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Impressive and accurate solutions to the generalized Fokas-Lenells model
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In this article, we study the generalized full nonlinearity perturbed complex Fokas-Lenells model (GFLM) which is a general dynamical
representation of modern electronic communications “Internet blogs, Facebook communication and Twitter comments”. The modified simple
equation method (MSEM) has been applied effectively to generate closed form solutions. On the other hand, the Riccati-Bernoulli Sub-ODE
method(RPSODM) which reduces the steps of calculation has been applied perfectly to achieve accurate solution to this equation. We
established the solutions achieved by these different methods in same vein and parallel.
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1. Introduction

This principal idea of this article is focused on proposing the
optical solution to the GFLM “which makes revolution in the
social media”. The suggested model is the important one
that appears in the area of nonlinear optical fibers and rep-
resents the power low nonlinearity from which the FLM with
its different forms are emerged. Moreover, this model plays a
vital rule in many complex nonlinear phenomena, including
acoustics, nonlinear optics, telecommunication industry, con-
victive fluids, plasma physics, condensed matter, and solid-
state physics. Specially, this model represents the propaga-
tion of short light pulses in the mono-mode optical fibers.
Various authors have studied the FLM via different methods
[19-30]. On the other hand, the GFLM will be discussed for
the first time in the frame work of two distinct techniques
namely the MSEM and the RPSODM. The suggested meth-
ods have been examined previously for many NLPDE and
achieved good results. The suggested two methods belong to
the well-known ansatz methods. The MSEM surrenders to
the balance rule and achieve analytical closed form solution
while the RPSODM is the only one of the ansatz methods
which does not surrenders to the balance rule and reduces the
volume of calculation and continuously achieve impressive
results. The two methods are applied in the same vein and
parallel. The suggested equation is in fact mainly responsi-
ble of a surprising representation for all modern social media
arising in the soliton technology. Furthermore, recent studies
for new significant models have been demonstrated for just
few authors, for example, Khan and Atangana [31] who de-
scribe the mathematical modeling and dynamics of a novel
corona virus (2019-nCoV), specially the brief details of in-
teraction among the bats and unknown hosts, then among the

peoples and the infections reservoir, and Khan,et al. [32]
who regarded on of the reason for lever inflammation and ex-
plores the HEV dynamics in fractional derivative.

According to [10, 22], GFLM can be written as,

ipt + a1pxx + a2pxt +
∣∣p2

∣∣ (bp + iσpx)

= i[αpx + λ(|p|2n
P )x + µ(|p|2n)xp]. (1)

Here,p(x; t) is a complex-valued function which represents
the temporal development of the pulses. Furthermore, the
variables b,σ are the self –phase modulation and the nonlin-
ear dispersal respectively, whilea1, a2 are the group velocity
dispersal and the spatial–temporal dispersal respectively. In
addition,α is the influence of the considered dispersal,λ is
the special effect of deepening andµ captures the effect of
nonlinear dispersal. Finally, n denotes the generalized full
nonlinearity. Recently, many approaches have resulted in the
exact solutions to NLPDEs which are mostly demonstrated
through [1-18]. One of the most famous and powerful ansatz
methods which is described briefly and results in the closed
form optical solutions for the NLPDEs is the MSEM. In the
same vein and parallel, the RPSOM which treats the frailer of
balance operation significantly and satisfies the optical soli-
tons exactly has been used.

2. Applications

In this section, the modified simple equation method is ap-
plied on the suggested equation in order to find the optical
solutions. In terms of some parameters, the travelling wave
solutions are achieved when these constants are determined.
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2.1. The closed form solution using the MSEM

According to the MSEM, the solution is written as:

R(ζ) =
m∑

k=0

Ak

[
ψ′(ζ)
ψ(ζ)

]k

, (2)

whereAk (0 ≤ k ≤ m) are arbitrary constants andAm 6= 0.
The unknown functionψ(ζ) is determined by finding arbi-
trary constants and we haveψ′(ζ) 6= 0. The positive integer
m is derived by using the homogeneous balance between the
nonlinear term and the highest order derivative term. A func-
tion of ψ−j (j = 0, 1, 2, ....) is achieved by computing the
derivative of the functionR(ζ). By setting the same pow-
ers ofψ−j to zero, we will organize the system of algebraic
equations. The constantsAk appearing in this system can
be determined using any organized computer program such
as Maple or Mathematica software. Now, for the suggested
equation this wave transformation is introduced:

q(x, t) = u(ζ) exp (iθ(x, t)) , (3)

qt = exp (iθ(x, t)(−vu′ + i(w − vϕ′)u)) , (4)

qx = exp (iθ(x, t)(u′ − i(k − ϕ′)u)) , (5)

qxx = exp (iθ(x, t)(u′′ − i(ku′ − uϕ′′ − u′ϕ′)

−i(k − ϕ′)u′ − (k − ϕ′2)u)
)
, (6)

whereζ = x − vt denotes to the shape features of the wave
pulse,θ(x, t) = −kx + wt + θ0 is the element state of the
soliton. k, θ0, w andv are the soliton frequency, phase con-
stant, wave number and the velocity, respectively. Substitut-
ing Eqs. (3)-(6) into Eq. (1) we get the real and imaginary
parts of this equation separately as,

(a1 − a2)u′′ − (a2wk − a1k
2 − αk − w)u

+ (b + kσ)u3 + ku[(2n + 1)λ + 2nµ]u2n = 0, (7)

v + 2ka1 − a2(kv + w)− σu2 + α

+ [(2n + 1)λ + 2nµ]u2n = 0. (8)

From (7) and (8) we get,

[(2n + 1)λ + 2nµ]u2n = −v − 2ka1

+ a2(kv + w) + σu2 − α. (9)

For (2n + 1)λ + 2nµ = 0 and σ = 0 we havev =
(2ka1 − a2w − σu2/(a2k − 1)) andλ = −2nµ/(2n + 1)

Thus, the general form is obtained from (7) and (8) as,

(a1 − a2v)u′′ + [a1k
2 − w

+ kv(1− a2k)]u + bu2n+1 = 0. (10)

Forn1 = a1−a2v andn2 = a1k
2−w+kv(1−a2k) Eq. (10)

becomes

n1u
′′ + n2u + bu2n+1 = 0. (11)

Applying the balance rule, we get(2n + 1)m = m + 2 ⇒
m = 2/2n = 1/n, n 6= 0.

In addition, by considering the transformationu = R1/n,
we obtain

u′ =
1
n

R
1
n−1R′,

u′′ =
1
n

(
1
n
− 1

)
R

1−2n
n R′ +

1
n

R
1
n−1R′′. (12)

Substituting this transformation in Eq. (11), we get

n1(1− n)R′ + nRR′′ + n2n2R
2 + n2bR4 = 0. (13)

Again, balancing of Eq. (13) leads tom + m + 2 = 4m so
we getm = 1, hence the solution according to the MSEM is,

R(ζ) = A0 + A1

(
ψ′(ζ)
ψ(ζ)

)
, (14)

therefore, we can write:

R′ = A1

(
ψ′′

ψ
−

[
ψ′

ψ

]2
)

, (15)

R′′ = A1

(
ψ′′′

ψ
− 3ψ′ψ′′

ψ2
+ 2

[
ψ′

ψ

]3
)

, (16)

R2 = A0
2 + 2A0A1

(
ψ′

ψ

)
+ A1

2

(
ψ′

ψ

)2

, (17)

RR′′=
([

A0+A1

{
ψ′

ψ

}][
ψ′′′

ψ
−3ψ′ψ′′

ψ2
+2

ψ′3

ψ3

])
, (18)

R4 = A0
4 + 4A0

3A1

(
ψ′

ψ

)
+ 6A0

2A1
2

(
ψ′

ψ

)2

+ 4A0A1
3

(
ψ′

ψ

)3

+ A1
4

(
ψ′

ψ

)4

. (19)

Moreover, substitutingR(ζ) in Eq. (13) and collecting the
coefficients of different power ofψ−j , equating them to zero
implies this system of equations:

2 + nbA3
1 = 0, (20)

ψ′′

ψ′
=

2A0(2nbA3
1 + 1)

3A1
, (21)

(n1A1[n− 1] + n2n2A
2
1 + 6n2bA2

0A
2
1)ψ

−3nA0ψ
′ + nA1ψ

′′ = 0, (22)

ψ′′

ψ′
=

2A0A1n
2(n2 + 2bA2

0)
nA0 + n1(1− n)A1

, (23)

A2
0 = −n2

b
. (24)
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Firstly, from Eq. (20) and Eq. (24) we obtain:

A1 = 3

√
−2
nb

, A0 =

√
−n2

b
.

Now, from Eq. (21) and Eq. (22) we get

3A1ψ
′′ = 2A0(2nbA3

1 + 1)ψ′, (25)

ψ′

ψ
=

18n2bA2
0A

3
1+3n2A2A

2
1+3n1(n− 1)A1

4n2bA0A3
1−7nA0

. (26)

By integrating Eq. (26) we get,

ψ = C1 exp
(

18n2bA2
0A

3
1+3n2A2A

2
1+3n1(n− 1)A1

4n2bA0A3
1−7nA0

)
ζ. (27)

Also, by integrating Eq. (23) leads to

ψ′ = C2 exp
(

2A0A1n
2(n2 + 2bA2

0)
nA0 + n1(1− n)A1

)
ζ. (28)

Dividing Eq. (28) by Eq. (27) implies

ψ′

ψ
=

C2 exp
(

2A0A1n2(n2+2bA2
0)

nA0+n1(1−n)A1

)
ζ

C1 exp
(

18n2bA2
0A3

1+3n2A2A2
1+3n1(n−1)A1

4n2bA0A3
1−7nA0

)
ζ
. (29)

We can easily obtain the solution by substituting Eq. (23), Eq. (24) and Eq. (29) into Eq. (14) as follows,

R(x, t) =

√
−n2

b
+ 3

√
−2
nb

C2 exp
(

2A0A1n2(n2+2bA2
0)

nA0+n1(1−n)A1

)
ζ

C1 exp
(

18n2bA2
0A3

1+3n2A2A2
1+3n1(n−1)A1

4n2bA0A3
1−7nA0

)
ζ
. (30)

Hence,

u(x, t) =

(√
−n2

b
+ 3

√
−2
nb

C2 exp
[

2A0A1n2(n2+2bA2
0)

nA0+n1(1−n)A1

]
ζ

C1 exp
[

18n2bA2
0A3

1+3n2A2A2
1+3n1(n−1)A1

4n2bA0A3
1−7nA0

]
ζ




1
n

. (31)

Consequently,

q(x, t) =




√
−n2

b
+ 3

√
−2
nb

C2 exp
[

2A0A1n2(n2+2bA2
0)

nA0+n1(1−n)A1

]
ζ

C1 exp
[

18n2bA2
0A3

1+3n2A2A2
1+3n1(n−1)A1

4n2bA0A3
1−7nA0

]
ζ




1
n

exp i(−kx + wt + θ0), (32)

Re q(x, t) =




√
−n2

b
+ 3

√
−2
nb

C2 exp
[

2A0A1n2(n2+2bA2
0)

nA0+n1(1−n)A1

]
ζ

C1 exp
[

18n2bA2
0A3

1+3n2A2A2
1+3n1(n−1)A1

4n2bA0A3
1−7nA0

]
ζ




1
n

cos(−kx + wt + θ0), (33)

Im q(x, t) =




√
−n2

b
+ 3

√
−2
nb

C2 exp
[

2A0A1n2(n2+2bA2
0)

nA0+n1(1−n)A1

]
ζ

C1 exp
[

18n2bA2
0A3

1+3n2A2A2
1+3n1(n−1)A1

4n2bA0A3
1−7nA0

]
ζ




1
n

sin(−kx + wt + θ0). (34)

3. The exact solutions using the RPSOM

According to the RPSOM [4] the solution is

R′ = AR2−M + BR + CRM , (35)
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where the parametersA,B, C andM can be calculated later. Note that whenAC 6= 0 andM = 0, Eq. (35) is a Riccati
equation. WhenA 6= 0, C = 0 andM 6= 1, Eq. (34) is a Bernoulli equation. Differentiating Eq. (35) once, we get,

R′′ = AB(3−M)R2−M + A2(2−M)R3−2M + MC2R2M−1 + BC(M + 1)RM + (2AC + B2)R. (36)

Substituting about the distinct derivatives ofR into Eq. (35) and setting equality for the highest exponential order ofR we
obtained the value ofM . Now, equating distinct coefficients ofRi implies a set of equations in termsA,B, C andλ from
which we can calculate them.

Now, using the transformationζ = x + y − λt as well as the values ofA,B, C andλ into the auxiliary Eq. (35), then it
will admit these forms of solutions:

R(ζ) = C1e
(A+B+C)ζ , M = 1, (37)

R(ζ) = (A(M − 1)(ζ + C1))
1/(1−M)

M 6= 1, B = 0 and C = 0, (38)

R(ζ) =
(
−A

B
+ C1e

b(M−1)ζ

)1/(M−1)

M 6= 1, B 6= 0 and C = 0, (39)

R(ζ) =

(
−B

2A
+
√

4AC −B2 tan(1/2(1−M)
2A

√
4AC −B2(ζ + C1)

) 1
(1−M)

, (40)

and

R(ζ) =

(
−B

2A
+
√

4AC −B2 cot(1/2(1−M)
2A

√
4AC −B2(ζ + C1)

) 1
(1−M)

, (41)

whenM 6= 1, A 6= 0andB2 − 4AC < 0.

R(ζ) =

(
−B

2A
+
√

B2 − 4AC coth(1/2(1−M)
2A

√
B2 − 4AC(ζ + C1)

) 1
(1−M)

, (42)

and

R(ζ) =

(
−B

2A
+
√

B2 − 4AC tanh(1/2(1−M)
2A

√
B2 − 4AC(ζ + C1)

) 1
(1−M)

, (43)

whenM 6= 1, A 6= 0 andB2 − 4AC > 0.

R(ζ) =
(

1
A(M − 1)(ζ + C1)

− B

2A

)1/(1−M)

, (44)

whenM 6= 1, A 6= 0 andB2 − 4AC = 0, whereC1 is an arbitrary constant. Now, according to the constructed method

R′ = AR2−M + BR + CRM , (45)

R′′ = (3−M)ABR2−M + (2−M)A2R3−2M + MC2R2M−1 + (M + 1)BCRM + (2AC + B2)R, (46)

RR′′ = (3−M)ABR3−M + (2−M)A2R4−2M + MC2R2M + (M + 1)BCRM+1 + (2AC + B2)R2. (47)

Substituting into Eq. (13), we get

(1− n)n1

(
AR2−M + BR + CRM

)
+ n

(
[3−M ]ABR3−M + [2−M ]A2R4−2M

+ MC2R2M + [M + 1]BCRM+1 + [2AC + B2]R2
)

+ n2n2R
2 + n2bR4 = 0. (48)

By the suitable choiceM = 0, we obtain,

(1− n)n1(AR2 + BR + C) + n(3ABR3 + 2A2R4 + BCR + [2AC + B2]R2) + n2n2R
2 + n2bR4 = 0. (49)
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Equating the coefficients of different powers ofR to zero we obtain,

R4 ⇒ 2A2 + nb = 0, (50)

R3 ⇒ 3nAB = 0, (51)

R2 ⇒ A(1− n)(a1 − a2v) + n(2AC + B2) + n2[a1k
2 − w + kv(1− a2k)] = 0, (52)

R ⇒ (1− n)(a1 − a2v)B + nBC = 0, (53)

Constant ⇒ C(1− n)(a1 − a2v) = 0. (54)

From these equations we obtain,

A = ±
√
−nb

2
, B = 0 = C =

(a1 − a2v)(1− n)
n

. (55)

According to the proposed method we take the 4-th case for whichM 6= 1, A 6= 0 andB2−4AC < 0, the solution of Eq. (13)
is

R(ζ) =




√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

tan




1
2

√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

(ζ + C1)





 , (56)

R(ζ) =




√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

cot




1
2

√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

(ζ + C1)





 , (57)

u(x, t) =




√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

tan




1
2

√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

(x− vt + C1)







1
n

, (58)

u(x, t) =




√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

cot




1
2

√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

(x− vt + C1)







1
n

. (59)

Consequently,

q(x, t) = u(ζ) exp(iθ[x, t]), (60)

q1(x, t) =




√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

tan




1
2

√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

(x−vt+C1)







1
n

exp i(−kx+wt+θ0), (61)

Re q1(x, t)=




√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

tan




1
2

√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

(x−vt+C1)







1
n

cos(−kx+wt+θ0), (62)
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Im q1(x, t)=




√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

tan




1
2

√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

(x−vt+C1)







1
n

sin(−kx+wt+θ0), (63)

q2(x, t)=




√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

cot




1
2

√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

(x−vt+C1)







1
n

exp i(−kx+wt+θ0), (64)

Re q2(x, t) =




√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

cot




1
2

√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

(x− vt + C1)







1
n

cos(−kx + wt + θ0), (65)

Im q2(x, t) =




√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

cot




1
2

√
4(a1−a2v)(n−1)

n

√
−nb
2√−2nb

(x− vt + C1)







1
n

sin(−kx + wt + θ0). (66)

FIGURE 1. Soliton solution witha1 = 4, a2 = 1, b = −2, n = 3, ν = 1, k = 10, w = 2, c1 = 3 andθ0 = 2. a) Three dimensional plot, b)
Line chart, c) Two dimensional plot.

FIGURE 2. Soliton solution witha1 = 4, a2 = 1, b = −2, n = 3, ν = 1, k = 10, w = 10, c1 = 3 andθ0 = 2. a) Three dimensional plot,
b) Line chart, c) Two dimensional plot.
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4. Graphical interpretation

In this section we illustrate the soliton solutions of the gen-
eralized perturbed full nonlinearity complex Fokas-Lenells
equation The real part and modulus of optical soliton are de-
picted in 3D plot and 2D plot in each figure. In Fig. 1, the
plots of soliton solutions (32) are established with the con-
stant valuesa1 = 4, a2 = 1, b = −2, n = 3, ν = 1, k =
10, w = 2, c1 = 3 andθ0 = 2.

It is assumed thata1 = 4, a2 = 1, b = −2, n = 3,
ν = 1, k = 10, w = 10, c1 = 1 andθ0 = 2 in Fig. 2, where
we first illustrate the soliton solution (60) in three dimension
(Fig. 2a)) and then 2D plots are depicted in Figs. 2b) and 2c).

5. Conclusion

In this work the MSEM and the RPSOM are used in the
same vein and parallel as a powerful advance for future
studies to get the new exact optical solutions for the gen-
eralized perturbed full nonlinearity complex Fokas-Lenells
model (GPFNCFL). These solutions will brief positive accu-
racy to the quasi–particle theory to suppress intra–channels
collision of optical solitons corresponding Langevin equa-
tions in order to obtain the mean free velocities of the soli-
ton, and proved the phenomena of soliton cooling using the
distortion terms. We also conclude that these different tech-
niques are concise, effective, powerful, and direct. Further-
more, they reduce the large amount of calculations and can
be used to any nonlinear problem of science.
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