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This paper investigates exact voyaging (2 + 1) dimensional Heisenberg ferromagnetic spin chain solutions with conformable fractional
derivatives, an important family of nonlinear equations from 8dmger (NLSE) for the construction of hyperbolic, trigonometric and
complex function solutions. The detailed rational sine-cosine system and rational sinh-cosh system were used to locate dim, special anc
periodic wave solutions successfully. These findings suggest that the proposed approaches may be useful to investigate a range of solutior
inside a repository of applied sciences and engineering, with success, quality, and trust. In addition, graphical representations and physica
expresses of such solutions are represented by a set of the required values of the parameters involved. The methods are essentially adequ
and can be extended to different dynamic models that create the nonlinear processes in today’s research.
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1. Introduction signal processing devices and quantum computing. In this
article, we have successfully investigated a variety of ex-

Over the last few years, nonlinear Setinger’s equations apt traveIIing wave solutions by employing extended rgtional

(NLSESs) have attracted much attention in the field of researcf{igonometric methods to construct the hyperbolic, trigono-

due to their numerous fascinating behaviour and countles@1€tric and complex function solutions moreover classify as

characteristics. A large variety of these equations are utilize§27k; singular and periodic wave solutions. To study (2+1)-

to describe important phenomena in different scientific field$limensional Heisenberg ferromagnetic spin chains (HFSC)

like, plasma physics [1,2], condensed matter physics [3]M0del of the the form [28,29].

convective fluids [5], optical fibers [6,7], solid state physics . 20,

[8,9], hydrodynamic [10], water waves [11] and many other W+ W+ AWy + Wy —OJP =0, (1)

branches of engineering [12-14]. In past years, to find the exhere, ¥ is coherent amplitude. Hashemi transform it into

act solutions of NLSEs many powerful technique have beemractional form:

developed such as, the inverse scattering transformation [15],

the homotopy perturbation method [16,17], the Darboux iD{ () + u¥,, + Ay, + V., — 6|V [*¥ =0,

transformation method [18,19], the Sine-Gordon expansion ,

method [20], Bernoulli sub-equation method [21], the mod- i=v-1 0

ified auxiliary equation mapping method [22,23], the Ric-\yhere v — W(z,y,t) is the complex valued function of
cati equation mapping method [4], the extgnded Si”h'Gofdoﬁeisenberg ferromagnetic spin chainandy are represent-
equation expansion method [24],the modify extended direc,g scaled spatial and t is the time coordinates respectively.
algebraic method [25]. In recent times, a large number of scientists and re-
The Heisenberg models of ferromagnetic spin chains wittsearchers have been attracted to HFSC models due to their
various magnetic reactions in the classical and semiclassicalgnificant and fascinating characteristics for construction of
limits have been related with nonlinear evaluation equationslifferent types of exact solutions in NPDE&{ () is the
(NLEEs). The nonlinear spin chain have wide range of ap-conformable fraction derivative of of ordera. Nowadays,
plications in magnetic materials such as, sensors [26], mithe field of conformable fractional derivative become one of
crowave, date storage devices, communication system [27§he most important and interesting field for scientists because
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of its uses nonlinear sciences suck as, fluid mechanics, chenmRutting Eq.B) into Eq. 2), we obtain

ical and biological processes. In literature, there are so many

definitions which of them are, Riemann-Liouville [30,31],

Atangana-Baleanu derivative in Caputo sense [32], Caputoa

and Grunwald-Letnikov [33-35]. —(p+pf? +npB1Bs + \32)U(s) — 0W(s)> =0, (6)
The remaining paper is arranged as fellows: In Sec. 2

some sliton soluti_ons t_o t_h_e HFSC model h_ave been Pr&yhere oy, o, 8, and 3, real constants and are center of
sented. The physical significance and graphical representdy1co  \wher® represents the phase componenis the

tion is presented in Sec. 3. In Sec. 4 finally the concludinq,elocity andw is the frequency respectively.
remarks and behaviour of solution have been discussed.

(nai + naraz + Aa3) ¥’ (s)

2. Mathematical analysis 2.1. Applications of the extended rational sine-cosine

In this section, to obtain the exact solutions of E2).ly ap- method

plying following conformable fractional derivative [36]

Ut + ett=2) — (1) Assume that Eq\6) has the solution of the form:

Dy (W(t)) = lim 3)
€e— € .
By this definition and following complex travelling wave U(s) = M7 cos(vs) # ,ﬁj (7)
transformation Az + Ay cos(vs) Ay
_ i9(z,y,t)
®(w,y,1) = U(s)e ’ ) or of the form
where
t> Ag cos (vs) . Ag
S= Q1T + agy —w—, U(g)= —— "~/ _=
1 2y a (S) A2 + Al Sin(’/s)’ Sln(ys) # Al’ (8)
tOA
O=—bix=foy+p - +0. ) whereAy, A; and A, are parameters that will be determined
|  andv represents wave number.
Family |

Now, substituting Eq[4) into Eq. 6) and then setting each coefficients of all terms®f™ (vs) orsin” (vs) to zero, yields
a system of algebraic equations. Then we obtain system of algebraic equations involving pardametersis, u, v, A, 9, p.

—OAT + ALp + ufB + 11 B> + A33) =0,
AL As[—p*ad — P anag — APad 4+ 2(p 4 pf? + BB + A\32)] = 0,
SA2 — 207 A3 (uad 4 noaqan + Aa3) + Ai(p + urPad + nrtagag + APad + pBi +npify + A\33) = 0.

Solving this system, we yields the following set:
Case l:

2 2 2 2 2
AO:iAl\/eruﬁlJrn&ﬁer)\ﬁg’ A idy, oy 2ot uBE 0B A
) pnod + nojos + Aaj

Substituting these results into E®) py using Eq.[7) , we have

2(p + Bt +nB1B2 + AB3)
sin 5 5—(8)
p+ WBF + 02 + AB3 pai Fnanas + Aay
(bl,l(x7yat) =

0 2(p+,uﬁf +fr]ﬁl/é,Q +)\6%) (S)
pa? + najas + a3

e’i{—ﬁﬂ—ﬁzy-&-p%ﬁﬁ}. 9)

1+ cos

. [ \/2(P+M5%+775152+>\55) )

sin 5 a2 ( )]
pog + nogas + Aag ei{—ﬁlzfﬁ2y+p%+9}. (10)

20p + pE + 0bra +AB)
pad + nagas + Ao

+ pBt + + A\33
@172(I,y,t) _ \/p Mﬂl gﬂlﬁQ BZ
1+ cos
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2(p + pBt + 1P1 B2 + AG3)
2 2 St o? + noq s + Aa? (s)
Q4 5(z,y,t) = \/p-i—/iﬁl +7Zf152 +AB3 i 172 r 2 - o —Bre—Pay+pis+0} (11)
Lo [ \/ 20p + 82 + BB + AG3) (5)])

pad + nagas + Ao

. l ¢ 2p-+ pBf + 2 +NB)
2 2 puo? + najag + Aai 4 o
@1)4(x’y,t) = —\/p+ Mﬁl + 776162 + )\52 ! 2 el{_ﬂlx—629+07+9}. (12)

] 2 2
1 — cos 2(p+/21’51+7’51ﬁ2+)‘2ﬁ2)(8)
pas + nojag + Aas

Casel ll:

2 2 2 2
Ao:iAl\/eruﬁlJrnﬁlﬂw/\ﬂQ, PR X9 ES DOESY |
] 2(pog + noqag + Aag)

Again, substituting these results into EB) by using Eq.7), we obtain

By (. t) = \/p+uﬁf +nbiBe + ASF (| [P+ pBE + 0B B + MG (5)| | eil-prz-sayots+o) (13)
SV ) 2(pa? + naras + Aa3) '

)

2 )\ 2
Py 6(z,y,t) = _\/p—i— WOy + Bz + A tan 5 5
’ 203 + naras + Aad)

\/P + /Jﬁ% + 16162 + )‘ﬁg (8)1 ) ei{—ﬁw—ﬁzy-f—p%-ﬁ-a} (14)

provided thatp + 5% 4+ 16182 + A33) (pai + nagas + Aa3) > 0.
Family II

Again, substituting Eq/8) into Eq. 6) and then setting each coefficients of all termsiaf” (vs) or cos™(vs) to zero,
yields a system of algebraic equations. Then we obtain system of algebraic equations involving parémeterss, u, v,
A6, p.

—8AL + A3 (p+ Bt 4+ nbiBa + A\33)
A1 As[—pPal — mtanas — APad + 2(p + pBt + nBiBe + AG3)]

3

0
0,
0

SAS — 207 AT (pad + nawas + Aa3) + A3(p + pr’ad + v’ anas + \WPad + pBt + 1B + A33)

This system, gives the following set of solutions:
Case l:

2 2 2 2
A0::|:A1\/p+uﬁl+nﬁlﬁ2+)\52, A =4y = | HOTHOL T+ AG)
0 pas + noajog + Aaj

Substituting these results into E®) py using Eq./8), we have

cos | 2P E (153 + 1B B2 + \B3) 5
pad + nagas + Ao

( )1
o —Braz—Pay+pis+0} (15)

2p + pBE + 0B + AB3)
pad + najas + Aai

+ uBE + AR
q’2,1($,y,t):\/f’ i 7(755152 3

1 +sin
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. l \/2(p + 4% + i + AG3) (3)]
_\/p + B3 + 0B + NG5 pai + naraz + Aaj H=Pra=BaytpT 40} (16)
o \/2(p+uﬁf + 16152 + AB3) (5)1

(1)2»2 (.%', Y, t) =
1+ sin

pad + nagas + Ao

cos 2(p + pBf + B B2 + A33) s
pa? 4+ nagas + Aas

( )]
Oy 3(x,y,t) = \/p i 0 A, el =Pra—Baytp's +0} (17)
0 o l\/Q(P+Mﬁ%+Uﬁlﬁz+)\ﬁ§) ]
— sin (s)

pad + nayas + Ao

os | [2lo+ 1Bt + BB+ ABE)
pad + najas + Ao

o
Dy 4(z,y,t) = _\/p—f—,uﬁf + 16152 + B3 oH{—Braz—Pay+p'T+0} (18)
0 1 — s [\/2(p+uﬂ%+nﬁlﬁz+w§)<s)]

sin
pad + najas + Aaj

Casel ll:

2 2 2 2
AOiAl\/p+u61+nﬁlﬂz+Aﬂg, Uy 0, o LEHBE 0B NG
) 2(pai + noqas + o)

Again, substituting these results into EB) by using Eq./8), we obtain

2 2 2 2 o
By o (, 1 t) = \/p + 187 +nbiB2 + A3 (Cot \/p + 1B +nbiB2 + A5 (8)] ) eH=Pra—fautp’s+0}  (19)

) 2(pad + naras + Aa3)

2 2
B (1, y, ) = _\/P + upy + 7(755152 + \B3 (cot

p+ uBE + 0B S + N33 (5)| | efl-mo—taytos+0} (20)
2(ua? + naras + Aa3) ’

provided thatp + 7 4+ 16182 + A33) (pai + naras + Aa3) > 0.
2.2. Applications to the extended rational sinh-cosh method

Assume that Eql6) has the solution of the form:

_ Agsinh (vs) Ay
U(s) = Ay + Ay cosh(vs)’ cosh(vs) # 1 (21)
or of the form
A cosh (vs) A,

sinh(vs) # — (22)

(s) = As + Aj sinh(vs)’ A’
whereAg, A; and A, are parameters that will be determined an@presents wave number.
Family |

Now, substituting Eq/41) into Eq. [6) and then setting each coefficients of all terms®@h™ (vs) or sinh™(vs) to zero,
yields a system of algebraic equations. Then we obtain system of algebraic equations involving parémetersis, u, v,
A, 6, p. This system of equations are solved as follows:

GAG + A3 (p + b7 + 012 + AG3)
Ay Ao’ ad + P anas + Avad + 2(p + uft + 01 Sz + NG3)]

b

0
0,
0

—6 A% + 207 A (pad + naras + Aa3) + A3(p — wtal — mtaras — APa3 + pBt +nbife + AG3)
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Solving this system, we yields the following set of solutions with help of Mathematica:
Case l:

2 \32 —9 2 \G2
AO = :tZAl\/p * 'uﬁl + nﬁl/@2 + /62 , Al — Zl:AQ, v =4+ (p +2/’Lﬁ1 + 'I’]ﬁlﬁg +2 52)
) pnot + nojos + Aas

Substituting these results into E®) py using Eq.[21), we have

2 : sinh [\/ 2(p +2Nf1 + 775152)\-#2/\52) (5)1
Hag T e «
<I>3,1(:c,y,t):i\/p+uﬂl + 16182 + AG3 2 :

0 1+ cosh [\/_2(P+Uﬂ%+nﬂlﬁ2+/\ﬂ§)(s)]

pad + nagas + Ao

% ei{—ﬁlw—ﬁzy-‘rﬂ%ﬁ-@}.

sin | [ 220+ HBT+ 0510 + AG5)
p+ B2 + B fa + \32 pa? 4+ naas + Aad

(I)S,Q(xvyvt):_i\/ 5 9 2 \32
1+ cosh |/ — (p +2'uﬂ1 16152 +2 B2) (s)
pof + noqog + Aok

% ei{*ﬁlwfﬁzerP%JrG}.

_ 2 2
sinh 2(p +2,Uﬁ1 + 15152 +2/\52) (s)
nas + nagog + Ao

| ’ 1 —cosh [\/—2(0 + 137 + 0B + NB3) (s)]

pad + nagas + Ao

 eil—Bra—Pay+pis+0}

_ 2 2
Sinh 2(p +2/'L61 + 775152 +2>\52) (S)
pot + nojog + Aaj

2 by 2
PPN i ST S

6 2 2
2(p + + + A3
1 cosh (p 2#51 776162 2)\ 2) (S)
pay 4+ nojog + Aaj

% ei{—ﬁlw—ﬁzy-‘rﬂgﬁ-@}.

Case ll:

—o. oy, uBE 4056+ AGE)
’ 2(pad + naras + Aa3)

2 2
Ao = ﬁ:iAl\/eru/Bl “Zflﬂ? L

Again, substituting these results for only the positive values into/ZL), (ve obtain

]

(23)

(24)

(25)

(26)

R \/ po+ 1B + BB + A (tanh l\/ ~(pt i +n5152+w§>(5)b Homagarto S0} (27)

2(ua? + nayas + Aa3)

Py6(@,y,1) = —i\/p +ubi + o + A%y (tanh l\/_(p B e ¥ 20) (S)D GH-Bra-Bauto 10} (og)

1) 2(pa? + naras + Aad)
holds for(p + 3% + 05182 + AB3) (ua? + naras + Aai) < 0.

Rev. Mex. k5.67 040701
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Family II

Again, substituting Eq/22) into Eq. 6) and then setting each coefficients of all termsiah™ (vs) or cosh™ (vs) to zero,
yields a system of algebraic equations. Then we obtain system of algebraic equations involving patégmetersis, u, v,
A4, p.

SAG + A3 (p + uB} + b2+ A33) = 0,
A Agfp?ad + it anag + WPas + 2(p + pBt + 0B + MB3)] =0,
§AD — 202 A3 (naf + naras + Aaj) + A3(p — el — paras — Aw?ad + pBi + 0Pz + AB3) = 0.
This system, gives the following set of solutions:
Case l:
2 by 2 ) 2 A 2
AO = :tZAl\/p+ 'LL/Bl + nﬂlﬂQ + ﬂQ , Al — :l:A27 v =4+ (p +2,Uﬁ1 + 775152 +2 52)
4] pof + nojos + Aaj
Substituting these results into E®) py using Eq./22), we obtain
-9 2 A32
COSh [\/ (/) +2,uﬁl + nﬁlﬁQ +2 ﬂ2) (S)]
_ . [p+uB 4 npi B2 + A\G3 pay +naaos + Aag
(1)471(.’17,y,t) =1 5 5 3\ 5
1+ sinh —2(p +2Mﬂ1 + 15152 +2 B2) (s)
Hos + nagoe + Ao
« ei{—[31m—ﬂzy+p%+9}. (29)
-2 2 32
cosh (p +2u51 + 05152 +2 B53) (s)
N RS pof + nonag +Aad
(1)4’2(1',y,t) = —1 5 2 ) >
-2
1 + sinh (e +2'uﬁ1 155 +2 52) (s)
po + nog o + Ao
% ei{—ﬁlﬂﬂ—ﬁzy-ﬁ-p%-k@}. (30)
-9 2 A 2
cosh \/ (,0 +2‘LL61 +n61ﬂ2 +2 62)(8)
o4 uBE BB + NG2 ot + nogog + Aas
(I)4,3(x7yat) =1 5 5 5
. —2(p + pf7 +nbif2 + A\G3)
1 — sinh 5 5 (s)
pay + nojag + Aas
% ei{*ﬁlx*ﬁzerP%JrG}_ (31)

cosh l \/ —~2(p+ pfF + e+ \33) (s)l

pa? + nagas + Ao

Wik il G2
Py a(z,y,t) = —2\/p 1By + 1B 03

1) _ 2 2
1 —sinh 2(p +2/l51 b1/ +2>\ﬂ2) (s)
pas + nojag + Aaj

 eH{=Biz—PBay+p'T+0}
(32)

Case-ll:

Ay =

2 2
Ay = Lid, \/,o + B2 + b1 B2 + B3

! ’ 0. »= i\/—(P'i‘Mﬁ% + 1510+ AG3)

2(pa? + narag + Aa3)

Rev. Mex. k5.67 040701
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Again, substituting these results into EB) by using Eq.22), we obtain

By 52,y 1) = Z.\/p + pBf + BB + \G3 (Coth [\/(p + pBf +nP1f2 + AG3) (S>D eH-Pra—Baytps+0} (33)

) 2(pa? + naras + Aa3)

p+ uBt 4+ np1f2 + A3
Oy 5(z,y,t) = —i\/ ! 5 L ) [ coth

—(p + 1Bt + 01 B2 + A53) (s) e=Bro=Bay+p 50} (34)
2107 + s + o) ’

provided that(p + 137 + 01 B2 + AB3) (nad + noras + Aa3) > 0.

3. Physical significance and graphical representations

In this section, we construct the physical interpretation to the some problem of the paper that add extra flavour to our analytical
solutions of R). For this purpose, graphical representations of some established problem are discussed and suitable choice o
help us to construct dark, singular and traveling wave solutions. The graphically representations of some obtained solutions ir
two and three-dimensional are given from Figs. 1 to 7. Figure 1 for&).and Fig. (2) for Eq.[19) represent periodic wave
solutions and two-dimensional graphics limit cycle with suitable choice of parameters. Figure 5 f@7Fand Fig. 7 for

Eq. (33) show dark and singular wave solutions. Dark and singular wave solutions types presents in Figs. 3, 2)rabql. (

Fig. 6 for Eq. R9).

X

a) 10" b) 1 2 3 4

FIGURE 1. a) 3D and b) 2D surfaces for th®: 5(z, y, t)| with =1 < z,¢ < 1 for the valueg: = 1, n = 2.50, A = 2.50, 6 = 1.50, a = 1,
ar=—1,aa=1,61=2,62=1,0=0,p=0,w =1,y = 0 and their projections dt= 1, 1.25, 1.50.

FIGURE 2. a) 3D and b) 2D surfaces 0b2 5(z, y,t)| with —1 < z,¢ < 1 for the valuesu = 1, n = 2.50, A = 2.50, 6 = 1.50, a = 1,
ar=l,ax=1,61=2,62=-1,0=0p=0,w = —1,y = 0 and their projections at= 1, 2, 3.

Rev. Mex. 5. 67 040701
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V8V 8\

, Y10
a) 1.0 b) 5 10 15 20 25 a0

FIGURE 3. a) 3D and b) 2D surfaces of imaginary part of thg (z, y, t) with —1 < z,¢ < 1 for the valuesu = 1, n = 2.50, A = 2.50,
§=-150,a=1,0; =1.70,a2 = 1,31 = 2,82 = —1,0 = 0 p = —4,w = 1,y = 2 and their projections at= 0.25, 0.50 0.75.

FIGURE 4. a) 3D and b) 2D surfaces of real part of ##g 1 (z, y, t) with —5 < z,¢ < 5 for the valuesu = 1, n = 2.50, A = 2.50,
0=-150,a=1,a1 =170, = 1,61 =2, 082 = —1.70,0 = 0 p = —4,w = 1, y = —2 and their projections at= 0.25,0.50, 0.75.

FIGURE 5. a) 3D and b) 2D surfaces ¢bs 5 (z,y,t)| with —1 < z,¢ < 1 for the valuesu = 1, = 2.50, A = 2.50, 6 = —1.50, a = 1,
a1 =—-1,ae=1,01=2,0=-1,p=—2,w =1,y = 0 and their projections dt= 0, 2, 4.

Rev. Mex. I5.67 040701
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(TS , ;
e
i : s L7~ .
g T e e LA ,
S _
i %;% 7 5 057735 ( (
0.2 ’.' ; .

057735 -

0.57735 -

a) e b) = 10 20 30 40 50 *

FIGURE 6. @) 3D and b) 2D surfaces 0P, 1(z,y,t)| with —3 < z,¢ < 3 for the valuesu = 1, n = 2.50, A = 2.50, 6 = 1.50, a = 1,
a1 =1.70,a2 =1, =—-1,62=1,0 =0, p = —4,w = 1, y = 1 and their projections at= 1, 2, 3.

>

8 10
FIGURE 7. a) 3D and b) 2D surfaces (P4 5(z, y,t)| with —3 < z,¢ < 3 for the valuesu = 1, = 2.50, A = 0, = 1.50, o = 1,
a1 =170, =1, =-1,62=1,0 =0 p = —4,w = —1, y = 0 and their projections at= 0, 1, 2.

4. Concluding remarks trigonometric and complex functions solutions. On the basis

of our results, we found that solutions presented in [37-39]
In our work, we have employed suitable technique to deusing different models these solutions will be useful in fu-
velop some new travelling wave solutions to the special kindure development in order to construct exact solutions, the
of nonlinear Schidinger’s equations. The extended rational existence criteria of involving parameters are also discussed.
sine-cosine method and extended rational sinh-cosh methddoreover, some of exact solutions obtained by these meth-
are found to be as one of the most effective, accurate andds are mostly identical. We can conclude that the proposed
powerful tools for the construction of analytical solutions for method is one of the most proficient techniques and can be ef-
fractional HFSCs in the semi-classical limit. As a result, ob-ficiently employed for further investigation to NPDES rasing
tained some new exact solution in the form of hyperbolic,in contemporary science.
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