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The classical master-slave configuration allows synchronizing pairs of unidirectionally coupled systems in a relatively simple manner. How-
ever, it has been found that this scheme has a limitation: for certain systems including those with chaotic dynamics, the scheme fails at
inducing synchronization. In this work a modified master-slave scheme, based on the combination of elastic and dissipative couplings, is
presented. We focus on a possible solution for this limitation by illustrating our method through the van der Pol and Duffing oscillators and
analyzing three different ways of coupling. We obtain, synchronization in both oscillators.
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1. Introduction

Due to numerous works on chaos in recent years, current
research on this topic comprises chaotic systems in diverse
areas such as lasers, chemical reactions, electronic circuits,
biological systems, among others. The work of Pecora and
Carroll on synchronization [1] and experiments with circuits
operating in a chaotic regime give a great impulse to the study
of chaotic systems. Particularly, low-dimensionality systems
have been of interest in order to understand the synchroniza-
tion and chaotic behavior in nature. The most studied and
representative systems are the Lorenz, Chua, Rössler, van der
Pol and Duffing ones [2–7].

The van der Pol and Duffing oscillators are the
paradigmatic circuits to study chaos in systems of low-
dimensionality. These systems give rise to limit cycles and
prototypes of strange attractors. Studies focused on the van
der Pol oscillator reveal that the system possess an interest-
ing dynamical structure when the oscillator is under an ex-
ternal forcing. In fact, the system exhibits complex bifurca-
tion structures with an important number of periodic states,
a chaotic region and islands of periodic states, showing, in
addition, transitions from chaos to stable states [8]. On the
other hand, the Duffing oscillator presents damping oscilla-
tions when the system is autonomous. In the presence of
an external harmonic forcing, the system leads to hysteresis,
multistability, period-doubling, and intermittent scenarios of
chaos. In addition, we can mention that two coupled van der
Pol oscillators give a rich fractal structure. Moreover, other
systems based on this oscillator, such as identical oscillators,
have also been analyzed. The dynamics based on identical or
distinct linear oscillators presenting the same kind of attrac-
tors is still under study [8]. The dynamics of these systems in

states of different attractors is of current interest and it could
originate important information. A model of coupled oscilla-
tors, each being in its own attractor regime, could be useful to
represent hysteresis or resonant phenomena founded in bio-
logical or electromechanical systems [9]. Some applications
of the van der Pol and Duffing oscillators go from physics
to biology, electronics, chemistry and many other fields. For
instance, a possible application of synchronization in chaotic
signals, is for implementing secure communication systems,
since chaotic signals are usually broadband, noise-like, and
difficult to predict their behavior [10–12]. In robotics, the os-
cillators have been included to control hip joints and knees
of human-like robots to synchronizing the mechanical sys-
tem, giving approximate paths to the robot legs. The sig-
nals generated can also be used as trajectories of reference
for the feedback control [13, 14]. Other applications are in
artificial intelligence. In fact, the oscillators show usefulness
to training neuronal network and recognition of chaotic sys-
tems [15,16].

The synchronization is observed in several natural and
technical systems, going from cardiac cells to coupled lasers
[17,18]. Thus, the comprehension of mutual interactions be-
tween coupled oscillators and their synchronization results
an important issue. As far as the coupling between the van
der Pol and Duffing oscillators is concerned, we can men-
tion three different couplings, namely: gyroscopic, dissipa-
tive and elastic [19–24]. Among the diverse way of coupling,
the most used are the elastic and dissipative ones [25,26]. In a
previous work [24], it is analyzed a different approach of syn-
chronizing two distinct oscillators of low-dimensionality, by
using the aforementioned couplings. In this work, we study
and compare three types of couplings by using the van der
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Pol-Duffing system; the elastic, the dissipative and the used
previously by Uriosteguiet al. [24], in order to achieve syn-
chronization in a master-slave system. It is important to re-
mark that the studies in the literature on this kind of synchro-
nization is based only on one coupling.

An outline of this work is as follows. In Sec. 2, it
is briefly studied the main features of the van der Pol and
Duffing oscillators. In Sec. 3, we study and compare three
types of couplings using the van der Pol-Duffing system in
the master-slave configuration to achieve synchronization. In
Sec. 4, the final remarks and an outlook are presented.

2. Dynamics of the systems

As a dynamical system, the van der Pol oscillator is one with
nonlinear damping. The evolution is governed by

ẍ− µ(1− x2)ẋ + x = A2 cos(ω2t), (1)

where, as usual, thex variable denotes the position,t the
time, andµ is a parameter that governs the nonlinearity and
damping of the system. The external forcing is given by the
harmonic function, with amplitudeA2 and frequencyω2. In
order to identify the potential, we cast Eq. (1) as

ẍ− µ(1− x2)ẋ +
∂U2(x)

∂x
= A2 cos(ω2t), (2)

where we have defined the function

U2(x) =
1
2
x2, (3)

as the energy potential of the van der Pol oscillator, which
represents a simple well (see Fig. 1a)). The potential has a

minimum located atx = 0. In order to express Eq. (1) as
a dynamical system and to analyze the fixed points, we set
ẋ = u and drop the forcing to obtain

ẋ = u,

u̇ = µ(1− x2)u− x. (4)

As it is well known, for a dynamical system withn degrees of
freedom,ẋ = f(x), the fixed points,x∗ = (x∗1, x

∗
2, . . . x

∗
n),

are determined by the relationẋ = f(x∗) = 0. In the case of
Eq. (4) the only fixed point is located at(x∗ = 0, u∗ = 0).
For theA2 = 0 case, the van der Pol system satisfies the
Li énard theorem, giving a limit cycle around the origin in the
phase space [25].

On the other hand, the Duffing oscillator is a nonlinear
dynamical system governed by

ÿ + αẏ − y + εy3 = A1 cos(ω1t), (5)

whereα is the damping parameter,ε is a positive constant
that controls the nonlinearity of the system,A1 andω1 are the
amplitude and frequency, respectively, of the external forc-
ing. As before, we can identify a potentialU1(y) in the Duff-
ing system given by

U1(y) = −1
2
y2 +

1
4
εy4. (6)

The potential represents a double well shown in Fig. 1b). The
local minima of this potential are located iny = ±1/

√
ε and

the local maximum is located aty = 0. As a dynamical
system the Duffing equation in Eq. (5) (no forcing) can be
written as

FIGURE 1. The potentialsU2(x) andU1(y). a) The potential corresponds to the van der Pol oscillator. b) The Duffing oscillator (ε = 1).
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ẏ = v,

v̇ = −αv + y − εy3. (7)

The fixed points for this system are located in the phase space
at (0, 0) and(±1/

√
ε, 0). The(0, 0) is a saddle point, while

the others, depending on the parameterα, the points can be
stable or unstable. For theα > 0 case the points result sta-
bles. Forα = 0, the resulting dynamics is of type center and
finally, for α < 0 case, the points result unstable. In partic-
ular, when the damping is positive (α > 0), the trajectory of
the system is a spiral stable, conversely, when the damping
is negative (α < 0), the trajectory is a spiral unstable at the
fixed points(±1/

√
ε, 0) in both cases.

3. Master-slave synchronization in the van der
Pol-Duffing system

In this section, three different couplings for the van der Pol-
Duffing system are studied and compared among themselves,
namely: the elastic, the dissipative and the one that combines
an elastic and dissipative couplings employed by Uriostegui
et al., [24]. Let us stress that most of the research on syn-
chronization is based on autonomous systems of three di-
mensional or higher [27–29]. It is important to mention that
the synchronization between coupled forced systems of low-
dimensionality has been hardly studied [30, 31] since there
are few low-dimension chaotic systems with forcing known
in the literature. Three of the most studied nonautonomous
systems of low-dimensionality with forcing are the Duffing,
van der Pol, and Rayleigh, since much of the dynamical fea-
tures embedded in the physical systems can be realized on
these systems [32–34]. One important implication is that a
two dimensional continuous dynamical system cannot give

rise to strange attractors. In particular, chaotic behavior arises
only in continuous dynamical systems of three dimensions or
higher. Most of the research on synchronization is based on
autonomous systems that satisfy the Poincaré-Bendixson the-
orem.

The dynamics of the oscillators under study is described
by Eqs. (1) and (5). The values of the parameters we use
to carry out the numerical study are as follows:µ = 0.8,
α = 0.25, ε = 1, A1 = 0.3, ω1 = 1, A2 = 1 andω2 = 0.4.
In Fig. 2 it is displayed the respective trajectories with the
initial conditionsx(0) = 0.8, y(0) = 2.0, u(0) = 1 and
v(0) = −1. In addition, we would like to mention that
the differential equations are numerically solved by using the
Runge-Kutta method of fourth order.

In the configuration master-slave, the Duffing oscillator
acts as master and the van der Pol oscillator as slave. For this
case we have

Master :

{
ẏ = v,

v̇ = −αv + y − εy3 + A1 cos(ω1t),
(8)

Slave :

{
ẋ = u,

u̇=µ(1−x2)u−x+A2 cos(ω2t)+K(y − x).
(9)

In this instance, the coupling corresponds to an elastic one
and it is represented byK(y − x), beingK a coupling pa-
rameter to be varied. For theK = 0 case, the system decou-
ples. The coupling is a lineal feedback to the slave oscillator
and it can be seen as a perturbation for each oscillator in the
system, proportional to the difference of the position, what is
called in literature an elastic coupling. We are interested in to
study how the dynamics of the system evolves as the constant
couplingK changes.

FIGURE 2. a) Duffing oscillator. b) van der Pol oscillator.
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In particular, let us consider theK À µ case. Hence, the
Eq. (9) can be approximated as

ẍ + (1 + K)x ≈ A2 cos(ω2t) + Ky, (10)

which represents a simple harmonic oscillator with an exter-
nal forcing. The solutions to the equation are harmonic func-
tions, whose amplitudes can be as large as the corresponding
to the particular solution provided by the forcing, particularly
by the termKy due to the master oscillator. This implies that
total synchronization could not be possible for values ofK
large enough.

In general, the synchronization problem reduces to find-
ing a suitable value of the coupling strengthK, (denoted as
K∗) being in the rangeK ≥ K∗ > 0, such that the master
and slave systems synchronize. Thus, for a coupling strength
K∗, when the synchronization is reached, the error function
goes to zero:

lim
t→∞

| y(t)− x(t) |= lim
t→∞

| v(t)− u(t) |= 0. (11)

When the system is partially synchronized, for a certain value
of K∗, the error functions satisfy

lim
t→∞

| y(t)− x(t) |≤ δ, (12)

lim
t→∞

| v(t)− u(t) |≤ τ, (13)

for given positive valuesδ, τ > 0. In some cases, it can be
reached total synchronization in only one channel while in
the other, it can be only obtained partial or null synchroniza-
tion.

The bifurcation diagrams are achieved by means of the er-
ror functions| y(t)−x(t) | and| v(t)−u(t) | by takingK as
a control parameter to be varied in small steps, from 0 to 200.
As it is well known, the way of corroborating whether two
coupled systems are synchronized or not is through the error
functions, they must go to zero as the time goes to infinity.
For our case, the bifurcation diagrams of the error functions
| y(t)−x(t) | and| v(t)−u(t) |, allow us to find the range of
values forK in which the synchronization is reached in the

channelsy − x andv − u (see Figs. 3a) and b)). As it is ob-
served, there is not synchronization in this kind of coupling,
since the error functions for the channelsy − x andv − u do
not vanish. This can be explained in terms of Eq. (10). In
order to see this, let us observe that the errorse1 = y−x and
e2 = v − u can be calculated from Eqs. (8) and (9) as:

ė1 = ẏ − ẋ = e2,

ė2 = −αv + y − εy3 + A1 cos(ω1t)

− µ(1− x2)u + x−A2 cos(ω2t)−K(e1). (14)

whose behavior is displayed in Fig. 3 as a function oft, for a
value ofK = 200.

In order to numerically corroborate that there is not syn-
chronization in any of the channels under study, let us analyze
the phase space in they − x andv − u channels for a partic-
ular valueK = 200. For which, the master system (Duffing
oscillator) is working in the chaotic regime and the dynamics
of the van der Pol oscillator is not being controlled by Duff-
ing oscillator as it can be observed from Figs. 5c) and d). If
we had have synchronization we could observe a straight line
at45◦ on both channels, but it is not the case.

Let us now discuss the synchronization when the oscil-
lators are interacting through a dissipative coupling, repre-
sented by

Master :

{
ẏ = v,

v̇ = −αv + y − εy3 + A1 cos(ω1t),
(15)

Slave :

{
ẋ = u,

u̇=µ(1−x2)u−x+A2 cos(ω2t)+H(v−u).
(16)

whereH(v−u) represents the dissipative coupling, beingH
used as a parameter. As before, for the case in whichH = 0,
the oscillators become to be decoupled. Similar to the elastic
coupling, the term,H(v − u), used in this case, is a lineal
feedback to the slave oscillator. Physically, the dissipative
couplingH(v − u) drives the two interacting systems to a

FIGURE 3. Bifurcation diagrams for the error functions: in (a) it is represented| y(t)− x(t) |, and in (b)| v(t)− u(t) |, both as a function
of the parameterK.
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FIGURE 4. Error functions|e1| and|e2| as a function oft, for a valueK = 200.

FIGURE 5. Elastic coupling, for a parameter control ofK = 200. In a) the Duffing oscillator. In b) the van der Pol oscillator. In c) and d)
the phase space for they − x andv − u channels.
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FIGURE 6. Bifurcation diagrams for the error functions: In a) it is displayed| y(t)− x(t) |, and in b)| v(t)− u(t) |, both as a function of
the parameterH.

FIGURE 7. Error functions|e3| and|e4|, for H = 200.

more homogeneous regime where their states coincide. As
a result, this coupling directly favors synchronization of the
oscillators. In order to get more insight in the solution, let
us consider the case ofH large enough such thatH À µ.
Thus, we can neglect the nonlinear contribution in Eq. (16)
to obtain

ẍ + Hẋ + x ≈ A2 cos(ω2t) + Hẏ.

This equation represents a damped harmonic oscillator with
forcing, where the termHẏ, is due to the master oscillator.
Clearly, for larget, the transient solution can be neglected
and the behavior of the slave oscillator is dominated by the
particular solution, that is to say by the master oscillator.

We study the evolution of the system by varying theH
parameter. The bifurcation diagrams are obtained by means
of the error functions| y(t) − x(t) | and | v(t) − u(t) |,
with H varied from 0 to 200 in small steps. These diagrams
enable us to find the range of values forH in which the syn-
chronization could be reached as it is shown in Figs. 6a) and
b). Notice that in they−x channel no synchronization exists,
since the error function| y(t) − x(t) | results too large. For
thev − u channel, the synchronization could be reached for
rather large values ofH. For the dissipative coupling, the er-
rorse3 = y−x ande4 = v−u, are determined by subtracting

Eqs. (15) and (16), given

ė3 = ẏ − ẋ = e4,

ė4 = −αv + y − εy3 + A1 cos(ω1t)

− µ(1− x2)u + x−A2 cos(ω2t)−H(ė3). (17)

The behavior of these functions is shown in Fig. 7 for a value
of H = 200.

Let us analyze the space phase for they − x andv − u
channels for a specific value ofH = 200. In this case, the
Duffing oscillator is in a chaotic regime. In Fig. 8c) we can
appreciate the fact that in they − x channel there is no syn-
chronization, while inv − u channel there is total synchro-
nization (Fig. 8d)).

For certain systems, it is not possible to reach synchro-
nization when the classical master-slave scheme is used.
Specifically, there are cases where it is impossible to find a
coupling constantK such that the systems reach synchro-
nization, as it occurs for the systems described by Eqs. (8)
and (9). In some cases, the systems reach partial or total syn-
chronization in only one channel as it occurs for the dynam-
ics contained in Eqs. (15) and (16), depending of the valueH.
Variations to the master-slave scheme for some systems have
been proposed to solve certain kind of problems [35–38].

Rev. Mex. Fis.68011402
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FIGURE 8. Dissipative coupling case, forH = 200. In a) The Duffing oscillator (master) and in b) the van der Pol oscillator (slave). In c)
and d) the phase space for they − x andv − u channels respectively.

In particular, in Ref. [24] a modified master-slave scheme
is considered that leads to synchronization even in the cases
where the classical master-slave scheme fails. The approach
used in Ref. [24] uses a non conventional coupling, where a
linear feedback occurs. The coupling can be seen as a per-
turbation to each oscillator proportional to the difference of
the position (elastic coupling),G(y−x), which is introduced
in the velocity of the slave system. The coupling also uses
another linear feedback, that can be seen as perturbation to
each oscillator proportional to the difference of the velocity
(dissipative coupling),G(v − u), introduced in the accelera-
tion in the slave system. For the van der Pol-Duffing system,
the equations read as

Master:

{
ẏ = v,

v̇ = −αv + y − εy3 + A1 cos(ω1t),
(18)

Slave:

{
ẋ = u + G(y − x),
u̇=µ(1−x2)u−x+A2 cos(ω2t)+G(v−u).

(19)

Notice, again, that forG = 0, the equations decouple. In or-
der to get more insight in the physical meaning of this case,
let us assume thatG À µ. Thus, Eq. (19) can be cast as

ẍ + 2Gẋ + (1 + G2)x = A2 cos(ω2t) + 2Gẏ + G2y. (20)

Rev. Mex. Fis.68011402
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FIGURE 9. Bifurcation diagrams for the error functions. In a) it is represented| y(t)− x(t) |, and in b)| v(t)− u(t) |, both as a function of
the parameterG.

FIGURE 10. Error functions|e5| and|e6| for G = 200.

The left hand side of the equation depends only on thex
while the right hand side depends only ony, except for the
external harmonic forcing. Thus, the oscillators synchronize
in both channelsy − x andv − u. In the last case, we have

v̇ − u̇−G(v − u)−G2(y − x) = ÿ − ẍ ≈ 0, (21)

that is, if there is synchronization in they − x channel (both
oscillators follow the same dynamics) then in thev−u chan-
nel there is also synchronization. We should emphasize that,
by comparing with the former cases, in the dissipative cou-
pling only was possible to reach synchronization in thev−u
channel, and in the elastic coupling no synchonization exists.

We study the dynamics of the system varying the cou-
pling constantG. In order to analyze the bifurcation dia-
grams, let us consider the error functions| y(t) − x(t) | and
| v(t) − u(t) |, by varyingG from 0 to 200. The error func-
tions allow us to find the range ofG for which the synchro-
nization is produced in they−x andv−u channels. As it can
be observed in Figs. 9a) and b), we obtain total synchroniza-
tion in they − x andv − u channels, since the error function
tends to zero as the value ofG is increased. For the coupling
proposed in Ref. [24], that combines elastic and dissipative
couplings, the errorse5 = y−x ande6 = v−u are obtained

by taking the difference of Eqs. (18) and (19), giving

ė5 = ẏ − ẋ = v − u−Ge5,

e6 = v − u = ė5 + Ge5,

ė6 = −αv + y − εy3 + A1 cos(ω1t)

− µ(1− x2)u + x−A2 cos(ω2t)−G(e6). (22)

The plots of|e5| and |e6| as a function oft, for a value of
G = 200, are depicted in Fig. 10.

Let us now analyze the phase space for they−x andv−u
channels for the valueG = 200. In Figs. 11c) and d) it can be
observed that total synchronization is reached since the error
function in the phase space is represented by a straight line at
45◦ in both channels.

By comparing the three different coupling above men-
tioned, we observed that the coupling used by Uriosteguiet
al. gives the best results. In fact, by using the former cou-
pling, we observed that total synchronization in bothy − x
andv − u channels is achieved.

In order to analyze the case of two different values in the
couplings its is convenient, for our discussion, to express the
couplings in terms of the errors: for the elastic coupling we
haveG(y − x) = G(e5), whilst for the dissipative coupling

Rev. Mex. Fis.68011402
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FIGURE 11. Elastic and dissipative couplings forG = 200. In a) the Duffing oscillator (master). In b) the van der Pol oscillator (slave). In
c) and d) the phase space for they − x andv − u channels.

G(v−u) = G(ė5 +Ge5). In Figs. 9a) and b), we can appre-
ciate that synchronization in they−x channel is obtained for
values ofG smaller than those in thev − u channel. Let us
now analyze the case of two different constantsG1 andG2.
For this, the evolution of the system is governed by

Master :

{
ẏ = v,

v̇ = −αv + y − εy3 + A1 cos(ω1t),
(23)

Slave :

{
ẋ = u + G1(y − x),
u̇=µ(1−x2)u−x+A2 cos(ω2t)+G2(v−u).

(24)

As before, let us assume thatG2 À µ. In this case, Eq. (24)

reduces to

ẍ + (G1 + G2)ẋ + (1 + G1G2)x = A2 cos(ω2t)

+ (G1 + G2)ẏ + G1G2y.

Once again, by comparing with Eq. (20), we observe that,
to obtain synchronization, we must assumeG2 ≈ G1 or
G2 À G1. In what follows we analyze the last case.

The errorse7 = y−x ande8 = v−u, are determined by
subtracting Eqs. (23) and (24), obtaining

ė7 = ẏ − ẋ = v − u−G1e7,

e8 = v − u = ė7 + G1e7,

ė8 = −αv + y − εy3 + A1 cos(ω1t)

− µ(1− x2)u + x−A2 cos(ω2t)−G2(e8). (25)

Rev. Mex. Fis.68011402



10 U. URIOSTEGUI-LEGORRETA AND E.S. TUTUTI

FIGURE 12. Bifurcation diagrams for the error functions. In (a) it is represented| y(t) − x(t) |, with G2 = 100 and varyingG1. In (b)
| v(t)− u(t) |, with G1 = 10 and varyingG2.

FIGURE 13. Error functions for|e7| and|e8| with respective values ofG1 = 2 andG2 = 150.

The constantG1 corresponds to the elastic coupling andG2,
to the dissipative coupling. Hence,G1(y− x) = G1(e7) and
G2(v − u) = G2(ė7 + G1e7). Let us express Eqs. (23) and
(24) in a matrix form(

ẏ
v̇

)
=

(
0 1
1 −α

)(
y
v

)

+
(

0
−εy3

)
+

(
0

A1 cos(ω1t)

)
, (26)

(
ẋ
u̇

)
=

(
0 1
−1 µ

) (
x
u

)

+
(

0
−µx2u

)
+

(
0

A2 cos(ω2t)

)

+
(

G1e7

G2ė7 + G1G2e7

)
. (27)

The first vectors in the right hand side of Eqs. (26) and (27)
contain the nonlinearity information of the system, while the
second ones contain the information of the external forcing.
The last vector in Eq. (27) is the so-called control vector,

which contains the coupling we propose. Notice that the
control depends on the error and its derivative. For the case
G1 = G2 = 0 de system decouples. In order to study the dy-
namics of the system, we vary the couplingsG1 or G2 keep-
ing one constant. To analyze the bifurcation diagrams, let us
consider the error functions| y(t)−x(t) | and| v(t)−u(t) |.
We calculate| y(t) − x(t) | keepingG2 = 100 and vary-
ing G1 from 0 to 10. In a similar way, we obtain the bi-
furcation diagram for the error function| v(t) − u(t) | with
G1 = 10 and varyingG2 from 0 to 200. As it can appreci-
ated in Figs. 12a) and b), we obtain total synchronization in
they − x andv − u channels, since the error functions go to
zero as the values ofG1 andG2 are increased. The plots of
|e7| and|e8| as a function oft, for the values ofG1 = 2 and
G2 = 150, are depicted in Fig. 13.

Let us now analyze the phase space for they−x andv−u
channels, for values ofG1 = 2 andG2 = 150. In Figs. 14c)
and d), we can observe that total synchronization is reached,
since the error functions in the phase space is represented by
a straight line at 45◦ in both channels.

Rev. Mex. Fis.68011402
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FIGURE 14. Elastic and dissipative couplings forG1 = 2 andG2 = 150. In a) the Duffing oscillator (master). In b) the van der Pol oscillator
(slave). In c) and d) the phase space fory − x andv − u channels.

4. Final remarks and outlook

The van der Pol and Duffing are nonautonomous systems of
low-dimensionality that present chaos and have been well
studied. One of the conclusions presented in the literature re-
lated to these systems is that the elastic coupling does not lead
to synchronization. For this same system, when the dissipa-
tive coupling is used, only synchronization in one channel
can be obtained. In this paper, we have analyzed the synchro-
nization in the van der Pol-Duffing system based on two dif-
ferent couplings simultaneously employed, namely the elas-
tic and dissipative. We used the error function by varying
the control parameters,K, H,G or G1 andG2 (depending
on the coupling used), which enabled us to obtain the range
for which the synchronization takes place. We found that
the synchronization was favored for rather large values of the
control parameter.

We also observed that, the coupling that blend the elas-
tic and dissipative, leds to total synchronization in they − x
and v − u channels. In this case the synchronization was
obtained for values ofG large enough (in our numerical sim-
ulations, we tookG = 200). For small values, we obtained
partial synchronization. For the general case, when two con-
stants coupling are used,G1 (elastic) andG2 (dissipative),
with G1 ¿ G2, we get again synchronization in both chan-
nels. WhetherG2 is small and comparable withG1 the sys-
tem presents partial synchronization in thev−u channel and
total synchronization in they − x channel. The behavior of
the system in the mentioned cases were explained analyti-
cally and numerically corroborated, for the case large values
of the parameters.

The possibility of using two coupling constant instead of
only one, allows the system a more interesting dynamics and
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a broad range for the control parameters. It is well known
that synchronization in communication systems needs a large
range for the control parameter, such as the obtained, for
the van Pol-Duffing system, by employing our approach of
coupling. Consequently, the system studied could be of use-
fulness in this communication systems. The coupling stud-
ied in this work will be applied in others systems of low-

dimensionality that do not present synchronization through
the classical master-slave configuration.
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