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Time-dependent interactions in tunnelling dynamics
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In this paper, the tunnelling of a particle through a potential barrier is investigated in the presence of a time-dependent perturbation. The
latter is attributed to the process of the energy measurement of the scattered particle. The time-dependent Schrödinger equation of the model
is exactly solved. The calculation of the probability density inside the barrier proves that the tunnelling dynamics is determined not only by
the transmitted and reflected waves but also by their interference. Furthermore, the interference term is time-dependent and contribute to the
scattering process duration. The tunnelling time is calculated as the time to stop the flow of probability density inside the barrier. This is the
minimum duration of the measurement process before detecting the particle beyond the barrier. Based on this, a new method of estimating
the tunnelling time by energy experimental measuring is proposed.
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1. Introduction

Tunnelling is a phenomenon peculiar to the quantum world
that has been widely applied in physics, chemistry, and on
which is based the functioning of many technological de-
vices, such as diodes, superconducting quantum interference
devices, quantum antennas and superconducting qubits for
quantum computers [1-8]. The quantum tunnelling problem
can be addressed using two distinct approaches. The first
is the time-independent approach relying on the principle of
conservation of energy [9-12]. In this case, the energy of the
particle scattered through the potential barrier is equal to its
initial energy. The second approach is the time-dependent
one, which is based upon the perturbation theory [13-16]. In
this case, the potential barrier is considered as a perturbation
and the energy of the scattered particle is spreads within a
small range. However, an accurate description of the tun-
nelling process cannot be made using just one of these ap-
proaches. For instance, the measuring of the energy of a
particle scattered by a rectangular potential barrier, whose
value does not depend on time, can be performed only when
the tunnelling has ended,i.e. after a timeτ . This means
that, according to the Heisenberg uncertainty principle, the
uncertainty affecting the energy of the scattered particle is
δE ≥ ~/2τ . Therefore, is impossible to state whether the
tunnelling is stationary or non-stationary, especially when the
configuration of the barrier is such as to involve very short
tunnelling times. In these cases, the uncertainty affecting the
particle energy can be of the order of the height of the barrier.

In this work we study the tunnelling process of a particle
through a potential barrier in presence of a time-dependent
interaction, due to a measurement process involved in the
tunnelling. The tunnelling dynamics of this model is inves-
tigated by the time-dependent Schrödinger equation (TDSE),
which in the non-relativistic framework represents the most
suitable tool for dealing with similar problems. The TDSE

is solved exactly and the probability density of the particle
within the barrier is calculated. Finally, the tunnelling time
is calculated both as the time required to stop the flow of
the probability current and by the transfer matrix method.
We believe that these approaches are the most appropriate
for a non-stationary tunnelling problem, as is the one being
investigated. In fact, the tunnelling times defined in litera-
ture (dwell time, phase time, Larmor time, complex time)
[17] mainly relate to stationary processes and are calculated
as average values obtained by integrating on all the scattering
channels. In this case, the flow of probability density reaches
a steady-state and is maintained for the entire duration of the
scattering. But in a measurement process, this does not oc-
cur, and hence we need to change the way to calculate the
tunnelling time. The configuration of the potential barrier
determines the tunnelling time and allows to estimate a priori
the uncertainty affecting the measurement of the energy of
the scattered particle.

2. Exact solution of TDSE of the model

Let us consider a particle of mass m moving alongx axis. In
the region0 ≤ x ≤ L a potential barrierU(t, x) is present:

U(t, x) = U(x) + U(t) 0 ≤ x ≤ L, (1)

whereU(x) is the potential for each point of the barrier and
U(t) is a time-dependent interaction potential. We do not
make any assumptions about the geometry of the barrier. In
the regionsx < 0 andx > L the potential is everywhere
zero. We are interested investigating the dynamics of the par-
ticle within the barrier. The TDSE for this model is:

i~
∂

∂t
ψ(t, x) =

(
− ~

2

2m

∂2

∂x2
+ U(t, x)

)
ψ(t, x). (2)
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Substituting Eq. (1) in Eq. (2) is obtained:

i~
(

∂

∂t
− U(t)

)
ψ(t, x) =

(
− ~

2

2m

∂2

∂x2
+ U(x)

)
ψ(t, x).

(3)

Since we supposed the spatial and temporal contributions
to the potential are independent, the wavefunctionψ(t, x) can
be factorized as follows:

ψ(t, x) = ϕ(x)ϑ(t). (4)

Using Eq. (4), the Eq. (3) is split into two separate equa-
tions:





i~
(

∂
∂t − U(t)

)
ϑ(t) = Eϑ(t)

(
− ~2

2m
∂2

∂x2 + U(x)
)

ϕ(x) = Eϕ(x)′
, (5)

whereE is the particle energy. The first of Eq. (5) admits the
following general solution:

ϑ(t) = εe−(iEt/~)−(i/~)
∫ t
0 U(t)dt, (6)

whereε is an arbitrary coefficient. The solution of the sec-
ond of Eq. (5) can be represented as the linear combination
between the transmitted component of the incident wave and
the component reflected by the right side of the barrier, de-
noted respectively byϕT (x) and ϕR(x). These two com-
ponents are evanescent waves characterized by an imaginary
wave vectorχ = ±

√
2m(E − U)/~ and they do not depend

on the time being localized waves [18-20]. Therefore, in the
formula that yieldsχ, only the termU(x) must be considered.
For convenience we writeϕT (x) andϕR(x) as follows:

ϕT (x) = αf(x); ϕR(x) = βg(x), (7)

whereα andβ are numerical coefficient andf(x) andg(x)
are evanescent waves whose explicit form is:

f(x) = e−|χ|x/~; g(x) = e|χ|x/~. (8)

It must be understood that the value of the imaginary
wave vectorχ can vary within the range0 ≤ x ≤ L, depend-
ing on the geometry of the barrier. The coefficientsα andβ
are obtained imposing the following boundary conditions:

ψi(x)|x=0 = αf(x)|x=0; αf(x)|x=L = βg(x)|x=L, (9)

whereψi(x) is the spatial part of the incident wave function,
which has the form of a plane wave with real wave vector
K =

√
2mE/~ [2]. Therefore, the general solution of Eq. (3)

in the range0 ≤ x ≤ L is:

ψ(t, x) = c1ϕT (x)e(−[i/~]
∫ t
0 U(t)dt)e(iEkt)/~

+ c2ϕR(x)e(−[i/~]
∫ t
0 U(t)dt)e(−iEjt/~), (10)

wherec1 and c2 are arbitrary coefficients that are obtained
normalizing the wave function. The termsEk and Ej are

two possible energy values that the particle can assume in-
side the potential barrier at different spacetime points. In fact,
Eq. (10) is compatible with a simultaneous measurement of
the particle energy at the two sides of the barrier performed
in the time interval∆t = (t − 0). As prescribed by quan-
tum measurement theory, driven by Heisenberg’s uncertainty
principle, the two energy values have expected to be differ-
ent [21].

Let us now substituting Eq. (10) in the Eq. (2) obtaining:

i~ȧk(t)ϕT (x) + i~ȧj(t)ϕR(x)eiωkjt = ak(t)U(t)ϕT (x)

+ aj(t)U(t)ϕR(x)eiωkjt (11)

where {
ak(j)(t) = γk(j)e

(−[i/~]
∫ t
0 U(t)dt)

ωkj = ωk − ωj = (Ek − Ej)/~
. (12)

In Eq. (12) γk(j) are arbitrary coefficients. The time-
dependent coefficientsak(j)(t) are obtained multiplying both
sides of Eq. (11) byϕ∗T (x) first and byϕ∗R(x) then, and inte-
grating in the range0 ≤ x ≤ L:

i~ȧk(t)

xk∫

xj

ϕ∗T (x)ϕT (x)dx + i~ȧj(t)eiωkjt

×
xk∫

xj

ϕ∗T (x)ϕR(x)dx = ak(t)U(t)

xk∫

xj

ϕ∗T (x)ϕT (x)dx

+ aj(t)U(t)eiωkjt

xk∫

xj

ϕ∗T (x)ϕR(x)dx, (13)

i~ȧk(t)

xk∫

xj

ϕ∗R(x)ϕT (x)dx + i~ȧj(t)eiωkjt

×
xk∫

xj

ϕ∗R(x)ϕR(x)dx = ak(t)U(t)

xk∫

xj

ϕ∗R(x)ϕT (x)dx

+ aj(t)U(t)eiωkjt

xk∫

xj

ϕ∗R(x)ϕR(x)dx. (14)

From Eq. (13) and Eq. (14) is obtained:



i~ȧk(t)Xjk + i~ȧj(t)Xjje
iωkjt

= ak(t)Ykj + aj(t)Yjje
iωkjt

i~ȧk(t)Xkk + i~ȧj(t)Xkje
iωkjt

= ak(t)Ykk + aj(t)Yjkeiωkjt

. (15)

In Eq. (15)Xjk andYjk are respectively the components
of the overlapping and transition matrices, given by:





Xkj =
xk∫
xj

ϕ∗T (x)ϕR(x)dx

Yjk =
xk∫
xj

ϕ∗T (x)U(t)ϕR(x)dx′
, (16)

Rev. Mex. Fis.68020702



TIME-DEPENDENT INTERACTIONS IN TUNNELLING DYNAMICS 3

wherexk, xj ∈ [0, L]. From Eq. (16) one sees thatYkk =
Yjj = 0. As one can be guessed, the theory being formu-
lating is very similar to the spectroscopic one and suggests
that tunnelling can be interpreted as transition from a state
?T (x) to a state?T (x) induced by the potentialU(t). The
Eq. (16) is a system of two linear differential equations where
unknown functions areak(t) andaj(t). Separating these un-
known functions and integrating respect the time is obtained:





ak(t) = eiω0t

ak(t) = −iω0
Xkk

Xkj
eiω0t sin(ωt/2)

ω/2
, (17)

where

ω0 =
XkjYjk

(XkkXjj −XkjXjk)
and ω = ωjk − ω0. (18)

With Eq. (17) the TDSE is thus exactly solved.

3. Tunnelling probability density

In this section, the probability density inside the barrier is
calculated. Using Eq. (10) together with Eq. (17) we obtain:

ρ(t, x) = ψ∗(t, x)ψ(t, x) = ϕ∗T (x)ϕT (x)

+ ω2
0

|Xkk|2
|Xkj |2 ϕ∗R(x)ϕR(x)

sin2(ωt/2)
(ω/2)2

+ 2ω0
Xkk

Xkj
ϕ∗T (x)ϕR(x)

sin2(ωt/2)
(ω/2)

. (19)

The third term in the right-hand-side of Eq. (19) repre-
sents the interference between the transmitted and reflected
waves. Let us consider, for simplicity, the case of a rect-
angular barrier whereU = U0∀x ∈ [0, L]. Then Eq. (19)
becomes:

ρ(t, x) = |α|2e−2|χ|x + |β|2ω2
0

|Xkk|2
|Xkj |2 e2|χ|x sin2(ωt/2)

(ω/2)2

+ 2ω0
Xkk

Xkj
α∗β

sin2(ωt/2)
(ω/2)

, (20)

where in writing Eq. (20) have been used Eqs. (7) and (8).
Moreover, using the second of boundary conditions given by
Eq. (9) is proved that:

|β|2ω2
0

|Xkk|2
|Xkj |2 = 4

|α|2~2|χ|4
m2

e−2|χ|x. (21)

Substituting Eq. (21) in Eq. (20) we obtain:

ρ(t, x) = |α|2e−2|χ|x + 4
|α|2~2|χ|4

m2

sin2(ωt/2)
(ω/2)2

+ 2ω0
Xkk

Xkj
α∗β

sin2(ωt/2)
(ω/2)

. (22)

As expected, whent = 0, i.e. when the measurement pro-
cess has not yet started, the probability density tends asymp-
totically to zero asx tends toL. But as soon ast 6= 0 then the
probability density oscillates in every point inside the barrier
between a maximum and a minimum given by:





ρmin(t, x) = |α|2e−2|χ|x

ρmax(t, x) = |α|2e−2|χ|x + 4 |α|
2~2|χ|4

m2(ω/2)2

+2ω0
xkk

(ω/2)xkj
α∗β

. (23)

Therefore, once set a pointx′ inside the barrier, the proba-
bility density is spread over time in a range of values which is
wider the smaller the energy difference (Ek−Ej), the higher
the potential barrier and the greater the interference between
transmitted and reflected wave. Equation (23) represents the
tool by which is possible to choose which initial parameters
to modify to modulate the performance of an electronic de-
vice that based on quantum tunnelling.

In the case the form of the potentialU(x) is different from
the rectangular one, the procedure discussed above does not
change except for possible mathematical complications in the
calculation of the transition integrals.

4. Tunnelling time

The second step of this study is to estimate the tunnelling
time. In fact, the time required to perform the measure-
ment of the energy of the scattered particle must be at least
equal to the time needed to complete the tunnelling pro-
cess. Tunnelling time is one of the most debated and con-
troversial topics in quantum mechanics, both in the theoret-
ical and experimental framework [22-26]. There are differ-
ent definitions of tunnelling time and all of them present
weaknesses [17]. Moreover, these definitions refer to sta-
tionary processes, while in this study we are addressing a
non-stationary tunnelling problem. In the case being inves-
tigated, related to a non-stationary problem, the tunnelling
time is calculated as the time needed to stop the flow of prob-
ability density inside the barrier. The latter is given by the
following derivative:

∂ρ(t, x)
∂x

= −2|α|2|χ|e−2|χ|x

×
(

1− 4
~2|χ|4
m2

sin2(ωt/2)
(ωt/2)2

)
. (24)

Equation (24) vanishes when the term in square brackets
equals zero. This implies that:

t = τ0 =
2
ω0

arcsin
(

mω0

4~|χ|2
)

. (25)

Therefore, Eq. (25) yields the tunnelling time. This time
depends on the energy difference and on the height of the
potential barrier, but not on the barrier length. Therefore,
Eq. (25) implicitly predicts the Hartman effect [27] without
having to apply any mathematical approximation. This is a
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relevant result that, to the best of our knowledge, is not men-
tioned in literature. If the argument of the arcsine function is
small enough, Eq. (25) can be simplified obtaining:

τ0 =
mω0

2~|χ|2 =
~

4(U0 − E)
. (26)

Equation (26) shows more clearly that the tunnelling time
is shorter the higher the barrier is, and this is exactly what is
achieved in tunnelling diodes, where the potential barrier be-
tween the two semiconductors is high and narrow.

Another approach that can be used to calculate the tun-
nelling time is the one based on the transfer matrix method.
The latter provides an important tool for investigating bound
and scattering states in quantum structures. It is mainly used
to solve the one-dimensional Schrodinger or effective mass
equation,e.g., to obtain the quantized energies in quantum
well heterostructures and metal-oxide-semiconductor struc-
tures [28] or the transmission coefficient of potential barriers
[29]. Therefore, this method is suitable to calculate the tun-
nelling time also for a non-stationary case. For a one dimen-
sional scattering problem, like the one being investigated, the
tunnelling time is given by [30]:

τ0 =
1
|α|

L∫

0

√
m

Einc. − E(x)
dx. (27)

whereEinc. is the energy of the incident particle atx = 0
andE(x) is the energy of the particle in a given pointx in-
side the barrier. From Eq. (27) is clear that the tunnelling
time is shorter the greater the transmission coefficient|α| and
the greater the dispersion of the tunnelling-particle energy
(Einc. − E(x)) induced by the measurement process. In the
tunnelling time of Eq. (26), the energy dispersion effect of
the tunnelling particle is implicit in the termω0, through the
integral given by the second of Eq. (16). In Eq. (27), on the
other hand, the dependence on the barrier height is contained
in the transmission coefficient|α|, which is proportional to
the imaginary wave vectorχ = ±

√
2m(E − U)/~ whose

explicit form contains the potentialU . Therefore, the two
approaches used to calculate the tunnelling time lead to the
same conclusions. However, the formula of Eq. (27) high-
lights in a more direct way the dependence ofF on the per-
turbation due by the measurement process, anticipating what
we will discuss shortly.

Let us now return to the problem of measuring the energy
of the particle exiting the barrier. As mentioned at the begin-
ning of this section, the time taken to perform this measure-
ment cannot be less than the tunnelling time. This is reflected
in the error affecting the energy, which is greater the shorter
the tunnelling time, in accordance with the uncertainty prin-
cipleδE ≥ ~/2τ0. In absence of the time-dependent interac-
tion due to the measurement process, the energy of the scat-
tered particle is equal to that of the incident particle. There-
fore, we can infer that the measurement error on the energy
is given byδE = (Einc. − Emeas.

scatt. ), whereEmeas.
scatt. is the mea-

sured energy of the scattered particle. We have thus obtained

an indirect way of measuring the tunnelling time:

τmeas.
0 ≥ ~/2(Einc.− Emeas.

scatt. ). (28)

Equation (28) thus allows calculating the minimum tun-
nelling time for any device based on quantum tunnelling, re-
gardless the form of the potential barrier. Knowing a priori
the particle mass, its initial energy and the height of the bar-
rier, from Eq. (28) is possible backwards to calculate the an-
gular frequencyω0 and therefore, through Eq. (18), to have
information on the nature of the scattering dynamics inside
the barrier. This is a new approach to study the tunnelling
processes and represents the novelty of this work. The prob-
lem remains that of performing a weak measurement to not
excessively disturb the quantum system. Our approach to
calculating tunnelling time is reminiscent of Steinberg’s, in
which ultracold rubidium atoms are propelled gently through
a barrier induced by a light beam [31]. In the experiment
is measured the change of the spin orientation of the atoms
when they exit the barrier. The amount of this change is pro-
portional to the time spent by the atoms inside the barrier. In
the theory we propose, the same experiment should be per-
formed measuring the energy change of the particle exiting
the barrier.

5. Discussion

Understanding the dynamics governing quantum tunnelling
is of main importance to improve or design new tunnelling-
based devices. This means performing experimental mea-
surements which, as is well known in the framework of quan-
tum mechanics, involve interactions with the system. Hence
the need to investigate the tunnelling process of a particle
through a potential barrier, of any shape, in the presence
of a time-dependent perturbation. In this study, the time-
dependent Schrodinger equation of the particle inside the po-
tential barrier have been solved exactly, with the aim of cal-
culating the probability density and obtaining information on
the possible processes that take place within the barrier. As
expected, the probability density is given not only by the con-
tribution of the transmitted and reflected waves, but also by
their interference. What emerges, however, is that the latter
contribution is time-dependent and represents the dynamics
by which the measurement process perturbs the tunnelling.
This interaction contributes to the tunnelling time which, in
the framework being studied, can be interpreted as the min-
imum time to measure the energy of the scattered particle.
Starting from this assumption and invoking the Heisenberg
uncertainty principle, is possible estimating the tunnelling
time from the experimental measurement of the particle en-
ergy after tunnelling, assuming that the uncertainty is given
by the difference between the initial energy and the measured
energy. This procedure allows to deal with tunnelling time re-
gardless of the possible definitions proposed in literature and
to obtain information on the dynamics of the processes that
take place inside the barrier.
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