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Maxwellian electromagnetism describes the wave features of the light and related subjects. Its original formulation was established 150 years
ago. One of the four Maxwell’s equations is Gauss’s law, which states significant facts regarding magnetic flux through surfaces. It was also
observed that optical media provided surface electromagnetism around 60 years ago. This observation leads to improve new techniques on
nano-photonics, metamaterials, and plasmonics. The goal of this manuscript is to suggest novel accurate and local conditions for defining
magnetic flux surfaces for the inextensible Heisenberg antiferromagnetic flow in the binormal direction. The theoretical accuracy of the
methodology is verified through the evolution of magnetic vector fields and the anti-symmetric Lorentz force field operator. On the other
hand, the numerical accuracy and efficiency are developed in detail by considering the conformable fractional derivative method when these
fields are transformed under the traveling wave hypothesis.
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1. Introduction

Differential geometric tools such as surfaces and curves have
been appeared in many disciplines of theoretical and practi-
cal areas of science ranging from thermodynamics[1] to high
energy strings[2], and from general relativity[3] to solitons
[4], or even in plasma physics[5] and liquid crystals[6]. The
motion of curves and the concept of the Frenet-Serret frame
are the main common ingredient in all these applications.

These tools have also been considered in the research
of magnetic structures significantly. Recently, many authors
have focused on the subject of magnetic curves and inves-
tigate many important results. In these studies, one com-
mon approach has been used extensively. According to this
approach, it is generally assumed that magnetic curves are
trajectories of the time-independent moving charged parti-
cle on geometric manifolds or physical spacetime structures.
This motion of the particle is specifically determined by the
Lorentz force equation. Once the Lorentz force equation is
managed to solve successfully, then many interesting char-
acterizations have been developed from the geometric and
physical points of view. K̈orpınar and Demirkol investi-
gated electromagnetic curves, their geometric phases, and
their transportation laws, along with the linearly polarized
light coupling into the optical fiber in a three-dimensional
semi-Riemannian manifold[7] . Körpınar and Demirkol also
obtained frictional and magnetic curves by using the anti-
symmetric Lorentz force operator and Frenet-Serret equa-
tions to characterize their physical and geometric properties
[8, 9] . Kazan and Karadăg computed magnetic vector fields
of magnetic non-lightlike curves in terms of parallel transport

frames in three-dimensional Minkowski space[10]. Güvenç
andÖzg̈ur determined necessary and sufficient conditions for
being slant normal magnetic curves in(2n + 1)-dimensional
S-manifolds[11] . Cabrerizo studied the magnetic flow lines
and associated Killing magnetic fields in three-dimensional
space[12] . Sun established the connection between geomet-
ric invariants of the magnetic curves and magnetic normal bi-
normal surfaces[13] . Körpınar et al. investigated a new kind
of evolution equation for electric and magnetic fields satis-
fying the Maxwell equations along with the uniform opti-
cal fiber in three-dimensional ordinary space and Minkowski
space[14, 15] .

These structures are implemented by many authors to de-
fine magnetic flux-tubes in the case of inflexional configu-
ration and inflectional disequilibrium. In the presence of
a magnetic field, the magnetic flux-tube is defined by the
cylindrical-thin tube of circular cross-section having a pos-
itive radius. The cases of twisted magnetic flux-tube and
straight flux-tube are investigated separately in various stud-
ies. The geometric formulation of these tubes is derived by
the Lorentz force equation and used to determine generic
characterizations associated with the several useful appli-
cations to astrophysical flows, solar corona loops, etcetera.
Nested toroidal flux surface is described due to the motion
curves in magnetohydrostatic. It can be considered as a gen-
eralization of the magnetic flux-tube. All these results have
been obtained through the Riemannian and non-Riemannian
geometric data and facts. Ricca studied generic behavior and
equilibrium conditions of the magnetic flux-tube by consid-
ering the Lorentz force equations[16] . Ricca also presented
new consequences concerning inflexional and evolution in-
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stability of magnetic flux tubes when the curvature of the tube
axis vanishes[17] . De Andrade obtained a non-Riemannian
geometrical characterization of the magnetic flux-tube and
the fluid rotation by using the Da Rios equation[18] . De An-
drade showed that the twist of the magnetic flux tube could
be computed in terms of the torsion of the tube axis under a
special evolution equation[19] . De Andrade considered the
Heisenberg spin equation and Gauss-Mainard-Codazzi equa-
tions to observe the influence of torsion and curvature of the
magnetic flux-tube axis in magnetic filament acting as dy-
namos evolution[20] .

The wider geometric importance of the moving curves
is appeared in vortex filament motion, magnetic dynamics,
kinematics of interfaces. The relationship between the mo-
tion of curves and the integrable evolution equation is the
main subject focused on by many researchers. As a result
of this effort, the equation of the motion of curve or vortex
filament is linked by many geometric and physical evolution
equations such as the Landau-Lifshitz equation, non-linear
Schr̈odinger equation, localized induction equation, Heisen-
berg antiferromagnetic and ferromagnetic equation, binormal
equation, Da-Rios equation. Guo and Ding classified ex-
plicit or approximate boundary value solutions or initial value
problems together with their physical or geometric flow mod-
els [21]. Vieria and Horley used binormal, normal, and tan-
gent vectors of the Frenet-Serret system in such a successful
way that they extracted significant data regarding the dynam-
ics of the magnetization vector[22] . Hasimoto described an
intrinsic equation governing the torsion and curvature of a
vortex to define the propagation of a hump or loop of he-
lical flow [23] . Anco and Myrzakulov generalized Heisen-
berg spin models and Schrödinger maps from geometric sur-
face flows and Hamiltonian flow through Frenet-Serret equa-
tions of surfaces and curves[24] . Erdŏgdu andÖzdemir dis-
cussed Hasimoto surfaces and their geometric properties such
as mean and Gaussian curvature of these surfaces for each
case in Minkowski space[25] . Ricca realized a correlation
among localized induction approximation, Betchov-Da Rios
equation, and nonlinear Schrödinger equation for extracting
pseudo-helicity, energy, and associated Lagrangian for the
motion of a thin vortex filament[26] . Balakrishnanet al. de-
rived the geometric phase, gauge potential, and the anholon-
omy density of general space curves by employing Lamb’s
formulation for time evolution systems[27] . Barroset al.
computed soliton solutions of the Betchov-Da Rios equation
explicitly in the anti-De Sitter and Lorentzian space forms
[28, 29] . Arroyo studied binormal flow with torsion and cur-
vature to investigate the evolution of filaments[30] .

These flow models and nonlinear evolution equations can
be related to soliton propagation. In many cases, they are
used to explain the notion of parallel transportation and geo-
metric phase along with that propagation. For example, the
effect of this phase is observed along with the rotational di-
rection of polarized light rays propagating through the opti-
cal fiber. If the solid angle observed by the turning of the
tangent vector of optical fiber is equal to the angular rota-

tion of light rays, then it implies that the polarization has
been parallel transported. Subsequent studies have shown
that particular equations such as Maxwell’s equations, spin
equations, Lorentz equations, etcetera. contain the rotational
effect of the polarization of light. K̈opirnar et al. stud-
ied soliton propagation of electromagnetic field vectors of
the polarized light ray traveling along with the coiled opti-
cal fiber in different geometric structures [31-33]. Balakr-
ishnan formulated path dependence of the rotation and the
geometric phase of the moving orthonormal vectors by con-
sidering continuous, classical, antiferromagnetic Heisenberg
flow [34]. Bliokh reviewed the spin-orbit propagation along
with the light with the emphasis of the Berry phase and spin
Hall effect carried by the wave [35]. Bliokhet al. also
measured the precession of the Stokes vector and the spin-
dependent deflection along the coiled ray trajectory in an ex-
cellent accuracy with theoretical estimations[36] . Wassmann
and Ankiewicz improved an alternative method allowing one
to derive Berry’s topological phase in terms of both planar
and solid angles[37] . Balakrishnan characterized a special
type of geometric phase depending on a family of soliton-
based equations[38] . Samuel and Nityananda explained a
new transportation rule for polarization vectors and their inte-
grability conditions while these vectors are assumed to define
along with non-geodesic null curves[39] . Balakrishnan and
Dandoloff generalized the classical evolution equation for a
spae curve to demonstrate traditional analogs of the Heisen-
berg and Schr̈odinger pictures seen in the quantum theory
[40].

This paper investigates another aspect of the moving
curve evolution. We define magnetic field lines governed by
the inextensible Heisenberg antiferromagnetic flow in rela-
tion to the total geometric phase and apply these to charac-
terize the Lorentz magnetic flux surfaces in the binormal di-
rection. Thus, we aim to derive the geometric relationship
between magnetic flux surfaces and magnetic field lines in
the binormal direction. The theoretical and numerical ac-
curacy of the methodology is proved through the inexten-
sible Heisenberg antiferromagnetic flow of magnetic vector
fields, the evolution anti-symmetric Lorentz force field oper-
ator, and the conformable fractional derivative method when
these fields are transformed under the traveling wave hypoth-
esis. Thus, we aim to develop a novel approach for gaining a
better insight into the nature of potential geometric and phys-
ical properties in interacting magnetic field lines and their
flow models in the binormal direction.

The organization of the paper is as follows. In Sec. 2,
we present differential geometric structures of orthonormal
Frenet-Serret vectors and their directional derivatives. In
Sec. 3, we compute magnetic and electricb-lines in terms of
orthonormal vector fields and associated geometric quantities
in the binormal direction. In Sec. 4, we describe a new type
of inextensible Heisenberg antiferromagnetic flow model for
the magnetic lines and associated magnetic vector fields in
the binormal direction. In Sec. 5, the results and potential
research topics are specialized. We conclude the paper by
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the appendix, which includes approximate solutions of some
equations computed through the manuscript.

2. Differential Geometry of Frenet-Serret Vec-
tors

In the introduction, we state that the motion of curves and
the concept of the Frenet-Serret frame are the main common
ingredient in many applications. The orthonormal Frenet-
Serret frame governing the intrinsic characterization of the
vector tripleA = (−→e1,

−→e2,
−→e3) is given in the compact shape

by

∂

∂s
AT =XAT , (1)

∂

∂n
AT =YAT , (2)

∂

∂b
AT =ZAT ,

where X , Y, Z can be written in the following skew-
symmetric matrix form

X =




0 κ1 0
−κ1 0 κ2

0 −κ2 0


 , (3)

Y =




0 κns κb + κ2

−κns 0 −div −→e3

− (κb + κ2) div −→e3 0


 , (4)

Z=




0 − (κn + κ2) κbs

(κn + κ2) 0 κ1 + div −→e2

−κbs − (
κ1 + div −→e2

)
0


 , (5)

respectively. Here,T denotes the transpose of the matrix
A = (−→e1,

−→e2,
−→e3). Furthermore,∂/∂s, ∂/∂n, ∂/∂b rep-

resent directional derivatives in the tangent direction, normal
direction, and binormal direction, respectively. By assump-
tion, in the tangent direction, we know that the tangent vector
of s-lines is denoted by−→e1 i.e.

∂

∂s
ς = −→e1, (6)

whereς is assumed to represents-lines. In the normal direc-
tion, the tangent vector ofn-lines is denoted by−→e2 i.e.

∂

∂n
$ = −→e2, (7)

where$ is assumed to representn-lines. In the binormal
direction, the tangent vector ofb-lines is denoted by−→e3 i.e.

∂

∂b
θ = −→e3, (8)

whereθ is assumed to representb-lines. The gradient opera-
tor is written by

∇ = −→e1
∂

∂s
+−→e2

∂

∂n
+−→e3

∂

∂b
. (9)

Hence, the vector analysis formulas can be expressed by

div−→e1 = κns + κbs, (10)

div−→e2 = −κ1 +−→e3
∂

∂b
−→e2, (11)

div−→e3 = −−→e3
∂

∂n
−→e2, (12)

where

κns = −→e2
∂

∂n
−→e1, κbs = −→e3

∂

∂b
−→e1. (13)

The curl operator is written by

∇ = −→e1 × ∂

∂s
+−→e2 × ∂

∂n
+−→e3 × ∂

∂b
. (14)

Hence, the other vector analysis formulas can be expressed
by

curl−→e1 = κs
−→e1 + κ1

−→e3, (15)

curl−→e2 = −(div−→e3)−→e1 + κn
−→e2 + κns

−→e3, (16)

curl−→e3 = (κ1 + dive2)−→e1 − κbs
−→e2 + κb

−→e3, (17)

where

κs = −→e3
∂

∂n
−→e1 −−→e2

∂

∂b
−→e1, (18)

κn = −→e1
∂

∂b
−→e2 − κ2, (19)

κb = −κ2 −−→e1
∂

∂n
−→e3. (20)

In the end, we remind that each vector or geometric quantity
depends on the three variables of(s, n, b) . For the brevity
purpose, we rather choose using−→e1 = −→e1 (s, n, b) , κ1 =
κ1 (s, n, b) , etc. type of notation. We will continue to apply
a similar notation for any function associated with the above
vectors or geometric quantities. We also think that repeated
statements of smoothness conditions and excessive repetition
that certain parameters are supposed to be non-vanishing may
seem obscure. Accordingly, we suppose that all functions
are sufficiently smooth as required by the calculation unless
stated otherwise.

3. Magnetic and electric b-lines in the binor-
mal direction

An important relation between electromagnetism and differ-
ential geometry can be established when the moving posi-
tively charged particle under the action of the Lorentz force
and its trajectory is observed. This trajectory is repre-
sented by electromagnetic lines such that they are assumed to
the composition of magnetic lines and electric lines. Lorentz
force has a crucial role to describe the behavior of these lines.
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In the differential geometric viewpoint, the magnetics-lines,
magneticn-lines, magneticb-lines satisfy the following types
of Lorentz force equations in the tangent direction, normal
direction, and binormal direction, respectively

φs

(−→e1

)
=

∂

∂s
−→e1 = Ms×−→e1, (21)

φn

(−→e2

)
=

∂

∂n
−→e2 = Mn×−→e2, (22)

φb

(−→e3

)
=

∂

∂b
−→e3 = Mb×−→e3, (23)

whereMs, Mn, Mb are divergenceless magnetic vector
fields associated with each magnetic line given directions
[41]. By using the language of differential geometry, we aim
to simplify the calculation and formalization of the magnetic
field lines and provide various other physical understanding
more simply. In this section, we obtain magnetic lines under
the action of the Lorentz force equation by using the Frenet-
Serret formalism in the binormal direction. Later on, these
lines will be used derived magnetic flux surfaces when their
motions are governed by the inextensible Heisenberg antifer-
romagnetic flow.

First, we consider Eqs. (5,23) to obtain Lorentz force
fields of Frenet-Serret vectors. Then we should also take into
account the following well-known facts of the inner product

φb(−→e1) · −→e2 = −φb(−→e2) · −→e1 φb(−→e1) · −→e3

= −φb(−→e3) · −→e1,φb(−→e2)·−→e3= −φb(−→e3)·−→e2. (24)

So, from Eqs. (5,23,24), Lorentz force fields of Frenet-Serret
vectors are obtained in the following way

φb(−→e1) = ρ−→e2+κbs
−→e3, φb(−→e2)

= −ρ−→e1+(κ1+div−→e2)−→e3, φb(−→e3)

= −κbs
−→e1−(κ1+div−→e2)−→e2, (25)

where ρ is a well-defined arbitrarily chosen sufficiently
smooth function along with magneticb-lines. It is al-
ready known that divergenceless magnetic vector fieldMb

is spanned by the(−→e1,
−→e2,

−→e3). Therefore, it should also be
true that

Mb = m1
−→e1 + m2

−→e2 + m3
−→e3, (26)

whereφb(Mb) = 0. Here,m1, m2, andm3 are also suffi-
ciently smooth functions along with magneticb-lines. As a
result of Eqs.(23, 25, 26, 27) , the magnetic vector field of
magneticb-lines in the binormal direction is computed by

Mb = (κ1+div−→e2)−→e1−κbs
−→e2+ρ−→e3. (27)

The electromagnetic force equation in the binormal direction
can be expressed by

Fb=q(Eb+−→e3 ×Mb) = mφb(−→e3), (28)

whereEn denotes electricn-lines defined along with the mo-
tion of the positively charged particle. Thus, by using Eqs.
(28, 29) , it is obtained that

Eb = −κbs(1 + m/q)−→e1 − (κ1+div−→e2)(1 + m/q)−→e2.

4. Inextensible Heisenberg antiferromagnetic
flow model in the binormal direction

The inextensibility of the mechanism is an important tool to
seek the relation between the geometric motion of space or
plane curves and integrable equations. Apart from the tradi-
tional inextensible flows in the tangent direction, we identify
time-dependent evolution equations satisfied by the geomet-
ric quantities of magneticb-lines under inextensible flows in
the binormal direction.

In the binormal direction, the most generalized form of
the inextensible flow can be represented by

∂

∂u
$ = λ1

−→e1 + λ2
−→e2 + λ3

−→e3, (29)

whereλ1, λ2, andλ3 are sufficiently smooth coefficients of
the tangent, normal, and binormal vectors along magneticb-
lines in the binormal direction.∂/∂u is used to represent the
time derivative. Here, one should also recall that the binormal
vector is assumed to satisfy the following identity

∂

∂b
$ = −→e3, (30)

where$ denotes the family of magneticb-lines in the bi-
normal direction. Now, if basic compatibility conditions and
properties of the inner product are applied to Eqs. (5,31,32)
then we may write that

∂

∂u
−→e1 = σ−→e2 −

(
∂

∂b
λ1 + λ2(κn + κ2)− λ3κbs

)
−→e3, (31)

∂

∂u
−→e2 = −σ−→e1

−
(

∂

∂b
λ2−λ1(κn+κ2)−λ3(κ1+div−→e2)

)
−→e3, (32)

∂

∂u
−→e3 =

(
∂

∂b
λ1 + λ2(κn + κ2)− λ3κbs

)
−→e1

+
(

∂

∂b
λ2 − λ1(κn+κ2)−λ3(κ1+div−→e2)

)
−→e2, (33)

whereσ is a sufficiently smooth function defined along with
the magneticb-lines in the binormal direction. Eqs. (32-34)
are given the most generalized form of the evolution equa-
tion for time derivative in the normal direction. Now, we de-
fine the particular case of the inextensible evolution of mag-
neticb-lines in the binormal direction. This particular case is
known as the Heisenberg antiferromagnetic flow in the binor-
mal direction. It is defined by

∂

∂u
$ =

∂

∂b
$ × ∂2

∂b2
$, (34)
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or equivalently

∂

∂u
$ = −→e3 × φb(−→e3). (35)

From Eqs.(5, 35, 36) , it can easily be computed that

∂

∂u
$ = (κ1+div−→e2)−→e1 − (κbs)−→e2. (36)

By comparing Eqs. (32-34) and Eq. (37), we can conclude that the inextensible flow and Heisenberg antiferromagnetic flow of
b-magnetic lines coincide in the binormal direction when the following equalities satisfy

λ1 = κ1+div−→e2, λ2 = −κbs, λ3 = 0. (37)

Thus, the inextensible Heisenberg antiferromagnetic flow of Frenet-Serret vectors can be induced to

∂

∂u
−→e1=σ−→e2−

(
∂

∂b
(κ1+div−→e2)− κbs(κn+κ2)

)
−→e3, (38)

∂

∂u
−→e2=− σ−→e1+

(
∂

∂b
κbs+(κ1+div−→e2)(κn+κ2)

)
−→e3, (39)

∂

∂u
−→e3 =

(
∂

∂b
(κ1+div−→e2)− κbs(κn + κ2)

)
−→e1 −

(
∂

∂b
κbs + (κ1+div−→e2)(κn + κ2)

)
−→e2, (40)

whereσ is a sufficiently smooth function defined along with the magneticb-lines in the binormal direction. Time-dependent
evolution equations of Frenet-Serret vectors may also be written by only using the vector calculus identities in the following
way

∂

∂u
−→e1 = σ−→e2 −

(
∂

∂b

[
−→e3

∂

∂b
−→e2

]
−−→e3

∂

∂b
−→e1

[
−→e1

∂

∂b
−→e2

])
−→e3, (41)

∂

∂u
−→e2 = −σ−→e1 +

(
∂

∂b

[
−→e3

∂

∂b
−→e1

]
+−→e3

∂

∂b
−→e2

[
−→e1

∂

∂b
−→e2

])
−→e3, (42)

∂

∂u
−→e3 =

(
∂

∂b

[
−→e3

∂

∂b
−→e2

]
−−→e3

∂

∂b
−→e1

[
−→e1

∂

∂b
−→e2

])
−→e1 −

(
∂

∂b

[
−→e3

∂

∂b
−→e1

]
+−→e3

∂

∂b
−→e2

[
−→e1

∂

∂b
−→e2

])
−→e2. (43)

The inextensible soliton surface associated with the Heisenberg antiferromagnetic flow of magneticb-lines can be constructed
once the coefficients of the fundamental forms are derived. Coefficients of the first fundamental form can be computed by

I=(d$ · d$)=
(

∂

∂b
$db+

∂

∂u
$du · ∂

∂b
$db+

∂

∂u
$du

)
= (−→e3db + (κ1+div−→e2(−→e1du− κbs

−→e2du · −→e3db

+ (κ1+div−→e2)−→e1du− κbs
−→e2du) = db2 + ((κ1+div−→e2)2 + (κbs)2)du2. (44)

Thus, we find that

EI=1, FI=0, GI=(κ1+div−→e2)2 + (κbs)2. (45)

The binormal vector of the inextensible soliton surface associated with the Heisenberg antiferromagnetic flow of magnetic
b-lines is calculated as

N =

∂

∂b
$ × ∂

∂u
$

∥∥∥∥
∂

∂b
$ × ∂

∂u
$

∥∥∥∥
=

κbs
−→e1 + (κ1+div−→e2)−→e2√

(κbs)2 + (κ1+div−→e2)2
. (46)

Rev. Mex. F́ıs. 67 (3) 452–464



FRACTIONAL SOLUTIONS FOR THE INEXTENSIBLE HEISENBERG ANTIFERROMAGNETIC FLOW . . . 457

Then, coefficients of the second fundamental form can be computed by

II=(d$ · dN )=
(

∂

∂b
$db+

∂

∂u
$du · ∂

∂b
Ndb+

∂

∂u
Ndu

)
=

1√
(κbs)2 + (κ1+div−→e2)2

(
−→e3db +

[
κ1+div−→e2

]−→e1du

− κbs
−→e2du ·

[
∂

∂b
κbs +

{
κ1+div−→e2

}{
κn + κ2

}]
−→e1db +

[
∂

∂b

{
κ1+div−→e2

}− κbs

{
κn + κ2

}]
−→e2db +

[{κbs}2

+
{
κ1+div−→e2

}2]−→e3db +
[

∂

∂u
κbs −

{
κ1+div−→e2

}
σ

]
−→e1du +

[
∂

∂u

{
κ1+div−→e2

}
+ κbsσ

]
−→e2du +

[{
κbs

}2

+
{
κ1+div−→e2

}2{
κn + κ2

}− κbs
∂

∂b

{
κ1+div−→e2

}
+

{
κ1+div−→e2

} ∂

∂b
κbs

])
−→e3du. (47)

A direct computation of the above equation yields that

II =
1√

(κbs)2 + (κ1+div−→e2)2

(
[{κbs}2 + {κ1+div−→e2}2

]
db2 + 2

[
{

(κbs)2 + (κ1+div−→e2)2
}{

κn + κ2

}− κbs
∂

∂b

{
κ1+div−→e2

}

+
{
κ1+div−→e2

} ∂

∂b
κbs

]
dbdu+

[
−σ

{
(κbs)2 + (κ1+div−→e2)2

}−κbs
∂

∂u

{
κ1+div−→e2

}
+

{
κ1+div−→e2

} ∂

∂u
κbs

]
du2

)
. (48)

Thus, we find that

EII =
1√

(κbs)2 + (κ1+div−→e2)2
(
[κbs]2 + [κ1+div−→e2]2

)
, (49)

FII= 2√
(κbs)2+(κ1+div−→e2)2

([{
κbs

}2+
{
κ1+div−→e2

}2
][

κn+κ2

]−κbs
∂

∂b

[
κ1+div−→e2

]
+

[
κ1+div−→e2

] ∂

∂b
κbs

)
, (50)

GII =
1√

(κbs)2 + (κ1+div−→e2)2

(
− σ

[{κbs}2 + {κ1+div−→e2}2
]− κbs

∂

∂u

[
κ1+div−→e2

]
+

[
κ1+div−→e2

] ∂

∂u
κbs

)
.

As a result, the Gauss curvature and mean curvature of the inextensible soliton surface associated with the Heisenberg antifer-
romagnetic flow of magneticb-lines are given by using Eqs. (45-52) in the following way

GC =
1

(κbs)2 + (κ1+div−→e2)2

(
− σ

[{κbs}2 + {κ1+div−→e2}2
]− κbs

∂

∂u

[
κ1+div−→e2

]
+

[
κ1+div−→e2

] ∂

∂u
κbs

)

− 4
((κbs)2 + (κ1+div−→e2)2)2

(
[{κbs}2 + {κ1+div−→e2}2

][
κn + κ2

]− κbs
∂

∂b

[
κ1+div−→e2

]
+

[
κ1+div−→e2

] ∂

∂b
κbs

)2

,

(51)

HC =
1

2((κbs)2 + (κ1+div−→e2)2)3/2

(
[− σ + {κbs}2 + {κ1+div−→e2}2

][{κbs}2 + {κ1+div−→e2}2
]

+
[
κ1+div−→e2

] ∂

∂u
κbs − κbs

∂

∂u

[
κ1+div−→e2

]
)

. (52)

Now, we can present some further geometric properties of magneticb-lines lying on the inextensible soliton surface associated
with the Heisenberg antiferromagnetic flow in the binormal direction.

A curve lying on any surface is called a geodesic if and only if the normal vector of the surface coincides with the principal
normal of the curve. Based on this fact, we get the following two results.

¨ b-parameter magneticb-lines of the inextensible soliton surface associated with the Heisenberg antiferromagnetic flow
in the binormal direction are geodesics.

¨ u-parameter magneticb-lines of the inextensible soliton surface associated with the Heisenberg antiferromagnetic flow
in the binormal direction are geodesics if and only if

κbs
∂

∂b
κbs + (κ1+div−→e2)

∂

∂b
(κ1+div−→e2) = 0. (53)
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A curve lying on any surface is called an asymptotic if and only if along the curve the surface normal vector field is
orthogonal to the principal normal vector field of the curve. Based on this fact, we get the following two results.

¨ b-parameter magneticb-lines of the inextensible soliton surface associated with the Heisenberg antiferromagnetic flow
in the binormal direction are asymptotics if and only if

κ1 = −div−→e2.

¨ u-parameter magneticb-lines of the inextensible soliton surface associated with the Heisenberg antiferromagnetic flow
in the binormal direction are asymptotics if and only if

κbs = σ(κ1 + div−→e2).

As a result, we conclude that magneticb-lines are lines of curvature if and only if the following equality holds

−(κ1+div−→e2)
∂

∂b
κbs + κbs

∂

∂b
(κ1+div−→e2) = (κn + κ2)

([
κbs

]2 +
[
κ1+div−→e2

]2)
. (54)

An exclusive case is that for which the inextensible soliton surface associated with the Heisenberg antiferromagnetic flow
of magneticb-lines is developable. For that, we first assume that magneticb-lines are lines of curvature. Then, the soliton
surface is developable if and only if

(κ1+div−→e2)
∂

∂u
κbs − κbs

∂

∂u
(κ1+div−→e2) = σ

([
κbs

]2 +
[
div−→e3

]2)
. (55)

Equations (56,57) may be used to derive such a relation in a way that emphasizes the physical aspect of the soliton surface
through the geometric quantities of the Heisenberg antiferromagnetic flow of magneticb-lines. This relation is written by
Laplacian-like differential equations in the following way

−(κ1+div−→e2)
∂2

∂b2
κbs + κbs

∂2

∂b2
(κ1+div−→e2) =

(
[κbs]2 + [κ1+div−→e2]2

)

× ∂

∂b
(κn + κ2) + (κn + κ2)

∂

∂b

(
[κbs]2 + [κ1+div−→e2]2

]
, (56)

(κ1+div−→e2)
∂2

∂u2
κbs − κbs

∂2

∂u2
(κ1+div−→e2) =

(
[κbs]2 + [κ1+div−→e2]2

) ∂

∂u
σ + σ

∂

∂u

(
[κbs]2 + [κ1+div−→e2]2

)
. (57)

In the appendix section, we will investigate approximate solutions and their numerical demonstrations of some special cases of
the Laplacian-like formalism given by Eqs. (58,59).

5. Magnetic Flux Surfaces of the Inextensible Heisenberg Antiferromagnetic Flow

In this section, new developments of the research recently proposed by many authors on the generalization of time evolution
equations on geometric quantities are investigated. Particularly, we consider applications to three-dimensional inextensible
Heisenberg antiferromagnetic flow dynamics, including the case of a magnetic flux surface and the flow rotation in the binor-
mal direction. Integrals on the total geometric phase are proved to be related to the integrals, which represent the geometric
characterization of the magnetic flux surface in continuous Heisenberg antiferromagnetic spin of magneticb-lines in the binor-
mal direction.

Let us first consider the Lorentz force fields of magneticb-lines given by Eq. (26) .

φb(−→e1) = ρ−→e2+κbs
−→e3, φb(−→e2) = −ρ−→e1+(κ1+div−→e2)−→e3, φb(−→e3) = −κbs

−→e1−(κ1+div−→e2)−→e2. (58)
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Now, we are ready to compute the evolution equations of Lorentz force fields for bothb andu parameters. The evolution
equations of the Lorentz force fields for the arc-length parameter in the binormal direction are written by using Eqs. (5,60) in
the following way

∂

∂b
φb(−→e1) =

(− [κbs]2 + ρ[κn + κ2]
)−→e1 +

(
∂

∂b
ρ− κbs[κ1+div−→e2]

)
−→e2 +

(
∂

∂b
κbs + ρ[κ1+div−→e2]

)
−→e3, (59)

∂

∂b
φb(−→e2) =

(
− ∂

∂b
ρ− κbs[κ1+div−→e2]

)
−→e1 +

(
ρ[κn + κ2]− [κ1+div−→e2]2

)−→e2 +

(
∂

∂b
[κ1+div−→e2]− ρκbs

)
−→e3, (60)

∂

∂b
φb(−→e3) =

(
− ∂

∂b
κbs − [κ1+div−→e2][κn + κ2]

)
−→e1

+

(
− ∂

∂b
[κ1+div−→e2] + κbs[κn + κ2]

)
−→e2 −

(
[κbs]2 + [κ1+div−→e2]2

)−→e3. (61)

The evolution equations of the Lorentz force fields for the time parameter obtained through the inextensible Heisenberg anti-
ferromagnetic flow are given by using Eqs. (39-41,60) in the following way

∂

∂u
φb(−→e1) =

(
− ρσ + κbs

[
∂

∂b
{κ1+div−→e2} − κbs{κn + κ2}

])
−→e1 +

(
∂

∂u
ρ− κbs

[
∂

∂b
κbs + {κ1+div−→e2}{κn + κ2}

])
−→e2

+

(
∂

∂u
κbs + ρ

[
∂

∂b
κbs + {κ1+div−→e2}{κn + κ2}

])
−→e3, (62)

∂

∂u
φb(−→e2) =

(
− ∂

∂u
ρ + [κ1+div−→e2]

[
∂

∂b
{κ1+div−→e2} − κbs{κn + κ2}

])
−→e1−

(
ρσ+

[
∂

∂b
κbs+{κ1+div−→e2}{κn+κ2}

])
−→e2

+

(
∂

∂u
[κ1+div−→e2] + ρ

[
∂

∂b
{κ1+div−→e2} − κbs{κ1+div−→e2}

])
−→e3, (63)

∂

∂u
φb(−→e3) =

(
− ∂

∂u
κbs + σ[κ1+div−→e2]

)
−→e1 −

(
σκbs +

∂

∂u
[κ1+div−→e2]

)
−→e2 +

(
κbs

[
∂

∂b
{κ1+div−→e2} − κbs{κn + κ2}

]

− [κ1+div−→e2]
[

∂

∂b
κbs + {κ1+div−→e2}{κn + κ2}

])
−→e3. (64)

Considering Eqs. (61-66) with the general reference frame given by Eq. (5), we can identify the geometric phase of magnetic
b-lines in which their evolution equations are dependent on bothb andu parameters. In this way, we can observe the effect of
the rotational flow of magneticb-lines in the binormal direction while they evolve in time through the inextensible Heisenberg
antiferromagnetic evolution and Frenet-Serret equations. Accordingly, this phase becomes

GPb =
∫∫

φb(−→e3) ·
(

∂

∂b
φb[−→e3]× ∂

∂u
φb[−→e3]

)
dbdu =

∫∫ (
− κbs

[{
− ∂

∂b
(κ1+div−→e2) + κbs(κn + κ2)

}

×
{

κbs

(
|
∣∣∣ ∂

∂b

[
- κ1+div−→e2

]
- − κbs

[
- κn + κ2

]
-
)∣∣∣| − (κ1+div−→e2)

(
|
∣∣∣ ∂

∂b
κbs +

[
- κ1+div−→e2

]
-
[
- κn + κ2

]
-
)∣∣∣|
}

− {(κbs)2 + (κ1+div−→e2)2}
{

σκbs +
∂

∂u
(κ1+div−→e2)

}]
− [κ1+div−→e2]

[{
∂

∂b
κbs + (κ1+div−→e2)(κn + κ2)

}

×
{

κbs

(
|
∣∣∣ ∂

∂b

[
- κ1+div−→e2

]
- − κbs

[
- κn + κ2

]
-
)∣∣∣| − (κ1+div−→e2)

(
|
∣∣∣ ∂

∂b
κbs +

[
- κ1+div−→e2

]
-
[
- κn + κ2

]
-
)∣∣∣|
}

− {(κbs)2 + (κ1+div−→e2)2}
{
− ∂

∂u
κbs + σ (κ1+div−→e2)

}])
dbdu. (65)
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This is the statement for the geometric phase of the inextensible Heisenberg antiferromagnetic flow of magneticb-lines in
the binormal direction. We use an efficient technique that is based on the certain evolution system of the spin configuration,
which allows the system to return to its original shape and position after a time interval. This technique also provides to
determine necessary and sufficient conditions that have to be satisfied by the geometric quantities associated with the magnetic
b-lines to define the Lorentz magnetic flux surfaces. Finally, it can be considered to compute the magnetic flux density of
the Lorentz magnetic flux surfaces obtained through the evolution of magneticb-lines based on the inextensible Heisenberg
antiferromagnetic flow model.

The magnetic vector field of magneticb-lines in the binormal direction has already computed by Eq.(28) in the following
way

Mb = (κ1+div−→e2)−→e1−κbs
−→e2+ρ−→e3. (66)

Using the Lorentz force equations and inextensible Heisenberg antiferromagnetic evolution equations of magneticb-lines with
appropriate boundary conditions given by Eqs.(60− 66), the necessary and sufficient conditions for the existence of the
Lorentz magnetic flux surfaces are stated by

0 = (κ1+div−→e2)

([
− ∂

∂b
{κ1+div−→e2}+ κbs{κn + κ2}

][
κbs

{
∂

∂b
(κ1+div−→e2)− κbs(κn + κ2)

}
− {κ1+div−→e2}

×
{

∂

∂b
κbs + (κ1+div−→e2) (κn + κ2 )

}]
− [{κbs}2 + {κ1+div−→e2}2

][
σκbs +

∂

∂u
{κ1+div−→e2}

])

−κbs

([
∂

∂b
κbs + {κ1+div−→e2}{κn + κ2}

][
κbs

{
∂

∂b
(κ1+div−→e2)− κbs(κn + κ2)

}
− {κ1+div−→e2}

×
{

∂

∂b
κbs + (κ1+div−→e2)(κn + κ2)

}]
− [{κbs}2 + {κ1+div−→e2}2

][− ∂

∂u
κbs + σ{κ1+div−→e2}

])

+ ρ

([
∂

∂b
κbs + {κ1+div−→e2}{κn + κ2}

][
σκbs +

∂

∂u
{κ1+div−→e2}

]
+

[
∂

∂b
{κ1+div−→e2} − κbs{κn + κ2}

]

×
[
− ∂

∂u
κbs + σ{κ1+div−→e2}

])
. (67)

As a result, the magnetic flux density of the Lorentz magnetic flux surfaces obtained through the evolution of magnetic
b-lines based on the inextensible Heisenberg antiferromagnetic flow model is computed by

FDb =
∫∫ (

[
κ1+div−→e2

][{
− ∂

∂b
(κ1+div−→e2) + κbs(κn + κ2)

}{
κbs

(
|
∣∣∣ ∂

∂b

[
- κ1+div−→e2

]
- − κbs

[
- κn + κ2

]
-
)∣∣∣|

− (κ1+div−→e2)
(
|
∣∣∣ ∂

∂b
κbs +

[
- κ1+div−→e2

]
-

[
- κn + κ2

]
-
)∣∣∣|
}
− {

(κbs)2 + (κ1+div−→e2)2
}{

σκbs +
∂

∂u
(κ1+div−→e2)

}]

−κbs

[{
∂

∂b
κbs + (κ1+div−→e2)(κn + κ2)

}{
κbs

(
|
∣∣∣ ∂

∂b

[
- κ1+div−→e2

]
- − κbs

[
- κn + κ2

]
-
)∣∣∣| − (iκ1+div−→e2)

(
|
∣∣∣ ∂

∂b
κbs

+
[
- κ1+div−→e2

]
-
[
- κn + κ2

]
-
)∣∣∣|
}
− {

(κbs)2 + (κ1+div−→e2 )2
}{

− ∂

∂u
κbs + σ (κ1+div−→e2)

}
+ ρ

{(
|
∣∣∣ ∂

∂b
κbs

+
[
- κ1+div−→e2

]
-
[
- κn + κ2

]
-
)∣∣∣|
(
|
∣∣∣σκbs +

∂

∂u

[
- κ1+div−→e2

]
-
)∣∣∣|+

(
|
∣∣∣ ∂

∂b

[
- κ1+div−→e2

]
- − κbs

[
- κn + κ2

]
-
)∣∣∣|

×
(
|
∣∣∣− ∂

∂u
κbs + σ

[
- κ1+div−→e2

]
-
)∣∣∣|
}])

dbdu. (68)
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6. Fractional solutions of Laplacian-like equa-
tions with conformable fractional derivative

In this section, the connection between the Laplacian-like
non-linear equation the celebrated inextensible Heisenberg
antiferromagnetic flow is investigated in the binormal direc-
tion. In Eqs. (58,59), we have already induced solitonic equa-
tions that are associated with curves of geometric quantities.
If one considers the appropriate limiting and scaling process,
then a basic geometric derivation admits the following recip-
rocal transformation

(κ1+div−→e2)
∂2

∂b2
κbs−κbs

∂2

∂b2
(κ1+div−→e2)− ∂α

∂uα
κbs = 0,

(κ1+div−→e2)
∂2α

∂u2α
κbs − κbs

∂2α

∂u2α
(κ1+div−→e2)

− ∂

∂b
(κ1+div−→e2) = 0, (69)

where∂α/∂uα is the conformable derivative operator. These
fractional equations reflect the propagation of solitonic sur-
face sweeping out as geometric quantities evolve for time in-
variance in the binormal direction. A lot of research has been
done using different fractional operators for fractional differ-
ential equations [42-44].

The conformable derivative of orderη ∈ (0, 1] is defined
by the following equation [45]

tD
ηf(t) = lim

ϑ→0

f(t + ϑt1−η)− f(t)
ϑ

,

f : (0,∞) → R. (70)

Some of the features of the conformable derivative are given
as follows [45-47]

a) tD
ηtα = αtα−η, ∀η ∈ R,

b) tD
η(fg) = f tD

ηg + g tD
ηf,

c) tD
η(fog) = t1−ηg′(t)f ′(g(t)),

d) tD
η

(
f

g

)
=

g tD
ηf − f tD

ηg

g2
.

We consider the given below traveling wave transformation
for Eqs. (69)

κbs = r(φ),

κ1+div−→e2 = v(φ), φ = n−Q
uα

α
, (71)

where Q describes the speed of the wave. If one places
Eq. (71) into Eq. (69) and considers the imaginary section,
then it is obtained that

Qr′(φ) + v(φ)r′′(φ)− r(φ)v′′(φ) = 0,

Q2v(φ)r′′(φ)− v′(φ)−Q2r(φ)v′′(φ) = 0. (72)

Solutions of Eq. (72) can be written as a series expansion in
the following way

r(φ) = α0 + α1G(φ) + α2G
−1(φ), (73)

v(φ) = β0 + β1G(φ) + β2G
−1(φ),

whereα0, α1, α2, β0, β1, β2 are functions to be determined
later, andG(φ) satisfies the following fractional Riccati equa-
tion

G′(φ) = σ + G2(φ), (74)

whereσ is an arbitrary constant.
• N is obtained with the aid of balance between the

highest order derivatives and the nonlinear terms in Eq. (72).
A few special solutions of Eq. (74) are listed in the fol-

lowing manner.
1) Whenσ < 0,

G1(φ) = −√−σ tanh(
√−σφ),

G2(φ) = −√−σ coth(
√−σφ). (75)

2) Whenσ > 0,

G3(φ) =
√

σ tan(
√

σφ),

G4(φ) =
√

σ cot(
√

σφ). (76)

3) Whenσ = 0, ρ = const.,

G5(φ) = − 1
φ + ρ

. (77)

Now, if one replaces Eqs.(73) and(74) into Eq. (72), and
equated all coefficients ofG(φ), then it is obtained some spe-
cial functions as follows

β0 = −Q2α0, β1 = −Q4α1

2σ
, β2 = −Q3α2.

Furthermore, if one uses the fact thatσ = −1, G(φ) =
−√−σ coth(

√−σφ), then it is computed that

r(φ) = α0 − α1

√−σ coth(
√−σφ)

− α2

(√−σ coth
[√−σφ

])−1
,

v(φ) = −Q2α0 +
Q4α1

2σ

√−σ coth(
√−σφ)

+ Q3α2

(√−σ coth
[√−σφ

])−1
.

As a result, one gets the following solution family for
Eqs. (69)

κbs = α0 − α1

√−σ coth(
√−σφ)

− α2

(√−σ coth
[√−σφ

])−1
, (78)

κ1+div−→e2 = −Q2α0 +
Q4α1

2σ

√−σ coth(
√−σφ)

+ Q3α2

(√−σ coth
[√−σφ

])−1
. (79)
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FIGURE 1. The 3D graphic for analytical solutions of the fractional
equations.

Figure 1 is the 3D graphic for analytical solutions of the
fractional Eq. (69) forα = 0.5, Q = 1.2, α0 = 0, α1 =
−2, α2 = 2. a) forκbs in solutions Eq. (78) b) forκ1+div−→e2

in solutions Eq. (79).

7. Conclusion

One of the most important properties of the electromagnetic
vector field at the Riemannian geometry is its degree of spa-
tial intermittency. Magnetic flux surface mostly occurs in the

shape of isolated, intense elements encompassed by nearly
flux-free or flux-free structures. According to conceptual
appeal and its basic geometrical construction, we have de-
veloped a simpler approach to define magnetic phenomena.
Accordingly, this approach is reconciled with the more prin-
cipal definition of electromagnetic components in terms of
smooth non-vanishing fields by supposing that the inexten-
sible Heisenberg antiferromagnetic evolution of magneticb-
lines creates a Lorentz magnetic flux surface. The funda-
mental constructing blocks for our argument are to define
magneticb-lines through the Lorentz force and the geometric
quantities of the Frenet-Serret frame. In this way, this study
may lead to modeling a more geometrical and simplified ver-
sion of the magnetic flux tube soon. Another objective may
be investigating the effect of other magnetic lines and their
geometries in a system where their evolutions form magnetic
flux surfaces or magnetic flux tubes. This analysis may also
be expanded by considering different kinds of flow models
apart from inextensible Heisenberg antiferromagnetic flow.

The results demonstrate that the considered method is
more effective and easy to employ to scrutinize the behaviors
of the fractional differential equations with magnetic flux sur-
faces or magnetic flux tubes arising in associated areas of sci-
ence and technology. Additionally, we obtain the 3D graphic
for analytical solutions of the Laplacian-like non-linear equa-
tion.

All in all, this study provides a unique insight for defin-
ing magnetic flux surfaces through the intense consideration
of differential geometric tools. However, the potential phys-
ical effects of this research may be seen in Hermitian and
non-Hermitian wave physics, topological quantum states, and
Maxwell electromagnetism immediately. Moreover, investi-
gating its implication in practical fields such as metamateri-
als or magnetic materials will be the final and decisive goal
to complete the paper in all senses.
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