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Optical solitons to fractal nonlinear Schrödinger equation
with non-Kerr law nonlinearity in magneto-optic waveguides
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This paper introduces the fractal model of the nonlinear Schrödinger equation with quadratic-cubic nonlinearity in magneto-optic waveguides,
having plenty of applications in fiber optics. He’s variational approach and Painlevé technique are used to obtain bright and kink soliton
solutions of the governing system. The constraint conditions that ensure the existence of these solitons arise naturally from the model’s
solution structure. To quantify the behavior of different solutions, the effect of the fractal parameter is studied. These techniques may be
very useful and efficient tools for solving nonlinear fractal differential equations that emerge in mathematical physics.
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1. Introduction

Optical solitons are the basic component of fiber-optic
telecommunication technology. Several models have been
developed to investigate this mechanism, including the non-
linear Schr̈odinger’s equation (NLSE). There are different
forms of waveguides such as optical metamaterials, optical
fibers and photonic crystal fibers, among others, that send a
large amount of data across intercontinental distances [1, 2].
This paper considers a particular type of optical waveg-
uides with an artificially generated magnetic field, known as
magneto-optic waveguides. The benefit of such waveguides
is that they reduce the soliton clutter effect ensuring smooth
information propagation [3–5].

In the field of nonlinear science, the NLSE is a well-
known model that can be used in a variety of physical in-
stances, including nonlinear optics, nuclear physics, quantum
mechanics, condensed matter physics, and plasma physics,
etc. [6–12]. The fractal model is gaining significance in non-
linear evolution equations (NLEE) of physics and mathemat-
ics for its many attractive properties that traditional systems
fail to provide. One form of fractal NLEE is coupled NLSE
in nonlinear optics. This system can handle soliton solutions
having applications in optical communications, logic gate de-
vices, ultrafast soliton switches, and soliton lasers [13].

The optical soliton solutions of NLSE with various forms
of nonlinearity possess a significant part in resolving real-
world problems. In optics, a soliton is the wave that is un-
altered during propagation due to a delicate balance between
nonlinear and dispersive effects in the medium [14–16]. So-
lutions for various NLSE have been sought to investigate
nonlinear phenomena with the solitons being either bright
or dark depending on the details provided by the govern-
ing NLSE [17–20]. Researchers have been studying these
solitons with quadratic-cubic nonlinearity since this form of
nonlinearity was first suggested in 2011 [21]. The study
of soliton dynamics in magneto-optic waveguides is crucial.

Bright solitons can be formed from a state of attraction to a
state of separation from each other by magneto-optic com-
ponents. This allows us to manage the so-called soliton
clutter. This article explores the soliton solutions of cou-
pled NLSE with quadratic-cubic nonlinearity by implement-
ing He’s semi-inverse variational method and the Painlevé ap-
proach that may be conducive for engineers and physicist to
physically comprehend this model.

The semi-inverse approach is an effective tool for finding
different variational principles of physical problems [22,23].
He suggested the semi-inverse variational theorem as an ef-
ficient and direct algebraic approach for computing soliton
solutions [24]. Many authors went on to expand this ap-
proach and contributed to the analysis of fractal models in
distinct fields of science [25–28]. Another method adopted
here to obtain soliton solutions of the governing model is the
Painlev́e approach, which is the generalization of well-known
algorithms: simplest equation method, tanh-function method,
and theG′/G-expansion method [29]. This is a powerful and
reliable scheme to find exact solutions of NLSE by avoiding
the meromorphic solutions.

The article is organized as: Section 2 is devoted to the
mathematical description. Section 3 covers the study of soli-
ton solutions of the FLE along with their graphics. Discus-
sion of the results is presented in Sec. 4 and 5 gives the con-
clusion.

1.1. Governing system

The coupled model of NLSE with quadratic-cubic nonlinear-
ity in magneto-optic waveguides is given as:

iut + l1uxx + (m1|u|+ n1|u|2 + p1|v|+ s1|v|2)u = R1v

+ i(β1ux + µ1(|u|u)x + υ1(|u|)xu + η1|u|ux) (1)
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ivt + l2vxx + (m2|v|+ n2|v|2 + p2|u|+ s2|u|2)v = R2u

+ i(β2vx + µ2(|v|v)x + υ2(|v|)xv + η2|v|vx) (2)

whereli,mi, ni, pi, si, Ri, βi, µi, υi andηi for i = 1, 2 are
constants, whilei =

√−1. In Eqs. (1) and (2),t andx are
independent and represent the temporal and spatial variables,
respectively, while the dependent variables areu(x, t) and
v(x, t) which show the complex valued soliton profiles. The
constantsli denote chromatic dispersion, whereasmi andni

are the self-phase modulation coefficients. The cross-phase
modulation is expressed by the parameterspi andsi. On the
right hand side of Eqs. (1) and (2), inter-modal dispersion and
the magneto-optic parameter are denoted by the coefficients
βi andRi, respectively.µi stands for self-steepening term
and the coefficients of nonlinear dispersion are symbolized
by υi andηi.

2. Mathematical analysis

To continue, the initial assumptions are as follows:

u(x, t) = F1(ξ)eiχ(x,t), v(x, t) = F2(ξ)eiχ(x,t), (3)

where

ξ = x− at, χ(x, t) = −hx + νt + η0. (4)

Herea, h, ν andη0 are speed, frequency, wave number, and
phase constant of the wave, respectively.Fi(x, t) for i = 1, 2
denote the amplitude of the pulses, whereasχ(x, t) repre-
sents the phase component of the pulses.

Substituting Eqs. (3) and (4) into Eqs. (1) and (2). So, the
real parts become

l1F
′′
1 − (ν + l1h

2 + hβ1)F1 −R1F2

+ (m1 − hµ1 − hη1)F 2
1

+ n1F
3
1 + s1F

2
2 F1 + p1F2F1 = 0, (5)

l2F
′′
2 − (ν + l2h

2 + hβ2)F2 −R2F1

+ (m2 − hµ2 − hη2)F 2
2

+ n2F
3
2 + s2F

2
1 F2 + p2F1F2 = 0, (6)

while the imaginary parts are given as:

(a + 2l1h + β1)F ′1 + (2µ1 + υ1 + η1)F1F
′
1 = 0, (7)

(a + 2l2h + β2)F ′2 + (2µ2 + υ2 + η2)F2F
′
2 = 0. (8)

Integrating Eqs. (7) and (8) and setting the integration con-
stants to zero yields

(a + 2l1h + β1)F1 +
1
2
(2µ1 + υ1 + η1)F 2

1 = 0, (9)

(a + 2l2h + β2)F2 +
1
2
(2µ2 + υ2 + η2)F 2

2 = 0. (10)

Equating the coefficients of linearly independent functions to
zero in Eqs. (9) and (10), provides the constraints:

−(2l1h + β1) = a, (11)

2µ1 + υ1 + η1 = 0, (12)

and

−(2l2h + β2) = a, (13)

2µ2 + υ2 + η2 = 0. (14)

It can be deduced from Eqs. (11) and (13) that the soliton
frequency is

h =
β2 − β1

2(l1 − l2)
, (15)

providedl1 6= l2 andβ1 6= β2. Furthermore, we set

F1(ξ) = εF2(ξ), (16)

whereε 6= 0, 1. As a consequence, Eqs. (5) and (6) become

l1F
′′
1 − [ν + l1h

2 + hβ1 + R1ε]F1

+ [m1 − h(µ1 + η1) + εp1]F 2
1

+ (n1 + s1ε
2)F 3

1 = 0, (17)

l2εF
′′
1 − [ε(ν + l2h

2 + hβ2) + R2]F1

+ [ε2(m2 − h(µ2 + η2)) + εp2]F 2
1

+ (ε3n2 + s2ε)F 3
1 = 0. (18)

Equations (17) and (18) are equivalent by taking the con-
straint conditions:

l1 = εl2, (19)

n1 + ε2s1 = ε3n2 + εs2, (20)

ν + l1h
2 + hβ1 + R1ε = ε(ν + l2h

2 + hβ2) + R2, (21)

m1−h(µ1 + η1)+εp1 = ε2(m2−h(µ2 + η2))+εp2. (22)

From the constraint Eq. (21), the wave numberν appears to
be

ν =
h2(εl2 − l1) + h(εβ2 − β1) + (R2 − εR2)

1− ε
. (23)

Next, Eq. (17) can be rewritten as

F ′′1 + δ1F1 + δ2F
2
1 + δ3F

3
1 = 0, (24)

where

δ1 = −ν + l1h
2 + hβ1 + R1ε

l1
,

δ2 =
m1 − h(µ1 + η1) + εp1

l1
,

δ3 =
n1 + ε2s1

l1
, (25)
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providedl1 6= 0.
In the view of [30], the fractal form of Eq. (1) and Eq. (2)

can be written as:

d

dξα

(
dF1

dξα

)
+ δ1F1 + δ2F

2
1 + δ3F

3
1 = 0, (26)

whereα is the fractal dimension value anddF1/dξα is the
fractal derivative represented as follows:

dF1

dξα
= Γ(1 + α) lim

ξ−ξ0→∆ξ,∆ξ 6=0

F1(ξ)− F1(ξ0)
(ξ − ξ0)α

. (27)

3. Extraction of solitons by proposed methods

3.1. Semi-inverse method

By He’s variational principle [22] we can derive the follow-
ing variational formulation for Eq. (26) as:

J =
∫

Ldξ =
∫

(K − E)dξ

=

∞∫

0

(
1
2

(
dF1

dξα

)2

− δ1
F 2

1

2
− δ2

F 3
1

3
− δ3

F 4
1

4

)
dξα,

(28)

where

L =
1
2

(
dF1

dξα

)
− δ1

F 2
1

2
− δ2

F 3
1

3
− δ3

F 4
1

4

be the Lagrangian,K = 1/2 (dF1/dξα) is the kinetic energy
and

E = δ1
F 2

1

2
+ δ2

F 3
1

3
+ δ3

F 4
1

4
is the potential energy.

Using the two scale transformationb = ξα, Eq. (28)
takes the form

J =

∞∫

0

(
1
2

(
dF1

db

)2

− δ1
F 2

1

2
− δ2

F 3
1

3
− δ3

F 4
1

4

)
db. (29)

Using the Ritz’s approach, consider the solitary wave solu-
tion as follows

F1 = X sech(Y b), (30)

where unknown constantsX andY are to be computed fur-
ther. Substituting Eq. (30) into Eq. (29) gives

J =
1
6
X2Y − δ1X

2

2Y
− δ2πX3

12Y
− δ3X

4

6Y
. (31)

Taking the corresponding derivatives ofJ with respect toX
andY gives

∂J

∂X
=

1
3
XY − δ1X

Y
− δ2πX2

4Y
− 2

3
δ3X

3

Y
= 0, (32)

∂J

∂Y
=

1
6
X2 +

1
2

δ1X
2

Y 2
+

δ2πX3

12Y 2
+

1
6

δ3X
4

Y 2
= 0. (33)

From Eq. (32) and Eq. (33) we have

X =
−5πδ2 ±

√
25π2δ2

2 − 1152δ1δ3

24δ3
, (34)

Y =±1
2

√
5π2δ2

2−πδ2

√
25π2δ2

2−1152δ1δ3

72δ3
−4δ1 . (35)

Equation (30) becomes

F1 =
−5πδ2 ±

√
25π2δ2

2 − 1152δ1δ3

24δ3
sech


±1

2

√
5π2δ2

2 − πδ2

√
25π2δ2

2 − 1152δ1δ3

72δ3
− 4δ1 b


 . (36)

The solitary wave solution for Eq. (26) is

u(x, t)=
−5πδ2±

√
25π2δ2

2−1152δ1δ3

24δ3
eι(hx+νt+η0) sech


±1

2

√
5π2δ2

2−πδ2

√
25π2δ2

2−1152δ1δ3

72δ3
−4δ1 (x− at)α


 , (37)

v(x, t)=ε

(
−5πδ2±

√
25π2δ2

2−1152δ1δ3

24δ3

)
eι(hx+νt+η0)

× sech


±1

2

√
5π2δ2

2−πδ2

√
25π2δ2

2−1152δ1δ3

72δ3
−4δ1(x− at)α


 , (38)

providedε 6= 0, 1.
Now, consider another possible soliton solution, this time of the form

F1 = W sech4(Zb), (39)
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where unknown constantsW andZ are to be calculated later. Plugging Eq. (39) into Eq. (29) yields

J =
128
315

W 2Z − 8
35

δ1W
2

Z
− 256

2079
δ2W

3

Z
− 512

6435
δ3W

4

Z
. (40)

Taking the corresponding derivatives ofJ with respect toW andZ leads to

∂J

∂W
=

256
315

WZ − 16
35

δ1W

Z
− 256

693
δ2W

2

Z
− 2048

6435
δ3W

3

Z
= 0 , (41)

∂J

∂Z
=

128
315

W 2 +
8
35

δ1W
2

Z2
+

256
2079

δ2W
3

Z2
+

512
6435

δ3W
4

Z2
= 0 . (42)

From Eqs. (41) and (42) we have

W =
−325δ2 ±

√
105625δ2

2 − 486486δ1δ3

504δ3
, (43)

Z = ± 1
12

√√√√10
(
325δ2

2 − δ2

√
105625δ2

2 − 486486δ1δ3

)

693δ3
− 27δ1 , (44)

with the help of which Eq. (39) takes the form

F1=
−325δ2 ±

√
105625δ2

2−486486δ1δ3

504δ3
sech


±

1
12

√√√√10
(
325δ2

2 − δ2

√
105625δ2

2−486486δ1δ3

)

693δ3
− 27δ1 b


 . (45)

The solitary wave solution for Eq. (26) is given as:

u(x, t) =
−325δ2 ±

√
105625δ2

2 − 486486δ1δ3

504δ3
eι(hx+νt+η0)

× sech4


±

1
12

√√√√10
(
325δ2

2 − δ2

√
105625δ2

2 − 486486δ1δ3

)

693δ3
− 27δ1(x− at)α


 , (46)

v(x, t) = ε

(
−325δ2 ±

√
105625δ2

2 − 486486δ1δ3

504δ3

)
eι(hx+νt+η0)

× sech4


±

1
12

√√√√10
(
325δ2

2 − δ2

√
105625δ2

2 − 486486δ1δ3

)

693δ3
− 27δ1(x− at)α


 , (47)

providedε 6= 0, 1.

3.2. Painlev́e Approach

According to Paul Painlev́e, the exact solution of Eq. (26) has the form:

F1(ξ) = e0 + f(U)e−cξ, U = g(ξ) = e1 − e−cξ

c
, (48)

andf(U) in Eq. (48) satisfiesfU −AU2 = 0, which is a Riccati-equation.
The solution to this equation is given as

f(U) =
1

AU + U0
. (49)
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Differentiating Eq. (48) with respect toξ and using Riccati
equation give:

F1ξ = −ce−cξf + Ae−2cξf2,

F1ξξ = c2e−cξf − 3Ace−2cξf2 + 2A2e−3cξf3,

F1ξξξ = −c3e−cξf + 7Ac2e−2cξf2

− 12A2ce−3cξf3 + 6A3e−4cξf4.

SubstitutingF1, F1ξ andF1ξξ in Eq. (26) and comparing the
coefficients of like powers ofe−cξf(U) equal to zero, we ob-
tain the system of equations as:

2A2 + δ3 = 0,

−3Ac + δ2 = 0,

c2 + δ1 = 0, (50)

which implies the following four cases:

(i) If A =
√
−δ3/2 andc =

√−δ1 then the solution is

F1(ξ) =
e
√−δ1ξ

√
−δ3
2 U + U0

. (51)

(ii) If A =
√
−δ3/2 andc = −√−δ1 then the solution is

F1(ξ) =
e−
√−δ1ξ

√
−δ3
2 U + U0

. (52)

(iii) If A = −
√
−δ3/2 andc =

√−δ1 then the solution is

F1(ξ) =
e
√−δ1ξ

−
√
−δ3
2 U + U0

. (53)

(iv) If A = −
√
−δ3/2 andc = −√−δ1 then the solution

is

F1(ξ) =
e−
√−δ1ξ

−
√
−δ3
2 U + U0

. (54)

FIGURE 1. The 3D profile of a) Eq. (37) for|u|2 and b) Eq. (38) for|v|2 for the parameters:δ1 = −0.12, δ2 = 0.55, δ3 = 1.2, π = 22/7,
a = −3, α = 1, ε = 1.5 2D plots of c)|u|2 and d)|v|2 againstx at t = 0 for fractal dimension valueα = 0.2, 0.5, 0.7, 0.9.
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FIGURE 2. The 3D profile of a) Eq. (46) for|u|2 and b) Eq. (47) for|v|2 the parameters:δ1 = −0.3, δ2 = 0.55, δ3 = 1.2, a = −3, α = 1,
ε = 1.5, 2D plots of c)|u|2 and d)|v|2 againstx at t = 0 for fractal dimension valueα = 0.2, 0.5, 0.7, 0.9.

TABLE I. Comparison of the results following the Painlevé approach,φ6 expansion, and semi-inverse methods.

Methods NLSE Fractal NLSE

Painlev́e F1(ξ) = e±
√−δ1ξ

±
√−δ3

2 U+U0

φ6 expansion P1(ς) =

[√
(2n+1)(2n2µ1−h2)

3n2µ3

(
1 + (n2µ1+h2)U2(ς)

3h0(fU2(ς)+g)

)] 1
2n

Semi-inverse q(x, t) = A
D+cosh[B(x−vt)]

ei(−kx+ωt+θ0) u(x, t) = X sech[Y (x− at)α]eι(hx+νt+η0)

4. Results and discussion

The graphical interpretation of the obtained results and the ef-
fect of fractal parameter on them are discussed in this section.
The semi-inverse variational method yields the bright soliton
solutions given by Eqs. (37), (38), (46), and (47). The physi-
cal appearance of these solitons is shown in terms of|u|2 and
|v|2 by assigning different parameteric values. In Figs.1 and
2, the 2D profiles are provided for fractal dimension values
α = 0.2, 0.5, 0.7, 0.9 while 3D plots are the standard solitary
waves of Eqs. (37), (38), (46) and (47). Kink soliton solu-
tions, i.e., Eq. (51-54) of a given model are obtained follow-

ing the Painlev́e approach. In Figs. 3 and 4, the 3D plots of
Eq. (51) and Eq. (52) are shown for distinct fractal dimension
valuesα = 0.2, 0.5, 0.7, 1. In Fig. 3, the oscillation spikes
on the surface are due to the fractal effect. In Fig. 4, the frac-
tal effect on the solution is shown by the irregularity in the
surface. Equations (53) and (54) display the same graphical
behavior with just reflection as in Figs. 3 and 4, respectively.

Remark The obtained results are compared to those ex-
isting in the literature [3, 23] and found to be novel. Kink
solitons of the governing system are obtained following the
Painlev́e approach, while for the semi-inverse variational
method we considered the fractal model of NLSE.

Rev. Mex. Fis.68020707
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FIGURE 3. Plots of Eq. (51) for the parameters:δ1 = −0.9, δ3 = −2.1, a = 0.8, e1 = 1, U0 = 0.5 andα = 0.2, 0.5, 0.7, 1.

FIGURE 4. Plots of Eq. (52) for the parameters:δ1 = −0.55, δ3 = −2.2, a = −2, e1 = 1, U0 = 0.5 andα = 0.2, 0.5, 0.7, 1.

Rev. Mex. Fis.68020707
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5. Conclusion

In this article, we have obtained the optical solitons for frac-
tal coupled NLSE in magneto-optic waveguides that have
many applications to the propagation of data in optical fibers.
Bright and kink solitons are retrieved by the implementation
of He’s semi-inverse and Painlevé methods. The semi-inverse
approach is a fascinating integration scheme to deduce varia-
tional principles for various differential models. On the other
hand, the Painlev́e technique is compelling to find exact so-

lutions of non-integrable nonlinear differential equations by
averting their meromorphic solutions. The suitable choice of
parameters enables us to discuss the fractal behavior of the
system. The outcomes could be helpful in the telecommuni-
cation industry to increase transmission system output capa-
bility. The impact of fractal dimension value on solutions of
the coupled system has been shown graphically, facilitating
the understanding of understand the dynamics of the model.
The applied methodologies may be conducive to solve a va-
riety of problems arising in engineering and applied physics.
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