) → Vhp (r) = −a

r
+

be−αr

r
. (48)

The perturbed effective potential in Eq. (33) turns to perturbed effective potential in the symmetries of RNCQM as
follows:

V hp
pert (s) =

(
l [l + 1] α4

(1− s)4
− α [Enl + M ]

[
a

(1− s)3
− bαs

(1− s)3
− b

αs

(1− s)2

])
LΘ + O

(
Θ2

)
. (49)

In this case, the additive energy shift under the influence of the improved equally mixed Hellmann potential in ERQM
symmetries is determined from the following formula:

Ef−rot
hmp (n, n, α, a, b, De, re, χ, m) = 〈Z〉RHP

(nlm) (n, n, α, a, b) (Θτ (j, l, s) + σℵm + χΩm) . (50)

Thus, the corresponding global expectation value〈Z〉RHP
(nlm) (n, n, α, a, b) is determined from the following expression:

〈Z〉RHMP
(nlm) (n, n, α, a, b) =


l (l + 1) α4

〈
1

(1− s)4

〉

(nlm)

− (Enl + M) α


a

〈
1

(1− s)3

〉

(nlm)

− b

〈
s

(1− s)3

〉

(nlm)

− b

〈
s3/2

(1− s)4

〉

(nlm)





 . (51)

The new relativistic energy in Eq. (47) reduces to the new energyEhp
r−nc (n, n, α, a, b,Θ, σ, χ, j, l, s,m) under modified

equal scalar and vector improved Hellmann potential in ERQM symmetries, as follows:

Ehp
r−nc (n, n, α, a, b, Θ, σ, χ, j, l, s, m) = Ehp

nl +
[
〈Z〉RHP

(nlm) (n, n, α, a, b) (Θτ (j, l, s) + σℵm + χΩm)
]1/2

. (52)

Making the corresponding parameter replacements in Eq. (16.1), we obtain the energy equation for the improved Hell-
mann potential in the Klein-Gordon theory with equally mixed potentials in RQM symmetries as:

Ehp2
nl −M2 = (De − αa)

(
Ehp

nl + M
)

+ α2l (l + 1)

− 1
4


α

(
n + 1

2 + δnl

)−
(
Ehp

nl + M
)

(a− b)

n + 1
2 + l (l + 1)

−
αl (l + 1)

(
Ehp

nl + M
)

n + 1
2 + l (l + 1)




2

. (53)

2. Setting the parametersa = b = 0, the potential in Eq. (8) turns to the equal scalar and vector generalized Morse potential
or Deng-Fan potential [21], in RQM symmetries, as follows:

Vmp (r) = De − 2
Deqe

−αr

1− e−αr
+

Deq
2e−2αr

(1− e−αr)2
. (54)

The perturbed effective potential in Eq. (33) turns to perturbed effective potential in the symmetries of RNCQM as
follows:
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V mp
pert (s) =

(
l [l + 1] α4

[1− s]4
− α [Enl + M ]

[
2Deq

αs

(1− s)2
+ 2

Deαq (1− q) s2

(1− s)3
− 2

Deαq2s3

(1− s)4

])
LΘ + O

(
Θ2

)
. (55)

In this case, the additive energy shift under the influence of improved equally mixed generalized Morse potentials in
REQM symmetries is given by:

∆Etot
mp (n, α, De, re, Θ, σ, χ, j, l, s, m) = 〈Z〉RMP

(nlm) (n, α, De, re) (Θτ (j, l, s) + σℵm + χΩm) . (56)

Thus, the corresponding global expectation value is determined from the following expression:

〈Z〉RMP
(nlm) (n, α, a, b, De, re) =


l (l + 1) α4

〈
1

(1− s)4

〉

(nlm)

− 2Deq (Enl + M)α

×



〈
s3/2

(1− s)4

〉

(nlm)

+ α (1− q)

〈
s2

(1− s)3

〉

(nlm)

− αq

〈
s3

(1− s)4

〉

(nlm)





 . (57)

The new relativistic energy in Eq. (47) reduces to the new energy under improved equal scalar and vector Hellmann
potentials in RNCQM, as follows:

Ehmp
r−nc (n, α, De, re, Θ, σ, χ, j, l, s, m) = Emp

nl +
[
〈Z〉RMP

(nlm) (n, n, α,De, re) (Θτ (j, l, s) + σℵm + χΩm)
]1/2

. (58)

Making the corresponding parameter replacements in Eq. (16.1), we obtain the energy equation for the generalized
Morse potential in the Klein-Gordon theory in RQM symmetries as:

Emp2
nl −M2 = De (Enl + M) + α2l (l + 1)− 1

4




α

(
n +

1
2

+ δnl

)
− 2

De

α
(eαre − 1) (Emp

nl + M)

n +
1
2

+ l (l + 1)

−
(Emp

nl + M)
(

De

α
(eαre − 1)2 + αl (l + 1)

)

n +
1
2

+ l (l + 1)




2

. (59)

5. Fermionic massive spin 1/2 particles interacting with relativistic IHGMP model in the deformed
Dirac theory

To obtain the improved Dirac equation (IDE) for the improved Hellmann-generalized Morse potential model in the sym-
metries of deformed Dirac theory (DDT), we replace both the ordinary Hamiltonian operatorsĤ (pi, xi), ordinary spinors
Ψnk (r, θ, ϕ), and ordinary energyEnk by NC Hamiltonian operator̂H (pnci, xnci), the new spinorΨnk (−→r nc), and new en-
ergy Emp

nc−nk and the ordinary product will be replaced by star product∗, respectively. This allows us to write the IED for
improved Hellmann-generalized Morse potential as follows [88–91]:

Ĥ (pnci, xnci) ∗Ψnk (−→r nc) = Emp
nc−nkΨnk (−→r nc) . (60)

It is worth motioning that Bopp’s shift method permutes to reduce the above equation to the simplest form:

Hmp (pnci, xnci) Ψnk (−→r nc) = Emp
nc−nkΨnk (−→r ) . (61)

The new Hamiltonian operator for fermionic massive spin1/2 particles interacting with the relativistic improved Hellmann-
generalized Morse potential model is given by:

Hmp (pnci, xnci) = αpnc + β (M + Shmp(rnc)) + Vhmp(rnc) . (62)
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By applying the notion of the Weyl-Moyal star product which has been seen previously in Eqs. (2)-(4), the differential
equations that are satisfied by the radial wave function in Eqs. (13.2) and (13.3), for the spin symmetry solutions and pseudospin
symmetry of MDE with IHGMP, respectively, in relativistic noncommutative quantum mechanics symmetries in the deformed
Dirac theory (RNCQM-DT, in short), becomes as follows:

[
d2

dr2
− k (k + 1)

r2
nc

− (M + Es
nk − Cs) (M − Es

nk + Σhmp(rnc))
]

Fnk (r) = 0, (63)

[
d2

dr2
− k (k − 1)

r2
nc

− (M + Eps
nk −∆hmp(rnc)) (M − Eps

nk + Cps)
]

Gnk (r) = 0, (64)

with

Σhmp(rnc) = ∆hmp(rnc) = De − a

rnc
+

be−αrnc

rnc
+ De

(
1 +

q

e−αrnc − 1

)2

. (65)

The new operatorsΣhmp(rnc), ∆hmp(rnc), (k (k + 1)/r2
nc)and(k (k − 1)/r2

nc) in the deformed Dirac theory symmetries,
are expressed as:

Σhmp(rnc) = De − a

r
+

be−αr

r
+ De

(
1 +

q

e−αr − 1

)2

− ∂Σhmp(r)
∂r

LΘ
2r

+ O
(
Θ2

)
, (66)

k (k − 1)
r2
nc

=
k (k − 1)

r2
+

k (k − 1)
r4

LΘ + O
(
Θ2

)
, (67)

and

k (k + 1)
r2
nc

=
k (k + 1)

r2
+

k (k + 1)
r4

LΘ + O
(
Θ2

)
. (68)

Substituting Eqs. (65) and (66) into Eqs. (63.1) and (63.2), we obtain:

(
d2

dr2
− k (k + 1)

r2
− (M + Esp

nk − Cs) (M − Esp
nk + Σhmp(r))

−
[
k (k + 1)

r4
− (M + Esp

nk − Cs)
2r

∂Σhmp(r)
∂r

]
LΘ

)
Fnk (r) = 0, (69.1)

(
d2

dr2
− k (k − 1)

r2
− (M + Eps

nk −∆hmp(r)) (M − Eps
nk + Cps)

−
[
k (k − 1)

r4
− (M − Eps

nk + Cps)
2r

∂∆hmp(r)
∂r

]
LΘ

)
Gnk̃ (r) = 0. (69.2)

By comparing (Eqs. (63.1) and (63.2)) and (Eqs. (69.1) and (69.2)), we get an effective deformed spin symmetryΣhmp(r)
and pseudospin symmetry∆hmp(r), similar to the perturbative effective potential of Eq. (28),

Σpert
hmp (r) =

k (k + 1)
r4

− (M + Esp
nk − Cs)

2r

∂Σhmp(r)
∂r

LΘ, (70.1)

∆pert
hmp (r) =

k (k + 1)
r4

− (M − Esp
nk + Cps)
2r

∂∆hmp(r)
∂r

LΘ. (70.2)

A direct calculation gives:

∂Σhmp(r)
∂r

=
a

r2
+

bαe−αr

r
− be−αr

r2
+ 2Deαq

e−αr

(1− e−αr)2
− 2Deαq2 e−αr

(1− e−αr)3
. (71)
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We apply the Greene and Aldrich approximation to the Eqs. (70.1) and (70.2) to obtain:

Σpert
hmp (r) = α2

(
k [k + 1] α2

[1− s]4
− [M + Esp

nk − Cs]

×
[

aα

2 {1− s}3 −
bαs

2 {1− s}2 −
{Deq − bα/2} s

{1− s}3 −Dq2 s

{1− s}4
])

LΘ, (72.1)

∆pert
hmp (r) = α2

(
k [k + 1] α2

[1− s]4
− [M − Eps

nk − Cps]

×
[

aα

2 {1− s}3 −
bαs

2 {1− s}2 −
{Deq − bα/2} s

{1− s}3 −Dq2 s

{1− s}4
])

LΘ. (72.2)

Thus, we need to find the expectation values of the radial terms(1/[1− s]4), (1/[1− s]3), (s/[1− s]2), (s/[1− s]3) and
(s/[1− s]4) taking into account the wave function which we have seen previously in Eqs. (15.2) and (15.3). We have calculated
the expectation values of the radial terms of the first four terms, and but for the last term, we have not done so yet because it
did not appear in the Klein Gordon deformed theory using the wave function in Eq. (15.1). To avoid repeating the previous
work, it is sufficient to make the following changes to find the four first expectation values as follows:

Fnk (r) =
Nnk (2ωnk + 1)n

n!
sωnk (1− s)λnk+ 1

2
2F1 (−n, n + 2ωnk + 2λnk + 1; 1 + ωnk; s) Y m

l (Ω) , (15.2)

Gnk̃ (r) =
Nnk (2Ωnk + 1)n

n!
sΩnk (1− s)βnl+

1
2

2F1 (−n, n + 2Ωnk + 2βnl + 1; 1 + Ωnk; s)Y m
l (Ω) , (15.3)

{
Anl/2 → ωnk (Ωnk) and

Vnl → λnk (βnk)
n!Γ (n + Anl + 1) Nnl

Γ (2Anl + 1)
→ Nnk (2ωnk + 1)n

n!

(
Nnk (2Ωnk + 1)n

n!

)
. (73)

Then the recorded results in relations (37. i=1,2,3,4) will turn out to be appropriate to Dirac’s deformed theory:
〈

1
(1− s)4

〉sp

(nlm)

= Nvir
nk

Γ (2ωnk) Γ (2λnk − 2)
Γ (Knew

nk − 2)

× 3F2 (−n, n + 2ωnk + λnk + 1, 2λnk − 2; 1 + 2ωnk,Knew
nk − 2; 1) , (74.1)

〈
1

(1− s)3

〉sp

(nlm)

= Nvir
nk

Γ (2ωnk) Γ (2λnk − 1)
Γ (Knew

nk − 1)

× 3F2 (−n, n + 2ωnk + λnk + 1, 2λnk − 1; 1 + 2ωnk,Knew
nk − 1; 1) , (74.2)

〈
s

(1− s)3

〉sp

(nlm)

= Nvir
nk

Γ (2ωnk + 1) Γ (2λnk − 1)
Γ (Knew

nk )

× 3F2 (−n, n + 2ωnk + λnk + 1, 2λnk − 1; 1 + 2ωnk,Knew
nk ; 1) , (74.3)

〈
s

(1− s)2

〉sp

(nlm)

= Nvir
nk

Γ (2ωnk + 1) Γ (2λnk)
Γ (Knew

nk + 1)

× 3F2 (−n, n + 2ωnk + λnk + 1, 2λnk − 1; 1 + 2ωnk,Knew
nk + 1; 1) , (74.4)

〈
1

(1− s)4

〉psp

(nlm)

= N ′vir
nk

Γ (2Ωnk) Γ (2βnk − 2)
Γ (K ′new

nk − 2)

× 3F2 (−n, n + 2Ωnk + βnk + 1, 2βnk − 2; 1 + 2Ωnk,K ′new
nk − 2; 1) , (74.5)
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〈
1

(1− s)3

〉psp

(nlm)

= N ′vir
nk

Γ (2Ωnk) Γ (2βnk − 1)
Γ (K ′new

nk − 1)

× 3F2 (−n, n + 2Ωnk + βnk + 1, 2βnk − 1; 1 + 2Ωnk,K ′new
nk − 1; 1) , (74.6)

〈
s

(1− s)3

〉psp

(nlm)

= N ′vir
nk

Γ (2Ωnk + 1) Γ (2βnk − 1)
Γ (K ′new

nk )

× 3F2 (−n, n + 2Ωnk + βnk + 1, 2Ωnk − 1; 1 + 2Ωnk,K ′new
nk ; 1) , (74.7)

〈
s

(1− s)2

〉psp

(nlm)

= N ′vir
nk

Γ (2Ωnk + 1) Γ (2βnk)
Γ (K ′new

nk + 1)

× 3F2 (−n, n + 2Ωnk + βnk + 1, 2βnk − 1; 1 + 2Ωnk,K ′new
nk + 1; 1) , (74.8)

with

Nvir
nk =

(
n!Γ (n + 2ωnk + 1) Nnk

Γ (4ωnk + 1)

)2 1
α

, Nvir
nk =

(
n!Γ (n + 2Ωnk + 1) Nnk

Γ (4Ωnk + 1)

)2 1
α

,

Knew
nk = 2ωnk + 2λnk and K ′new

nk = 2Ωnk + 2βnk. The four first results (74.1), (74.2), (74.3) and (74.4) are present
the expectation values for deformed spin symmetry while the last four terms (74.5), (74.6), (74.7) and (74.8) related to the
pseudospin symmetry. Now, the expectation value for(s/[1− s]4) deformed spin symmetry and pseudospin symmetry is
determined from the equation taking into account the wave Eqs. (15.2) and (15.3) as follows:

〈
s

(1− s)4

〉sp

(nlm)

= Nvir
nk

+1∫

0

s2ωnk (1− s)2λnk−3 [ 2F1 (−n, n + 2ωnk + 2λnk + 1; 1 + ωnk; s)]2 ds, (75.1)

〈
s

(1− s)4

〉psp

(nlm)

= Nvir
nk

+1∫

0

s2Ωnk (1− s)2βnk−3 [ 2F1 (−n, n + 2Ωnk + 2βnl + 1; 1 + Ωnk; s)]2 ds. (75.2)

With the help of the special integral that we saw in Eq. (36), we obtain easily:
〈

s

(1− s)4

〉sp

(nlm)

= Nvir
nk

Γ (2ωnk + 1) Γ (2λnk − 2)
Γ (Knew

nk − 1) 3F2 (−n, n + Knew
nk + 1, 2λnk − 2; 1 + ωnk,Knew

nk − 1; 1) , (76.1)

〈
s

(1− s)4

〉psp

(nlm)

=N ′vir
nk

Γ (2Ωnk+1)Γ (2βnk − 2)
Γ (K ′new

nk − 1) 3F2 (−n, n + K ′new
nk + 1, 2βnk − 2; 1 + Ωnk,K ′new

nk − 1; 1) . (76.2)

Moreover, and by applying the same method that we saw in the previous section related to the deformed Klein-Gordon
theory, taking into account statistical differences between this theory and deformed Dirac theory. The global additive energy
∆ED−tot

hmp (n, α, a, b, De, re, Θ, σ, χ, j, l, s, m) , which produced with effective two perturbative termsΣpert
hmp(r) and ∆pert

hmp(r)
for deformed spin symmetry and pseudospin symmetry, in RNCQM-DT symmetries, is as follows

∆Etot
hmp(n, α, a, b, De, re, Θ, σ, χ, j, l, s, m) = (Θτ (j, l, s) + σℵm + χΩm)

×



〈Z〉sp

(nlm) (n, n, α, a, b, De, re) For deformed spin symmetry

〈Z〉ps
(nlm) (n, n, α, a, b, De, re) For deformed p-spin symmetry

, (77)

where〈Z〉sp
(nlm) (n, n, α, a, b,De, re) and〈Z〉ps

(nlm) (n, n, α, a, b, De, re) are determined by the following relations

〈Z〉sp
(nlm) (n, n, α, a, b, De, re) = α2

(
k (k + 1) α2

〈
1

(1− s)4

〉sp

(nlm)

− [M + Esp
nk − Cs]

[
aα

2

〈
1

(1− s)3

〉sp

(nlm)

− bαs

2

〈
s

(1− s)2

〉sp

(nlm)

− (Deq − bα/2)

〈
s

(1− s)3

〉sp

(nlm)

−Dq2

〈
s

(1− s)4

〉sp

(nlm)

])
. (78)
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and

〈Z〉ps
(nlm) (n, n, α, a, b,De, re) = α2

(
k (k − 1) α2

〈
1

(1− s)4

〉sp

(nlm)

− (M − Eps
nk − Cps)

[
aα

2

〈
1

(1− s)3

〉ps

(nlm)

− bαs

2

〈
s

(1− s)2

〉ps

(nlm)

− (Deq − bα/2)

〈
s

(1− s)3

〉ps

(nlm)

−Dq2

〈
s

(1− s)4

〉ps

(nlm)

])
. (79)

We have seen that in the previous section that the eigenvalues of the operatorG2 = J2−L2−S2 are equal to the values
τ (j, l, s) = [j(j + 1)− l(l + 1)− 3/4] /2 andτ(j, l̃, s̃) = [j(j + 1) − l̃(l̃ + 1) − 3/4]/2, thus, for the case of spin-1/2, the
possible values ofj arel ± 1/2 andl̃ ± 1/2 for spin symmetryτ (j, l, s) and pseudospin symmetryτ(j, l̃, s̃), which allows us
to get and as follows:

τ (j = l ± 1/2, l, s = 1/2) =





l

2
For up polarity j = l + 1/2

− l + 1
2

For dawn polarityj = l − 1/2
, (80.1)

and

τ
(
j = l̃ ± 1/2, l̃, s̃ = 1/2

)
=





l̃

2
For up polarity j = l̃ + 1/2

− l̃ + 1
2

For dawn polarity j = l̃ − 1/2

. (80.2)

The new relativistic energyEsp
r−nc (n, α, a, b, De, re, Θ, σ, χ, j, l, s,m) andEps

r−nc

(
n, α, a, b, De, re, Θ, σ, χ, j, l̃, s̃,m

)

for the case of spin-1/2 with improved Hellmann-generalized Morse potential, in the symmetries of the deformed Dirac sym-
metries, corresponding to the generalizednth excited states:

Esp
r−nc (n, α, a, b, De, re, Θ, σ, χ, j, l, s, m) = Es

nk + 〈Z〉sp
(nlm) n, n, α, a, b,De, re)

×





l

2
For up polarity j = l + 1/2

− l + 1
2

For dawn polarityj = l − 1/2
, (81.1)

and

Eps
r−nc(n, α, a, b,De, re,Θ, σ, χ, j, l̃, s̃,m) = Eps

nk + 〈Z〉ps
(nlm) (n, n, α, a, b, De, re)

×





l̃

2
For up polarity j = l̃ + 1/2

− l̃ + 1
2

For dawn polarity j = l̃ − 1/2

, (81.2)

whereEs
nk andEps

nk are usual relativistic energies within the Dirac theory obtained from Eqs. (16.3) and (16.4) whilek andk̃
are determined from the following relations:

k =





k1 = − (l + 1) = l + 1/2 For s1/2, p3/2...etc.

j = l + 1/2 Aligned spin k < 0

k1 = − (l + 1) = l + 1/2 For s1/2, p3/2...etc.

j = l − 1/2 Aligned spin k > 0

, (82)
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and

k̃ =





k1 = −l̃ = − (j + 1/2 ) For s1/2, p3/2...etc.

j = l̃ − 1/2 Aligned spin k̃ < 0

k1 = − (l + 1) = l + 1/2 For s1/2, p3/2...etc.

j = l − 1/2 Un aligned spink̃ > 0

. (83)

6. Nonrelativistic study of improved Hellmann-generalized Morse potential

6.1. Nonrelativistic improved Hellmann-generalized Morse potential

In this subsection section, we want to derive the nonrelativistic spectrum, which is produced by the effect of the IHGMP for
some diatomic molecules such as HCl, LiH, H2, ScH, TiH, VH, CrH, CuLi, TiC, NiC, ScN, and ScF by applying the notion of
the Weyl Moyal star product which have seen previously in Eqs. (2.1), (2.2), and (4) to the differential equation that satisfied
by the radial wave functionψnl (r) in Eq. (13.4), the radial wave function in extended nonrelativistic quantum mechanics
(ENRQM, for short) symmetries becomes as follows:

(
d2

dr2
+ 2M

[
Enr

nl − Vhmp{r} − l{l + 1}
2Mr2

])
∗ ψnl (r) = 0. (84)

According to Bopp’s shift method, Eq. (84) becomes similar to the following like the Schrödinger equation (without the
notion of the Weyl-Moyal star product):

(
d2

dr2
+ 2M

[
Enr

nl − Vhmp{rnc} − l{l + 1}
2Mr2

nc

])
ψnl (r) = 0. (85)

From Eqs. (1.2) and (23) we can write this potential in the ENRQM symmetries as follows:

Vhmp(rnc) = De − a

r
+

be−αr

r
− be−αr

r2
+ 2Deq

e−αr

(1− e−αr)2
+ Deq

2 e−αr

(1− e−αr)2
+ V hmp

nr−pert (r) , (86)

whereV hmp
nr−pert (r) is infinitesimal value if compared with the main partVhmp(r). Furthermore, it presents the global pertur-

bative potential of IHGMP in the ENRQM symmetries:

V hmp
nr−pert (r) =

l (l + 1)
r4

LΘ− ∂Vhmp(r)
∂r

LΘ
2r

+ O
(
Θ2

)
. (87)

The first term in Eq. (87) due to the centrifugal term(l [l + 1]/r2
nc) in ENRQM symmetries (see Eq. (24)) which equals

the usual centrifugal term(l [l + 1]/r2) plus the perturbative centrifugal term(l [l + 1]/r4)LΘ while the second term in Eq.
(87) is produced with the effect of IHGMP. We have seen in Eq. (31) the expression∂Vhmp(r)/∂r, allows us to get as follows:

V hmp
nr−pert (r) =

l (l + 1)
r4

LΘ−
(

a

r2
− bαe−αr

r
− bαe−αr

r2
− 2

Deαqe−αr

1− e−αr

+
Deq [1− q] e−2αr

[1− e−αr]2
− 2

Deαq2e−3αr

[1− e−αr]3

)
LΘ
2r

+ O
(
Θ2

)
. (88)

Now, we apply the Greene and Aldrich approximation for the centrifugal term in the perturbed potentialV hmp
nr−pert (s), we

obtain:

V hmp
nr−pert (s) =

(
l [l + 1] α4

[1− s]4
− α

2

[
a

{1− s}3 −
bαs

{1− s}3 + {2Deq − b} αs

{1− s}2

+ 2
Deαq {1− q} s2

{1− s}3 − 2
Deαq2s3

{1− s}4
])

LΘ + O
(
Θ2

)
. (89)
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6.2. Nonrelativistic bound state correction under the improved Hellmann-generalized Morse potential

In this subsection, we want to generate nonrelativistic bound state corrections under improved Hellmann-generalized Morse
potential. The expression of perturbative potential in Eq. (89) needs to calculate the expectation values of(1/[1− s]4),
(1/[1− s]3), (s/[1− s]3, (s/[1− s]2), (s2/[1− s]3) and(s3/[1− s]4) to find the nonrelativistic energy corrections produced
by the perturbative potentialV hmp

nr−pert (s). We have seen the expectation values of these terms in Eqs. (35). i=1,2,3,4,5,6),
allow us to get the global nonrelativistic expectation〈Z〉NRHMP

(nlm) (n, n, α, a, b,De, re) value is determined from the following
expression:

〈Z〉NRHMP
(nlm) (n, α, a, b,De, re) =

(
l (l + 1) α4

〈
1

(1− s)4

〉

(nlm)

− α

2

[
a

〈
1

(1− s)3

〉

(nlm)

− b

〈
s

(1− s)3

〉

(nlm)

+ (2Deq − b)

〈
s3/2

(1− s)4

〉

(nlm)

+ 2αDeq (1− q)

〈
s2

(1− s)3

〉

(nlm)

− 2αDeq
2

〈
s3

(1− s)4

〉

(nlm)

])
. (90)

And by following the same method used in the relativistic study, we obtain the nonrelativistic energy corrections∆Etot−nr
hmp

(n, α, a, b, De, re, Θ, σ, χ, j, l, s, m) for the generalized excited states due to the spin-orbit coupling, improved Zeeman effect
and nonrelativistic perturbed Fermi gas potential under the influence of the improved Hellmann-generalized Morse potential in
ENRQM symmetries are as follows:

∆Etot−nr
hmp (n, α, a, b, De, re, Θ, σ, χ, j, l, s, m) = 〈Z〉NRHMP

(nlm) (n, α, a, b, De, re) (Θτ (j, l, s) + σℵm + χΩm) . (91)

According to the standard perturbation theory. The new generalized nonrelativistic energyEhmp
nr−nc(n, n, α, a, b, De, re,Θ,

σ, χ, j, l, s,m) for the excitednth states, which, produced by the effect of the improved Hellmann-generalized Morse potential,
is the sum of the nonrelativistic energiesEnr

nl (see Eq. (16.2)) due to the effect of Hellmann-generalized Morse potential in
NRQM and the above corrections in Eq. (91):

Ehmp
nr−nc (n, α, a, b,De, re,Θ, σ, χ, j, l, s,m) = Enr

nl + 〈Z〉NRHMP
(nlm) (n, α, a, b, De, re) (Θτ (j, l, s) + σℵm + χΩm) . (92)

6.3. Nonrelativistic particular cases under the IHGMP

After examining the bound state solutions of anyl-state deformed Schrödinger equation with the improved Hellmann-generalized
Morse potential, our task is now to discuss some particular cases below. By adjusting the potential parameters for each case,
some familiar potentials, which are useful for other physical systems, can be obtained.

1. SettingDe to zero the potential in Eq. (8) turns to the Hellmann potential (Eq. (48)) in NRQM symmetries. The
perturbed effective potential in Eq. (89) turns to perturbed effective potentialV hp

nr−pert (s) in the symmetries of RNCQM as
follows:

V hp
nr−pert (s) =

l (l + 1) α4

(1− s)4
− α

2

(
a

(1− s)3
− bαs

(1− s)3
− b

αs

(1− s)2

)
LΘ + O

(
Θ2

)
. (93)

The new relativistic energy in Eq. (92) reduces to the new energyEhp
nr−nc (n, α, a, b, Θ, σ, χ, j, l, s, m) under improved equal

scalar and vector improved Hellmann potential in ENRQM symmetries, as follows:

Ehp
nr−nc (n, α, a, b, Θ, σ, χ, j, l, s,m) = Enr

hp−nl + 〈Z〉NRHP
(nlm) (n, n, α, a, b) (Θτ (j, l, s) + σℵm + χΩm) , (94)

where〈Z〉NRHP
(nlm) (n, n, α, a, b) is determined as a particular case from the global nonrelativistic expectation value〈Z〉NRHMP

(nlm)

(n, n, α, a, b, De, re):

〈Z〉NRHMP
(nlm) (n, α, a, b) =

(
l (l + 1) α4

〈
1

(1− s)4

〉

(nlm)

− α

2

[
a

〈
1

(1− s)3

〉

(nlm)

− b

〈
s

(1− s)3

〉

(nlm)

− b

〈
s3/2

(1− s)4

〉

(nlm)

])
, (95)
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while Enr
hp−nl can be obtained directly from Eq. (16.1) by replaceDe with zero.

2. Settinga = b = 0, the potential in Eq. (8) turns to the generalized Morse (Eq. (54)). The perturbed effective potential
in Eq. (33) turns to perturbed effective potentialV mp

nr−pert (s) in the symmetries of RNCQM as follows:

V mp
nr−pert (s) =

(
l (l + 1) α4

(1− s)4
−Deqα

2

[
αs

(1− s)2
+

(1− q) s2

(1− s)3
− qs3

(1− s)4

])
LΘ + O

(
Θ2

)
. (96)

In this case, the nonrelativistic energy correction under the influence of improved Morse potentials in ENRQM symmetries
is given by:

∆Etot−nr
mp (n, α, De, re, Θ, σ, χ, j, l, s, m) = 〈Z〉NRMP

(nlm) (n, α, De, re) (Θτ (j, l, s) + σℵm + χΩm) . (97)

Thus, the corresponding global expectation value〈Z〉NRMP
(nlm) (n, n, α, De, re) is determined from the following expression:

〈Z〉NRMP
(nlm) (n, α, De, re) =

(
l (l + 1) α4

〈
1

(1− s)4

〉

(nlm)

− α2Deq

[
b

〈
s3/2

(1− s)4

〉

(nlm)

+ (1− q)

〈
s2

(1− s)3

〉

(nlm)

− q

〈
s3

(1− s)4

〉

(nlm)

])
. (98)

The new nonrelativistic energy in Eq. (92) reduces to the new energy under IHGMP in ENRQM symmetries, as follows:

Emp
nr−nc (n, α, De, re, Θ, σ, χ, j, l, s, m) = Enr

mp−nl + 〈Z〉NRMP
(nlm) (n, α,De, re) (Θτ (j, l, s) + σℵm + χΩm) , (99)

while Enr
mp−nl can be obtained directly from Eq. (16.1) by replacea = b = 0 with zero.

6.4. Study the nonrelativistic fermion cases

We have seen that in the previous section that the eigenvalues of the operatorG2 = J2 −L2 − S2, for the case of spin-1/2, are
determined by Eq. (80.1) thus, the nonrelativistic energy in Eq. (92) can be generalized to the case of spin-1/2 with an improved
Hellmann-generalized Morse potential, in the symmetries of ENRQM, corresponding to the generalized excited states:

Ehmp
nr−nc (n, α, a, b,De, re,Θ, σ, χ, j, l, s,m) = De − αa +

α2l (l + 1)
2M

− α2

8M

(
Λ (n, l)− 2Mη (l)

Λ (n, l)

)2

+ 〈Z〉NRHMP
(nlm) (n, α, a, b, De, re)





l

2
+ σℵm + χΩm

For up polarity j = l + 1/2

− l + 1
2

+ σℵm + χΩm

For dawn polarityj = l − 1/2

. (100)

We conclude with all merit that the combination of potentials in the new symmetries of ENRQM brought about an upgrade
to the ordinary Schr̈odinger equation to become similar in the description ability of the Dirac equation. The spin condition was
clearly shown in the above result in Eq. (98).

6.5. Composite systems in ENRQM symmetries

Now, considering composite systems such as molecules made ofN = 2 particles of massesmn (n = 1, 2) in the frame
of noncommutative algebra, it is worth taking into account features of descriptions of the systems in the space. In NRQM
symmetries, it was obtained that composite systems with different masses are described with different noncommutative param-
eters [49,52,54,104]:

[
xnc

(S,H,I)
µ

∗,xnc
(S,H,I)
ν

]
= iθc

µν . (101)

with

θc
µν =

2∑
n=1

µ2
nθ(n)

µν , (102)
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with µn = (mn/
∑

mn
n

), the indices(n = 1,2) label the particle, andθ(n)
µν is the parameter of noncommutativity, corresponding

to the particle of massmn. Note that in the case of a system of two particles with the same massm1 = m2 such as the
homogeneous (N2, H2 and I2) diatomic molecules the parameterθ

(n)
µν = θµν . Thus, the two parametersΘ andσ which appears

in Eq. (92) are changed to the new form:

Θc2 =

(
2∑

n=1

µ2
nΘ(n)

12

)2

+

(
2∑

n=1

µ2
nΘ(n)

23

)2

+

(
2∑

n=1

µ2
nΘ(n)

13

)2

, (103.1)

σc2 =

(
2∑

n=1

µ2
nσ

(n)
12

)2

+

(
2∑

n=1

µ2
nσ

(n)
23

)2

+

(
2∑

n=1

µ2
nσ

(n)
13

)2

. (103.2)

and

χc2 =

(
2∑

n=1

µχ
(n)
12

)2

+

(
2∑

n=1

µχ
(n)
23

)2

+

(
2∑

n=1

µχ
(n)
13

)2

. (103.3)

As it is mentioned above, in the case of a system of two particles with the same massm1 = m2 such as the homogeneous
(N2, H2 and I2) diatomic moleculesΘ(n)

µν = Θµν andσ
(n)
µν = σµν .Finally, we can generalize the nonrelativistic global energy

Ehmp
nr−nc (n,α,A,B,V0,Θ, σ, χ,j, l,s,m) under the improved Hellmann-generalized Morse potential model considering that

composite systems with different masses are described with different noncommutative parameters for the diatomic (HCl, LiH,
ScH, TiH, VH, CrH, CuLi, TiC, NiC, ScN and ScF) as:

Ehmp
nr−nc (n, α, a, b, De, re, Θ, σ, χ, j, l, s, m) = Enr

nl + 〈Z〉NRHMP
(nlm) (n, n, α, a, b, De, re)

× (Θcτ (j, l, s)+σcℵm+χcΩm) . (104)

Finally, we arrived at the important results achieved in this new work. The KGE, as the most well-known relativistic wave
equation, describes spin-zero particles, but its extension to the RNCQM symmetric deformed Klein-Gordon equation under
improved Hellmann-generalized Morse potential has a physical behavior similar to the Duffin–Kemmer equation for a meson
with spin-s that can describe a dynamic state of a particle with spin one in the symmetries of relativistic noncommutative
quantum mechanics. This is one of the most important new results of this research. It is worthwhile to mention that for the two
simultaneous limits(Θ, σ, χ) and(Θc, σc, χc) → (0, 0, 0) we recover the results of Refs. [34,35].

7. Summary and Conclusions

This main part of our paper gives a summary of the basic points in our work. In this work, we have found the approximate
bound state solutions of the deformed Klein-Gordon, deformed Dirac and Schrödinger equations of the improved Hellmann-
generalized Morse potential, which correspond to high and low energy physics for the diatomic molecules (HCl, LiH, H2,
ScH, TiH, VH, CrH, CuLi, TiC, NiC, ScN and ScF), in the symmetries of extended KG theory, Dirac theory and Schrödinger
theory. We have used Bopp’s shift method, stationary, perturbation theory, and the improved approximation scheme to deal
with the centrifugal term. In addition to the usual state numbers(n, l) , the new energy equations have appeared sensitive to
discrete atomic numbers(j, l, s, m), the parameters for the quantum states (α, a, b, De, re) in addition to noncommutativity
parameters (Θ, σ andχ). This new behavior is in the symmetries of extended relativistic and relativistic quantum mechanics
equivalent to a conventional physical system under the influence of at least three perturbative systems with the perturbed spin-
orbit, improved Zeeman effect and the perturbed Fermi gas effect. The main difference lies in the fact that these perturbations
appear automatically in the case of the new system of ERQM and ENRQM symmetries. Furthermore, we can conclude that
the deformed Klein-Gordon equation under the improved Hellmann-generalized Morse potential becomes similar to Duffin–
Kemmer equation for a meson with spin-s, it can describe the dynamic state of a particle with spin-s in this symmetry. We also
noted how the MHGPs model can be reduced to the improved Hellmann potential and improved Morse potential by applying
appropriate potential constant values. Moreover, we have applied our results to composite systems such as molecules made of
N = 2 particles of massesmn (n = 1, 2) such as HCl, LiH, ScH, TiH, VH, CrH, CuLi, TiC, NiC, ScN and ScF. It is worth
mentioning that, for all cases, to make the two simultaneous limits(Θ, σ, χ) and(Θc, σc, χc) → (0, 0) , the ordinary physical
quantities are recovered in refs. [34,35]. Finally, given the effectiveness of the methods that we followed in achieving our goal
in this research, we advise researchers to apply the same methods in other studies, whether in the relativistic and nonrelativistic
regimes for others potentials.
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