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Sample of the quaternary phase CuAlGeSe4, a part of I-III-IV- -VI4 semiconductor system, was synthesized by the melt and annealing tech-
nique and analyzed using X-ray powder diffraction data. The indexing and refinement of the pattern indicate that this compound crystallizes
in the tetragonal system, space groupI 4̄(N◦ 82) with unit cell parameters:a = 5.5646(3) Å, c = 10.682(2) Å, V = 330.77(5) Å3. The
space group was established from a cationic and anionic distribution analysis in the tetragonal space groups:I 4̄2d (N◦ 122), I 4̄22m (N◦

121), andI 4̄2(N◦ 82), for an ordered structure in this material. The Rietveld refinement, performed with the starting model: Cu2c, Al 2b,
Ge2d, 2a, and Se8g, converged toRexp = 7.2%, RP = 7.4%, Rwp = 9.6%, andχ2 = 1.7.
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1. Introduction

Copper quaternary chalcogenide semiconductors are still of
great interest due to their potential application as magneto-
optic and thermoelectric materials, solar-cell absorbers, and
photocatalysts for solar water splitting [1-4]. In general, this
type of materials belongs to the families of normal semicon-
ductor compounds with composition I2-II-IV-VI 4, an equal
number of cations and anions, and two good examples are
Cu2ZnSnS4 and Cu2ZnSnSe4 which are naturally abundant
and have shown conversion efficiencies as high as 10% [5].
These compounds adopt one of two well-defined sphalerite
or wurtzite derivatives structures [6,7].

There are also defect quaternary compounds of the type
I-III-IV-VI 4, fewer cations than anions, which possess photo-
electric and photo-luminescent properties that make them re-
cent interesting from the point of view of their application
as optoelectronic materials [8-10]. This family I-III-IV-VI4,
better written as I-III-IV- -VI4 were , denote the cationic
vacancy, fulfill the rules of formation of adamantane com-
pounds, and belongs to the defect semiconductor compound
families [11]. However, for these materials, their crystalline
structures have not been unambiguously established, due to
the difficulty in the distribution of the cations in the available
crystallographic positions (Wyckoff sites). Several mem-
bers of this family have been structurally studied using pho-
tographic films taken at a Debye-Scherrer camera [12-14],
founds unit cell parameters with tetragonal symmetry. How-
ever, in any case, were specified space group or structural
details.

In these earlier studies, a defect chalcopyrite-type was as-
signed using a model where the disorderly cation I shared po-
sition with the vacancy while the cations III and IV share an-
other atomic site. This model can be described as (Cu-)(III-
IV)Se4 and was also used to describe the crystal structure
of the quaternary compounds CuGaGeSe4 and CuInGeSe4
[15] in the tetragonal space groupI 4̄2d where the cationic
sub-lattice is disordered. Later, the crystal structure of the
sulfide compound CuInSnS4 was described in the tetragonal
space groupI 4̄ but also with a disordered distribution of their
cations [16]. In this work, a detailed structural analysis for
the compound CuAlGeSe4 was performed using X-ray pow-
der diffraction, aiming to derive an ordered model that ex-
plains all the diffraction peaks in the powder pattern and to
refine it employing the Rietveld method. Bond lengths de-
rived from the refined results were used for the bond-valence
sum (BVS) calculations [17,18], which allowed to verify the
chemical sense of the structural model.

2. Experimental
The sample of CuAlGeSe4 was synthesized, through reaction
in the solid-state of the constituent elements, Cu, Al, Ge, and
Se, until reaching their fusion. The mixture was introduced
into an evacuated quartz ampoule and brought to a horizon-
tal two-zone furnace. The mixture was slowly heated up to
500◦C in 3 days. It was kept at this temperature for three
more days. Then, it was heated at 110 0◦C and remained
at this temperature for 2 hours. Then, the reacted mixture
was annealed at 500◦C for a month. Finally, the sample was
cooled to room temperature in about a day.
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Chemical analysis was carried out with a Hitachi S-
2500 scanning electron microscope (SEM) equipped with a
Kevex EDX accessory. Three different regions of the ingot
were scanned, and the average atomic percentages are Cu
(17.52%), Al (15.34%), Ge (14.32%), and Se (52.82%). The
error in the standardless analysis was around 5%. These val-
ues are in good agreement with the ideal composition 1:1:1:4.

A small quantity of the sample was ground mechanically
in an agate mortar and pestle. The resulting fine powder was
mounted on a flat zero-background holder covered with a thin
layer of grease. The X-ray powder diffraction data were col-
lected at room temperature, inθ/2θ reflection mode using a
Siemens D5005 diffractometer equipped with an X-ray tube
(CuKα1 radiation: λ = 1.54059 Å; 40 kV, 30 mA) using a
Ge < 111 > incident beam monochromator. Fix scatter of
0.1 mm, divergence slits of 1 mm, and a 0.1 mm receiving
slit was used. The specimen was scanned in the2θ range of
10-100◦, the scan step was 0.02◦, and the time of counting in
every step was 46 s. The sample was rotated on its axis during
exposure with a speed of 15 r.p.m. to avoid preferred orien-
tation. Quartz was used as an external standard. The Bruker
analytical software was used to establish the positions of the
peaks.

3. Results and discussion

The indexing of the X-ray powder diffraction was performed
using the program DICVOL [19]. The first 20 peak positions
were used as input data. A solution with a tetragonal cell was
given by the program. The following parameters were ob-
tained:a = 5.5681(1) Å, c = 10.692(2) Å. The systematic
absences study (hkl: h + k + l = 2n) indicated anI-type
cell and the possible space groupsI 4̄2d (N◦ 122),I 4̄2m (N◦

121), andI 4̄(N◦ 82).
To obtain the initial structural model before refining by

the Rietveld method [20], several models were derived by
permuting the cations in the available Wyckoff positions for
the three space groups with Z= 2. Only in the space group
I 4̄ was it possible to accommodate all three cations and va-
cancy with a multiplicity of 2 in the atomic site maintaining
an ordered distribution.

Therefore, different models were prepared in this space

group alternating the position of the cations and vacan-
cies in the available atomic sites:2a(0,0,0), 2b(0,0,1/2),
2c(0,1/2,1/4), and2d(0,1/2,3/4), with the anion Se in the
atomic positions 8g(x, y, z) with x ≈ 1/4, y ≈ 1/4,
z ≈ 1/8. The better refinement results were those where
Cu1+ cation was placed in the Wyckoff site2c: 0,1/2,1/4.
Table I shows the six better models tested against the diffrac-
tion data employing the Rietveld method.

The Rietveld refinement of the whole diffraction pat-
tern was carried out using the FULLPROF program [21].
The atomic coordinates of the different models were used
as the initial models for the Rietveld refinements. The an-
gular dependence of the peak full width at half maximum
(FWHM) was described by the Caglioti formula [22]. Peak
shapes were described by the parameterized Thompson-Cox-
Hastings pseudo-Voigt profile function [23]. The background
variation was described by a polynomial with six coefficients.
The thermal motion of the atoms was described by one over-
all isotropic temperature factor. From the figures of merit Rp,
Rwp andχ2, it was inferred that the best model is number 1.
The results of the Rietveld refinement for model 1 are sum-
marized in Table II. Figure 1 shows the observed, calculated,
and difference profile for the final cycle of Rietveld refine-
ment.

FIGURE 1. Rietveld refinement plot for CuAlGeSe4. The lower
trace is the difference curve between observed and calculated pat-
terns.

TABLE I. Models employed in the Rietveld refinement of CuAlGeSe4.

Model (2c) (2b) (2d) (2a) (8g) Rp Rwp χ2

0,1/2,1/4 0,0,1/2 0,1/2,3/4 0,0,0 x, y, z

1 Cu Al Ge Se 7.4 9.6 1.7

2 Cu Al Ge Se 10.7 17.0 7.7

3 Cu Ge Al Se 8.4 11.1 3.2

4 Cu Al Ge Se 30.8 47.2 58.3

5 Cu Ge Al Se 12.3 18.5 9.1

6 Cu Ge Al Se 11.5 18.3 8.83

Rexp = 100[(N − P + C)/
∑

w(y2
obs)]

1/2 Rp = 100
∑ |yobs− ycalc|/

∑ |yobs| χ2 = [R2
wp/R2

exp] Rwp = 100[
∑

w |yobs− ycalc|2/
∑

w |yobs|2]1/2

N − P + C is the number of degrees of freedom.
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TABLE II. Atomic coordinates, isotropic temperature factors and geometric parameters (Å, ◦) for CuAlGeSe4.

Space groupI 4̄(N◦ 82), Z = 2,a = 5.5646(3) Å, c = 10.682(2) Å, V = 330.77(5) Å3

(Rexp = 7.2%, RP = 7.4%, Rwp = 9.6%, χ2 = 1.7)

Atom Ox. Wyckoff x y z foc B (Å2)

Cu +1 2c 0 1/2 1/4 1 0.4(4)

Al +3 2b 0 0 1/2 1 0.4(4)

Ge +4 2d 0 1/2 3/4 1 0.4(4)

2a 0 0 0 1 0.4(4)

Se -2 8g 0.2495(6) 0.2423(4) 0.1214(3) 1 0.4(4)

Cu-Se 2.421(3) Al-Se(i) 2.382(3) Ge-Se(ii) 2.365(3)

Symmetry codes:(i)0.5− y,−0.5 + x, 0.5− z; (ii)0.5− x, 0.5− y, 0.5 + z.

TABLE III. Bond valence sum (BVS) calculations for CuAlGeSe4.

Cu Al Ge Vi Formal

oxidation state

Se 0.338 0.739 0.960 2.04 2

x4 x4 x4

Vi 1.35 2.96 3.84

Formal

oxidation state 1 3 4

FIGURE 2. Unit cell diagram for CuAlGeSe4 showing the atomic
distribution.

On the other hand, the entire pattern was reviewed uti-
lizing the program NBS*AIDS [24] and the powder X-ray
diffraction pattern was deposited in the ICDD-PDF with the
code PDF-52-1024 [25].

CuAlGeSe4 is a defect adamantane-structure compound
[11]. In this structure, each Se atom is coordinated by four
cations [one Cu, one Al, one Ge, and one vacancy. In the
same way, each cation is tetrahedrally bonded to four an-
ions. The tetrahedra containing the Cu atoms [mean Se. . . Se
distance 3.96(2)̊A] are lightly smaller than those containing
the Al atoms [means Se. . . Se distance 4.02(1)Å], and Ge
atoms [mean Se. . . Se distance 4.24(1)Å] respectively. Fig-
ure 2 shows the unit cell diagram of the CuAlGeSe4 struc-
ture where is possible to observe the tetrahedral environment
around each of the atoms in the structure.

The Cu-Se distance [2.421(3)̊A] is in good agree-
ment with those observed in other adamantane struc-
ture compounds as for example the ternaries chalcogenide
CuInSe2 (2.432Å) [27], Cu2SiSe3 (2.423Å average) [28],
Cu2SnSe3 (2.415Å average) [29], and the quaternary com-
pounds Cu2CdGeSe4 (2.410 Å) [30], Cu2CdSnSe4 (2.427
Å) [31], CuFeInSe3 [32], CuFe2InSe4 (2.456Å) [33], and
Cu2FeIn2Se5 (2.431Å) [34]. The Al-Se distance [2.382(3)
Å] compares well also with those observed in compounds
as CdAl2Se4 (2.387Å average) [35] and HgAl2Se4 (2.392
Å) [36]. The Ge-Se [2.375(3)̊A] is also in good agree-
ment with similar distances in Cu2CdGeSe4 [30], and
Cu2Cd0.5Mn0.5GeSe4 [37]. The structural model was con-
firmed by analysis of the interatomic distances using the
Bond Valence Sum (BVS) formula founded on bond-strength
examination [17,18]. These results are shown in Table III and
are very close with the expected formal oxidation state of the
cations Cu1+, Al3+, Ge4+, and the anion Se2−.
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4. Conclusions

The crystal structure of the quaternary chalcogenide
CuAlGeSe4 was established by an analysis of the cation dis-
tribution and the subsequent Rietveld refinement of the bet-
ter model. This material crystallizes in the tetragonal space
group I 4̄ (N◦82), unit cell parameters:a = 5.5646(3) Å,
c = 10.682(2) Å, V = 330.77(5) Å3, with the following
Wyckoff site atomic distribution: Cu in2c (0,1/2,1/4), Al
in 2b (0,0,1/), Ge in2d (0,1/2,3/4), in 2a (0,0,0), and Se

in 8g (x,y,z). This atomic distribution corresponds to an or-
dered fashion of all cations and anions in the crystal structure.
The chemical structural model was confirmed by analysis of
the interatomic distances using the Bond Valence Sum (BVS)
formula.
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