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This paper investigates exact voyaging (2 + 1) dimensional Heisenberg ferromagnetic spin chain solutions with conformable fractional
derivatives, an important family of nonlinear equations from Schrödinger (NLSE) for the construction of hyperbolic, trigonometric and
complex function solutions. The detailed rational sine-cosine system and rational sinh-cosh system were used to locate dim, special and
periodic wave solutions successfully. These findings suggest that the proposed approaches may be useful to investigate a range of solutions
inside a repository of applied sciences and engineering, with success, quality, and trust. In addition, graphical representations and physical
expresses of such solutions are represented by a set of the required values of the parameters involved. The methods are essentially adequate
and can be extended to different dynamic models that create the nonlinear processes in today’s research.
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1. Introduction

Over the last few years, nonlinear Schrödinger’s equations
(NLSEs) have attracted much attention in the field of research
due to their numerous fascinating behaviour and countless
characteristics. A large variety of these equations are utilized
to describe important phenomena in different scientific fields
like, plasma physics [1,2], condensed matter physics [3],
convective fluids [5], optical fibers [6,7], solid state physics
[8,9], hydrodynamic [10], water waves [11] and many other
branches of engineering [12-14]. In past years, to find the ex-
act solutions of NLSEs many powerful technique have been
developed such as, the inverse scattering transformation [15],
the homotopy perturbation method [16,17], the Darboux
transformation method [18,19], the Sine-Gordon expansion
method [20], Bernoulli sub-equation method [21], the mod-
ified auxiliary equation mapping method [22,23], the Ric-
cati equation mapping method [4], the extended sinh-Gordon
equation expansion method [24],the modify extended direct
algebraic method [25].

The Heisenberg models of ferromagnetic spin chains with
various magnetic reactions in the classical and semiclassical
limits have been related with nonlinear evaluation equations
(NLEEs). The nonlinear spin chain have wide range of ap-
plications in magnetic materials such as, sensors [26], mi-
crowave, date storage devices, communication system [27],

signal processing devices and quantum computing. In this
article, we have successfully investigated a variety of ex-
act travelling wave solutions by employing extended rational
trigonometric methods to construct the hyperbolic, trigono-
metric and complex function solutions moreover classify as
dark, singular and periodic wave solutions. To study (2+1)-
dimensional Heisenberg ferromagnetic spin chains (HFSC)
model of the the form [28,29].

iΨt + µΨxx + λΨyy + ηΨxy − δ|Ψ|2Ψ = 0, (1)

here,Ψ is coherent amplitude. Hashemi transform it into
fractional form:

iDα
t (Ψ) + µΨxx + λΨyy + ηΨxy − δ|Ψ|2Ψ = 0,

i =
√−1 (2)

where Ψ = Ψ(x, y, t) is the complex valued function of
Heisenberg ferromagnetic spin chain,x andy are represent-
ing scaled spatial and t is the time coordinates respectively.

In recent times, a large number of scientists and re-
searchers have been attracted to HFSC models due to their
significant and fascinating characteristics for construction of
different types of exact solutions in NPDEs.Dα

t (Ψ) is the
conformable fraction derivative ofΨ of orderα. Nowadays,
the field of conformable fractional derivative become one of
the most important and interesting field for scientists because
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of its uses nonlinear sciences suck as, fluid mechanics, chem-
ical and biological processes. In literature, there are so many
definitions which of them are, Riemann-Liouville [30,31],
Atangana-Baleanu derivative in Caputo sense [32], Caputoa
and Grunwald-Letnikov [33-35].

The remaining paper is arranged as fellows: In Sec. 2
some sliton solutions to the HFSC model have been pre-
sented. The physical significance and graphical representa-
tion is presented in Sec. 3. In Sec. 4 finally the concluding
remarks and behaviour of solution have been discussed.

2. Mathematical analysis

In this section, to obtain the exact solutions of Eq. (2) by ap-
plying following conformable fractional derivative [36]

Dα
t (Ψ(t)) = lim

ε→0

Ψ(t + εtt−α)−Ψ(t)
ε

. (3)

By this definition and following complex travelling wave
transformation

Φ(x, y, t) = Ψ(s)eiΘ(x,y,t), (4)

where

s = α1x + α2y − ω
tα

α
,

Θ = −β1x− β2y + ρ
tα

α
+ θ. (5)

Putting Eq. (5) into Eq. (2), we obtain

(µα2
1 + ηα1α2 + λα2

2)Ψ
′′(s)

− (ρ + µβ2
1 + ηβ1β2 + λβ2

2)Ψ(s)− δΨ(s)3 = 0, (6)

whereα1, α2, β1 and β2 real constants and are center of
phase. whereΘ represents the phase component,ρ is the
velocity andω is the frequency respectively.

2.1. Applications of the extended rational sine-cosine
method

Assume that Eq. (6) has the solution of the form:

Ψ(s) =
A0 sin (νs)

A2 + A1 cos(νs)
, cos(νs) 6= −A2

A1
, (7)

or of the form

Ψ(s) =
A0 cos (νs)

A2 + A1 sin(νs)
, sin(νs) 6= −A2

A1
, (8)

whereA0, A1 andA2 are parameters that will be determined
andν represents wave number.

Family I
Now, substituting Eq. (7) into Eq. (6) and then setting each coefficients of all terms ofcosm(νs) or sinm(νs) to zero, yields

a system of algebraic equations. Then we obtain system of algebraic equations involving parametersA0, A1, A2, µ, ν, λ, δ, ρ.

−δA2
0 + A2

1(ρ + µβ2
1 + ηβ1β2 + λβ2

2) = 0,

A1A2[−µν2α2
1 − ην2α1α2 − λν2α2

2 + 2(ρ + µβ2
1 + ηβ1β2 + λβ2

2)] = 0,

δA2
0 − 2ν2A2

1(µα2
1 + ηα1α2 + λα2

2) + A2
2(ρ + µν2α2

1 + ην2α1α2 + λν2α2
2 + µβ2

1 + ηβ1β2 + λβ2
2) = 0.

Solving this system, we yields the following set:
Case I:

A0 = ±A1

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ
, A1 = ±A2, ν = ±

√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

.

Substituting these results into Eq. (5) by using Eq. (7) , we have

Φ1,1(x, y, t) =

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ




sin

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1 + cos

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




ei{−β1x−β2y+ρ tα

α +θ}. (9)

Φ1,2(x, y, t) = −
√

ρ + µβ2
1 + ηβ1β2 + λβ2

2

δ




sin

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1 + cos

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




ei{−β1x−β2y+ρ tα

α +θ}. (10)
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Φ1,3(x, y, t) =

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ




sin

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1− cos

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]
)




ei{−β1x−β2y+ρ tα

α +θ}. (11)

Φ1,4(x, y, t) = −
√

ρ + µβ2
1 + ηβ1β2 + λβ2

2

δ




sin

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1− cos

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




ei{−β1x−β2y+ρ tα

α +θ}. (12)

Case II:

A0 = ±A1

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ
, A2 = 0, ν = ±

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

2(µα2
1 + ηα1α2 + λα2

2)
.

Again, substituting these results into Eq. (5) by using Eq. (7), we obtain

Φ1,5(x, y, t) =

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ

(
tan

[√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

2(µα2
1 + ηα1α2 + λα2

2)
(s)

])
ei{−β1x−β2y+ρ tα

α +θ}. (13)

Φ1,6(x, y, t) = −
√

ρ + µβ2
1 + ηβ1β2 + λβ2

2

δ

(
tan

[√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

2(µα2
1 + ηα1α2 + λα2

2)
(s)

])
ei{−β1x−β2y+ρ tα

α +θ}, (14)

provided that(ρ + µβ2
1 + ηβ1β2 + λβ2

2)(µα2
1 + ηα1α2 + λα2

2) > 0.
Family II

Again, substituting Eq. (8) into Eq. (6) and then setting each coefficients of all terms ofsinm(νs) or cosm(νs) to zero,
yields a system of algebraic equations. Then we obtain system of algebraic equations involving parametersA0, A1, A2, µ, ν,
λ, δ, ρ.

−δA2
0 + A2

1(ρ + µβ2
1 + ηβ1β2 + λβ2

2) = 0,

A1A2[−µν2α2
1 − ην2α1α2 − λν2α2

2 + 2(ρ + µβ2
1 + ηβ1β2 + λβ2

2)] = 0,

δA2
0 − 2ν2A2

1(µα2
1 + ηα1α2 + λα2

2) + A2
2(ρ + µν2α2

1 + ην2α1α2 + λν2α2
2 + µβ2

1 + ηβ1β2 + λβ2
2) = 0.

This system, gives the following set of solutions:
Case I:

A0 = ±A1

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ
, A1 = ±A2, ν = ±

√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

.

Substituting these results into Eq. (5) by using Eq. (8), we have

Φ2,1(x, y, t) =

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ




cos

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1 + sin

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




ei{−β1x−β2y+ρ tα

α +θ}. (15)
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Φ2,2(x, y, t) = −
√

ρ + µβ2
1 + ηβ1β2 + λβ2

2

δ




cos

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1 + sin

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




ei{−β1x−β2y+ρ tα

α +θ}. (16)

Φ2,3(x, y, t) =

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ




cos

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1− sin

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




ei{−β1x−β2y+ρ tα

α +θ}. (17)

Φ2,4(x, y, t) = −
√

ρ + µβ2
1 + ηβ1β2 + λβ2

2

δ




cos

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1− sin

[√
2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




ei{−β1x−β2y+ρ tα

α +θ}. (18)

Case II:

A0 = ±A1

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ
, A2 = 0, ν = ±

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

2(µα2
1 + ηα1α2 + λα2

2)
.

Again, substituting these results into Eq. (5) by using Eq. (8), we obtain

Φ2,5(x, y, t) =

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ

(
cot

[√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

2(µα2
1 + ηα1α2 + λα2

2)
(s)

])
ei{−β1x−β2y+ρ tα

α +θ}. (19)

Φ2,6(x, y, t) = −
√

ρ + µβ2
1 + ηβ1β2 + λβ2

2

δ

(
cot

[√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

2(µα2
1 + ηα1α2 + λα2

2)
(s)

])
ei{−β1x−β2y+ρ tα

α +θ}, (20)

provided that(ρ + µβ2
1 + ηβ1β2 + λβ2

2)(µα2
1 + ηα1α2 + λα2

2) > 0.

2.2. Applications to the extended rational sinh-cosh method

Assume that Eq. (6) has the solution of the form:

Ψ(s) =
A0 sinh (νs)

A2 + A1 cosh(νs)
, cosh(νs) 6= −A2

A1
, (21)

or of the form

Ψ(s) =
A0 cosh (νs)

A2 + A1 sinh(νs)
, sinh(νs) 6= −A2

A1
, (22)

whereA0, A1 andA2 are parameters that will be determined andν represents wave number.
Family I

Now, substituting Eq. (21) into Eq. (6) and then setting each coefficients of all terms ofcoshm(νs) or sinhm(νs) to zero,
yields a system of algebraic equations. Then we obtain system of algebraic equations involving parametersA0, A1, A2, µ, ν,
λ, δ, ρ. This system of equations are solved as follows:

δA2
0 + A2

1(ρ + µβ2
1 + ηβ1β2 + λβ2

2) = 0,

A1A2[µν2α2
1 + ην2α1α2 + λν2α2

2 + 2(ρ + µβ2
1 + ηβ1β2 + λβ2

2)] = 0,

−δA2
0 + 2ν2A2

1(µα2
1 + ηα1α2 + λα2

2) + A2
2(ρ− µν2α2

1 − ην2α1α2 − λν2α2
2 + µβ2

1 + ηβ1β2 + λβ2
2) = 0.

Rev. Mex. F́ıs. 67040701



A VARIETY OF EXACT SOLUTIONS FOR FRACTIONAL (2+1)-DIMENSIONAL HEISENBERG FERROMAGNETIC. . . 5

Solving this system, we yields the following set of solutions with help of Mathematica:
Case I:

A0 = ±iA1

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ
, A1 = ±A2, ν = ±

√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

.

Substituting these results into Eq. (5) by using Eq. (21), we have

Φ3,1(x, y, t)=i

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ




sinh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1 + cosh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




× ei{−β1x−β2y+ρ tα

α +θ}. (23)

Φ3,2(x, y, t)=− i

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ




sinh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1 + cosh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




× ei{−β1x−β2y+ρ tα

α +θ}. (24)

Φ3,3(x, y, t) = i

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ




sinh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1− cosh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




× ei{−β1x−β2y+ρ tα

α +θ}. (25)

Φ3,4(x, y, t) = −i

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ




sinh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1− cosh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




× ei{−β1x−β2y+ρ tα

α +θ}. (26)

Case II:

A0 = ±iA1

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ
, A2 = 0, ν = ±

√
−(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

2(µα2
1 + ηα1α2 + λα2

2)
.

Again, substituting these results for only the positive values into Eq. (21), we obtain

Φ3,5(x, y, t) = i

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ

(
tanh

[√
−(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

2(µα2
1 + ηα1α2 + λα2

2)
(s)

])
ei{−β1x−β2y+ρ tα

α +θ}. (27)

Φ3,6(x, y, t) = −i

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ

(
tanh

[√
−(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

2(µα2
1 + ηα1α2 + λα2

2)
(s)

])
ei{−β1x−β2y+ρ tα

α +θ}, (28)

holds for(ρ + µβ2
1 + ηβ1β2 + λβ2

2)(µα2
1 + ηα1α2 + λα2

2) < 0.
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Family II
Again, substituting Eq. (22) into Eq. (6) and then setting each coefficients of all terms ofsinhm(νs) or coshm(νs) to zero,

yields a system of algebraic equations. Then we obtain system of algebraic equations involving parametersA0, A1, A2, µ, ν,
λ, δ, ρ.

δA2
0 + A2

1(ρ + µβ2
1 + ηβ1β2 + λβ2

2) = 0,

A1A2[µν2α2
1 + ην2α1α2 + λν2α2

2 + 2(ρ + µβ2
1 + ηβ1β2 + λβ2

2)] = 0,

δA2
0 − 2ν2A2

1(µα2
1 + ηα1α2 + λα2

2) + A2
2(ρ− µν2α2

1 − ην2α1α2 − λν2α2
2 + µβ2

1 + ηβ1β2 + λβ2
2) = 0.

This system, gives the following set of solutions:
Case I:

A0 = ±iA1

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ
, A1 = ±A2, ν = ±

√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

.

Substituting these results into Eq. (5) by using Eq. (22), we obtain

Φ4,1(x, y, t) = i

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ




cosh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1 + sinh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




× ei{−β1x−β2y+ρ tα

α +θ}. (29)

Φ4,2(x, y, t) = −i

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ




cosh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1 + sinh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




× ei{−β1x−β2y+ρ tα

α +θ}. (30)

Φ4,3(x, y, t) = i

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ




cosh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1− sinh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




× ei{−β1x−β2y+ρ tα

α +θ}. (31)

Φ4,4(x, y, t) = −i

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ




cosh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]

1− sinh

[√
−2(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

µα2
1 + ηα1α2 + λα2

2

(s)

]




× ei{−β1x−β2y+ρ tα

α +θ}.

(32)

Case-II:

A0 = ±iA1

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ
, A2 = 0, ν = ±

√
−(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

2(µα2
1 + ηα1α2 + λα2

2)
.
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Again, substituting these results into Eq. (5) by using Eq. (22), we obtain

Φ4,5(x, y, t) = i

√
ρ + µβ2

1 + ηβ1β2 + λβ2
2

δ

(
coth

[√
−(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

2(µα2
1 + ηα1α2 + λα2

2)
(s)

])
ei{−β1x−β2y+ρ tα

α +θ}. (33)

Φ4,5(x, y, t) = −i

√
ρ + µβ2

1 + ηβ1β2 + λβ2
)

δ

(
coth

[√
−(ρ + µβ2

1 + ηβ1β2 + λβ2
2)

2(µα2
1 + ηα1α2 + λα2

2)
(s)

])
ei{−β1x−β2y+ρ tα

α +θ}, (34)

provided that(ρ + µβ2
1 + ηβ1β2 + λβ2

2)(µα2
1 + ηα1α2 + λα2

2) > 0.

3. Physical significance and graphical representations

In this section, we construct the physical interpretation to the some problem of the paper that add extra flavour to our analytical
solutions of (2). For this purpose, graphical representations of some established problem are discussed and suitable choice of
help us to construct dark, singular and traveling wave solutions. The graphically representations of some obtained solutions in
two and three-dimensional are given from Figs. 1 to 7. Figure 1 for Eq. (13) and Fig. (2) for Eq. (19) represent periodic wave
solutions and two-dimensional graphics limit cycle with suitable choice of parameters. Figure 5 for Eq. (27) and Fig. 7 for
Eq. (33) show dark and singular wave solutions. Dark and singular wave solutions types presents in Figs. 3, 4 for Eq. (23) and
Fig. 6 for Eq. (29).

FIGURE 1. a) 3D and b) 2D surfaces for the|Φ1,5(x, y, t)| with−1 ≤ x, t ≤ 1 for the valuesµ = 1, η = 2.50, λ = 2.50, δ = 1.50, α = 1,
α1 = −1, α2 = 1, β1 = 2, β2 = 1, θ = 0, ρ = 0, ω = 1, y = 0 and their projections att = 1, 1.25, 1.50.

FIGURE 2. a) 3D and b) 2D surfaces of|Φ2,5(x, y, t)| with −1 ≤ x, t ≤ 1 for the valuesµ = 1, η = 2.50, λ = 2.50, δ = 1.50, α = 1,
α1 = 1, α2 = 1, β1 = 2, β2 = −1, θ = 0 ρ = 0, ω = −1, y = 0 and their projections att = 1, 2, 3.
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FIGURE 3. a) 3D and b) 2D surfaces of imaginary part of theΦ3,1(x, y, t) with −1 ≤ x, t ≤ 1 for the valuesµ = 1, η = 2.50, λ = 2.50,
δ = −1.50, α = 1, α1 = 1.70, α2 = 1, β1 = 2, β2 = −1, θ = 0 ρ = −4, ω = 1, y = 2 and their projections att = 0.25, 0.50 0.75.

FIGURE 4. a) 3D and b) 2D surfaces of real part of theΦ3,1(x, y, t) with −5 ≤ x, t ≤ 5 for the valuesµ = 1, η = 2.50, λ = 2.50,
δ = −1.50, α = 1, α1 = 1.70, α2 = 1, β1 = 2, β2 = −1.70, θ = 0 ρ = −4, ω = 1, y = −2 and their projections att = 0.25, 0.50, 0.75.

FIGURE 5. a) 3D and b) 2D surfaces of|Φ3,5(x, y, t)| with −1 ≤ x, t ≤ 1 for the valuesµ = 1, η = 2.50, λ = 2.50, δ = −1.50, α = 1,
α1 = −1, α2 = 1, β1 = 2, β2 = −1, ρ = −2, ω = 1, y = 0 and their projections att = 0, 2, 4.
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FIGURE 6. a) 3D and b) 2D surfaces of|Φ4,1(x, y, t)| with −3 ≤ x, t ≤ 3 for the valuesµ = 1, η = 2.50, λ = 2.50, δ = 1.50, α = 1,
α1 = 1.70, α2 = 1, β1 = −1, β2 = 1, θ = 0, ρ = −4, ω = 1, y = 1 and their projections att = 1, 2, 3.

FIGURE 7. a) 3D and b) 2D surfaces of|Φ4,5(x, y, t)| with −3 ≤ x, t ≤ 3 for the valuesµ = 1, η = 2.50, λ = 0, δ = 1.50, α = 1,
α1 = 1.70, α2 = 1, β1 = −1, β2 = 1, θ = 0 ρ = −4, ω = −1, y = 0 and their projections att = 0, 1, 2.

4. Concluding remarks

In our work, we have employed suitable technique to de-
velop some new travelling wave solutions to the special kind
of nonlinear Schr̈odinger’s equations. The extended rational
sine-cosine method and extended rational sinh-cosh method
are found to be as one of the most effective, accurate and
powerful tools for the construction of analytical solutions for
fractional HFSCs in the semi-classical limit. As a result, ob-
tained some new exact solution in the form of hyperbolic,

trigonometric and complex functions solutions. On the basis
of our results, we found that solutions presented in [37-39]
using different models these solutions will be useful in fu-
ture development in order to construct exact solutions, the
existence criteria of involving parameters are also discussed.
Moreover, some of exact solutions obtained by these meth-
ods are mostly identical. We can conclude that the proposed
method is one of the most proficient techniques and can be ef-
ficiently employed for further investigation to NPDEs rasing
in contemporary science.
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