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Nowadays, nonlinear fractional partial differential equations have been extensively used to model physical phenomena. It is very important
to achieve exact solutions of fractional differential equations for understanding complex phenomena in mathematical physics, and therefore,
studies on fractional differential equations have increased. In this study, new exact traveling wave solutions of the space-time fractional Phi-4
equation have been achieved by using two powerful different techniques, and solutions have additionally been checked. The space-time
fractional Phi-4 equation has been expressed through Atangana’s conformable derivative. Obtaining new solutions to this equation shows
that methods are effective to ascertain other nonlinear complex problems in particle and nuclear physics.
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1. Introduction

Studies on fractional differential equations have recently in-
creased to model some complex phenomena more accurately.
There are many different definitions of fractional derivatives
in literature. Some of them are the Caputo derivative [1],
the Caputo-Fabrizio derivative [2], the Riemann-Liouville
derivative [1], Jumarie’s modified Riemann-Liouville deriva-
tive [3], and Atangana-Baleanu derivative [4]. Fractional par-
tial differential equations (FPDEs) have been used in various
areas such as physics, control theory, biology, mathematical
physics, applied mathematics, optics, chemistry [5-10].

In this article, two reliable methods have been applied
to reach the exact solutions of the fractional Phi-4 equation
with Atangana’s beta-derivative. One of the methods is the
functional variable method [11-12] and the other one is first
integral method [13-14]. In some applications in literature,
various techniques have been applied to FPDEs [15-26].

The paper is organized as follows: Some basic definitions
and properties of Atangana’s beta-derivative are introduced in
Sec. 2. In Sec. 3, the functional variable method and the first
integral method are examined in detail. In Sec. 4, methods
are applied to the fractional Phi-4 equation to obtain some
new exact solutions. The final section includes a conclusion
containing all outputs in this article.

2. Definition of Atangana’s beta-derivative

Definition 1: Let h : [0,∞) → R be a function. Then its
fractional conformable derivative ofh orderα is,

A
0 Dα

t (g)(t) = lim
ε→0

h(x + εx1−α)− h(x)
ε

, (1)

Khalil et al. defined the above theorem for the fractional
derivatives [27].

However, there are similar features between conformable
fractional derivatives and ordinary derivatives. For instance,
the product derivative and the quotient derivative of two func-
tions. Thus, mathematicians, physicists, and engineers have
made many studies on conformable derivatives [28].
Definition 2: Atangana’s beta-derivative is as following

A
0 Dα

t (g)(t) = lim
ε→0

g

(
t + ε

[
t + 1

Γ(α)

]1−α
)
− g(t)

ε
. (2)

Atangana’s derivative allows us to remove some weak
properties of the conformable derivative. For example; A dif-
ferentiable function’s derivative is equal to zero at the zero
points [29]. Thanks to beta derivative, real-world problems
which arise in applied mathematics and physics are modeled
more accurately. Thus, the physical behavior of the graphics
can be interpreted more precisely.

Atangana’s derivative can be preferred because it pro-
vides the maximum properties of the fundamental deriva-
tives. Some important features for Atangana’s beta deriva-
tives [30]:

• Let us takeh 6= 0 andg are two function differentiable
with β-order andβ ∈ (0, 1]. Then

A
0 Dα

x{ag(x) + bh(x)} = a A
0 Dα

x{g(x)}
+ b A

0 Dα
x{h(x)} for a, b ∈ R. (3)

• For anyd ∈ R. Then,

A
0 Dα

x{d} = 0 (4)

•
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A
0 Dα

x{d}{g(x)h(x)} = h(x)A
0 Dα

x{g(x)}
+ g(x)A

0 Dα
x{h(x)}. (5)

•

A
0 Dα

x

{
g(x)
h(x)

}
=

h(x)A
0 Dα

x{g(x)}+g(x)A
0 Dα

x{h(x)}
h2(x)

(6)

Using Eq. (2),ε = (x + (1/Γ(α)))1−α
f, if ε → 0 then

f → 0. The Eq. (7) has been obtained.

A
0 Dα

x{g(x)} =
(

x +
1

Γ(α)

)1−α
dg(x)
dx

, (7)

and

µ =
γ

α

(
x +

1
Γ(α)

)α

, (8)

whereγ is a constant. Finally, we can write the following
equation

A
0 Dα

x{g(µ)} = γ
dg(µ)
dµ

. (9)

3. Description of methods

3.1. Functional variable method (FVM)

A brief description of the suggested method:
Step 1.FPDE can be written in the form:

F
(
u,A0 Dα

t ,A0 Dα
x u, ux, ut, . . .

)
= 0. (10)

Step 2.Using wave transformation

u(x, t) = U(ξ), (11)

ξ =
k

α

(
x +

1
Γ(α)

)α

− γ

α

(
t +

1
Γ(α)

)α

. (12)

Taking into account Eq. (12), we reduce the FPDE to a
nonlinear ordinary differential equation:

P (U(ξ), U ′(ξ), U ′′(ξ), . . .) = 0 (13)

whereU ′(ξ) = dU(ξ)/dξ.
P is a polynomial ofU and its derivatives whileuξ =

du/dξ, uξξ = d2u/dξ2 and so on.
Step 3.We introduce a functional variable for making a new
transformation to unknown functionU

uξ = F (u) (14)

and some successive derivatives ofu(ξ) to following:

uξξ =
1
2
(F 2)′

uξξξ =
1
2
(F 2)′′

√
F 2,

uξξξξ =
1
2

([
F 2

]′′′
F 2 +

1
2

[
F 2

]′′ [
F 2

]′)
. (15)

Step 4. After substituting (14) and (15) into (13) the ODE
can be reduced as

R(u, F, F ′, F ′′, . . .) = 0. (16)

After integration, Eq. (16) provides the expression ofF ,
and this gives the appropriate solutions to the original prob-
lem, together with Eq. (14).

3.2. First integral method (FIM)

A summary of the FIM is presented,

Step 1.FPDE can be written in the form:

F
(
u,A0 Dα

t u,A0 Dα
x u, ux, ut, . . .

)
= 0. (17)

Step 2.Using wave transformation

u(x, t) = U(ξ), (18)

ξ =
k

α

(
x +

1
Γ(α)

)α

− γ

α

(
t +

1
Γ(α)

)α

. (19)

Taking into account Eq. (19), we reduce the FPDE to a
nonlinear ordinary differential equation:

P (U(ξ), U ′(ξ), U ′′(ξ), . . .) = 0, (20)

whereU ′() = dU(ξ)/dξ.

Step 3. Afterwards, defining some new independent vari-
ables

U(ξ) = X(ξ),

Uξ(ξ) = Y (ξ), (21)

then we get a new system of the following form:

∂X

∂ξ
= Y (ξ),

∂Y

∂ξ
= G(X(ξ), Y (ξ)). (22)

Step 4.By using the division theorem, we can reach a first
integral to Eq. (22). The exact solutions of Eq. (17) are ob-
tained by solving this equation.

Division Theorem: Suppose thatR(x, y) and Q(x, y)
are polynomials inC[x, y]; and R(x, y) is irreducible in
C[x, y]. If Q(x, y) vanishes at all zero points ofR(x, y),
then there exists a polynomialH(x, y) in C[x, y] such that

Q(x, y) = R(x, y).H(x, y).
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4. Solution of the space-time fractional Phi-4
equation

The conformable space-time fractional Phi-4 equation [31]:

A
0 D2α

t u− A
0 D2β

x u + m2u + n3u = 0,

0 < α, β ≤ 1, (23)

A
0 Dα

t u indicates the Atangana’s conformable fractional
derivative ofu with respect tot of orderα andm, n are real
constants.

Using the following transformation:

u(x, t) = U(ξ),

ξ =
l

β

(
x +

1
Γ(β)

)β

− λ

α

(
t +

1
Γ(α)

)α

, (24)

whereξ is the transformation variable andl, λ be the con-
stants. Eq. (23) changes into the form an ordinary differential
equation:

λ2U ′′(ξ)− l2U ′′(ξ) + m2U(ξ) + nU3(ξ) = 0. (25)

4.1. Solution by functional variable method

Equation (25) can be written as follows:

Uξξ =
m2

l2 − λ2
U +

n

l2 − λ2
U3. (26)

Then we use the transformationuξξ = (1/2)(F 2)′ in
Eq. (15), we get Eq. (27) from Eq. (26)

(F 2)′ =
2m2

l2 − λ2
u +

2n

l2 − λ2
u3. (27)

Integrating (27) with respect to u and we obtain

F (u) =
√

n

2(l2 − λ2)
u

√
u2 +

2m2

n
. (28)

From (14) and (28), we deduce that
∫

du

u
√

u2 2m2

n

=
√

n

2(l2 − λ2)
(ξ + ξ0), (29)

whereξ0 is a integration constant. After integrating (29), we
have the following exact solutions:
Case 1.If 2m2/n = 0 ⇒ m = 0, then

u1(x, t) = ±
1

√
n

2(l2−λ2)

(
l
β

(
x + 1

Γ(β)

)β

β− λ
α

(
t + 1

Γ(α)

)α

+ξ0

) .

(30)

Case 2.If 2m2/n > 0 ⇒ m = 0, then

u2(x, t) =

√
2m2

n
csch

(
m√

(l2 − λ2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
, (31)

u3(x, t) = −
√

2m2

n
csch

(
m√

(l2 − λ2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
, (32)

u4(x, t) =

√
2m2

n
sech

(
m√

(l2 − λ2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
, (33)

u5(x, t) = −
√

2m2

n
sech

(
m√

(l2 − λ2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
. (34)

Case 3.If 2m2 < 0, then

u6(x, t) =

√
−2m2

n
csc

(
m√

(λ2 − l2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
, (35)

u7(x, t) = −
√
−2m2

n
csc

(
m√

(λ2 − l2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
, (36)

u8(x, t) =

√
−2m2

n
sec

(
m√

(λ2 − l2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
, (37)

u9(x, t) = −
√
−2m2

n
sec

(
m√

(λ2 − l2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
. (38)
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4.2. Solution by first integral method

Using Eq. (21) and Eq. (22), we can write two dimensional
autonomous system

dX

dξ
= Y (ξ)

dY

dξ
=

m2

l2 − λ2
X(ξ)− n

l2 − λ2
X3(ξ). (39)

According to the first integral method, we suppose that
X and Y are non-trivial solutions of the Eq. (39). Also,
Q(X, Y ) =

∑m
i=0 ai(X)Y i is an irreducible polynomial in

C[X, Y ], such that

Q(X(ξ), Y (ξ)) =
m∑

i=0

ai(X(ξ))Y i(ξ) = 0, (40)

wheream(X) 6= 0 andi = 0, 1, . . . , m. By division theorem
∃ a polyn.g(X) + h(X)Y , such that

dQ

dξ
=

dQ

dX

dX

dξ
+

dQ

dY

dY

dξ

= (g(X) + h(X)Y )
m∑

i=0

ai(X)Y i . (41)

Assume thatm = 1 then coefficients ofY i(i = 0, 1) in
Eq. (40), we have:

a′1(X) = a1(X) · h(X), (42)

a′0 = a0(X) · h(X) + a1(X) · g(X), (43)

a1(X) ·
(

m2

l2 − λ2
X − n

l2 − λ2X3

)

= a0(X) · g(X). (44)

Sinceai(X) are polynomials, then we deduce thata1(X)
is constant andh(X) = 0. Let us takea1(X) = 1 and for the
equilibrium of a0(X) andg(X) degrees,deg(g(X)) = 1.
Suppose thatg(X) = A0 + A1X and we find

a0(X) = A0X +
1
2
A1X

2 + C, (45)

whereC is the integration constant. We obtain a nonlinear
system of the algebraic equations froma0(X), g(X), and
Eq. (44).

A1 =

√
2n(l2 − λ2)
l2 − λ2

,

C =
m2

√
2n(l2 − λ2)

A0 = 0, (46)

and

A1 = −
√

2n(l2 − λ2)
l2 − λ2

,

C = − m2

√
2n(l2 − λ2)

A0 = 0. (47)

Under the conditions given by Eqs. (46) and (47) in
Eq. (40), we have,

Y (ξ)=±
(

m2

√
2n(l2−λ2)

+

√
2n(l2−λ2)
2(l2−λ2)

X2(ξ)

)
. (48)

Using Eq. (48) and Eq. (11), we can convert to Eq. (48)
following Ricatti equation

U ′(ξ)=±
(

m2

√
2n(l2−λ2)

+

√
2n(l2−λ2)
2(l2−λ2)

U2(ξ)

)
. (49)

Some special solutions are achieved:

Type 1. If 1/(l2−λ2) > 0, then

u10(x, t) =

√
m2

n
tan

(√
m2

2(l2 − λ2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
, (50)

u11(x, t) = −
√

m2

n
tan

(√
m2

2(l2 − λ2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
, (51)

u12(x, t) =

√
m2

n
cot

(√
m2

2(l2 − λ2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
, (52)

u13(x, t) = −
√

m2

n
cot

(√
m2

2(l2 − λ2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
. (53)

Type 2. If 1/(l2 − λ2) < 0, then

u14(x, t) =

√
−m2

n
tanh

(√
m2

2(λ2 − l2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
, (54)
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u15(x, t) = −
√
−m2

n
tanh

(√
m2

2(λ2 − l2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
, (55)

u16(x, t) =

√
−m2

n
coth

(√
m2

2(λ2 − l2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
, (56)

u17(x, t) = −
√
−m2

n
coth

(√
m2

2(λ2 − l2)

[
l

β

{
x +

1
Γ(β)

}β

− λ

α

{
t +

1
Γ(α)

}α

+ ξ0

])
. (57)

5. Graphical representations

5.1. Graphs of solutions with FVM

FIGURE 1. Graph of ofu1 for n = 1.7, λ = 0.2 andl = −1.5.

FIGURE 2. a) Graph ofu2 for m = −0.6, n = 1.06, λ = −0.2 andl = −0.7. b) Graph ofu2 for m = −0.2, n = 1.7, λ = −0.1 and
l = −0.7.

FIGURE 3. a) Graph ofu4 for m = −0.8, n = 0.3, λ = −0.4 andl = 0.9. b) Graph ofu4 for m = −0.8, n = 0.6, λ = −1 andl = 1.3.

Rev. Mex. Fis.67050707
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FIGURE 4. a) Graph ofu6 for m = −0.4, n = −1.3, λ = 0.9 and
l = −1.1 b) Graph ofu6 for m = −0.4, n = −1.3, λ = 0.5 and
l = −1.1.

5.2. Graphs of solutions with FIM

FIGURE 5. Graph ofu10 for m = −3.2, n = 0.51, λ = −2.98

andl = 3.03.

FIGURE 6. Graph ofu12 for m = 1.17, n = −0.57, λ = 1.96 and
l = 4.36.

FIGURE 7. Graph ofu15 for m = 1.64, n = −2.72, λ = 1.7 and
l = −2.45.

FIGURE 8. Graph ofu17 for m = −0.83, n = 1.4, λ = −0.96

andl = 4.14.
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In this section, 3D graphs of the solutions have been in-
cluded. Some specific parameters have been chosen to reach
different types of wave graphs. Figures 2, 3, and 4 can give
an opinion about the physical behavior of solutions based on
the change of amplitude and width of the waves. While pe-
riodic solutions, hyperbolic solutions and rational solutions
have been achieved by using FVM (Figs. 1-4), hyperbolic so-
lutions, and trigonometric solutions have been obtained by
using FIM (Figs. 5-8). The first method gives compacton
waves and bell-shaped soliton waves whereas the second one
gives compacton waves and kink soliton waves. Thanks to
these powerful methods, different types of solutions can be
helpful to understand the physical behavior of other nonlin-
ear FPDEs in mathematical and nuclear physics.

6. Conclusions

In this paper, two powerful and reliable analytical techniques
have been applied to Atangana’s conformable space-time
fractional Phi-4 equation. Tha main advantage of FVM is
its wide applicability. The main idea of FIM is reducing
fractional partial differential equation to ordinary differential
equation and then generating the first integral with the help of
division theorem. The idea shows that the FIM is concisely
direct. Thanks to FVM and FIM, we have obtained more
solution functions than the other famous analytical methods.
All solution functions have been checked by using the Mathe-
matica program. Additionally, physical behaviors of solution
functions have been examined for some appropriate values of
the parameters. Results show that the proposed methods are
very effective, straightforward, and strong to solve nonlinear
FPDEs defined by Atangana’s derivative.
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