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Identification of focal epileptic regions from
electroencephalographic data: Feigenbaum graphs

G. Guarnerosa, C. Ṕereza, A. Montiela and J. F. Rojasa,b
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In the study of problems related to epilepsy, analyzing electroencephalographic data is of much importance help to,e.g., diagnose and to
diminish errors in surgery. In this work, we present an analysis via the construction of Feigenbaum graphs by using real electroencephalo-
graphic signals data sets and calculating characteristic network (graph) quantities, such as average clustering, degree distribution, and average
shortest path length. By using this method, we manage to characterize two different data sets from each other, from data sets corresponding
to focal and non-focal neuronal activity both recorded out of an epileptic seizure. This method makes it possible to identify sets of data from
epileptic focal zones, and we suggest that this approach could be used to aid physicians in diagnosing epilepsy from electroencephalographic
data and in the exact establishment of the epileptic focal region for surgery.
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1. Introduction

Epilepsy is a disease that affects sixty-five million people in
different countries, and two and a half million new cases are
detected every year [1]. Epilepsy is a disease characterized
by an enduring predisposition to generate epileptic seizures
and the neurobiological, cognitive, psychological, and social
consequences of this condition [2].

Epileptic people are two or three times more likely to die
prematurely [3].50% of the cases begin in childhood or ado-
lescence [4]. Epilepsy is characterized by seizures, which
can affect persons of any age. The seizures can be as sparse
as once a year or as often as several times a day [5]. Given
these factors, the importance of diagnosing epilepsy is very
high [6], so the tools and techniques used and developed for
this end are too [7-11].

Seizure disorders are not epileptic in nature; or, in other
words, not all seizures are epileptic fits. Epileptic seizures
are unprovoked due to the involvement of the central ner-
vous system. Non-epileptic seizures could be due to sev-
eral measurable causes, such as stroke, dementia, head injury,
brain infections, congenital birth defects, birth-related brain
injuries, tumors, and other space-occupying lesions [12,13].

One of the procedures for diagnosing epilepsy consists of
the analysis of electroencephalographic signals (EEG) of a
patient [14]. The EEG measures the electrical activity of the
cortical area by means of electrodes placed on the scalp of the
patient [15]. More accurately, it measures the electrical po-
tential of the dendrites of the pyramidal neurons adjacent to
the cortical surface. Hence, the relevance of EEG analysis in
diagnosing neural disorders, and epilepsy in particular [16].

Since EEG recordings are, in essence, a time series with
lots of noise [17,18], the task of analyzing and achieving a
diagnosis becomes a very difficult one [19,20]. Because it
is such a difficult procedure, it requires a very well trained
physician [6]. That is why many scientists are trying to
develop techniques to ease this workload and facilitate the
physician’s job [21-23].

One field of study of much relevance is the automated
EEG analysis, which includes many computer-aided algo-
rithms, such as component analysis [24], Fourier Transform
[25,26], wavelet transform [27,28], and entropy analysis [29-
31] among others [23,25,30,32,33].

Zhong-Ke Gaoet al. [34] used a hybrid method of mak-
ing a visual graph out of an adaptive optimal kernel time-
frequency representation of the EEG. They manage to detect
epileptic seizures from EEG data by means of statistical mea-
surements of the visual graph, such as clustering coefficient
and clustering entropy.

Salim Lahmiri [35] made a statistical analysis of EEG
signals by measuring the Generalised Hurst exponent. He
shows statistical differences between the estimated Gener-
alised Hurst exponent for normal EEG signals and EEG sig-
nals with epileptic activity.

Lei Wang et al. [36] used visibility graphs to analyse
seizure patterns in EEG signals. By calculating and com-
paring degree distributions they manage to show that it can
be used to discern between EEG recording with and without
seizures.

A new method to characterize EEG signals is proposed.
This method can be used to identify epileptic regions by
means of the associated Feigenbaum graphs. By turning the
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FIGURE 1. 20 seconds of EEG activity from a focal electrode. b)
shows a subnetwork for the EEG built by Feigenbaum approach,
c) shows the values for average degree (K), average clustering (C)
and average shortest path length (SPL).

FIGURE 2. 20 seconds of EEG activity from a non-focal electrode.
b) shows a subnetwork for the EEG built by Feigenbaum approach,
c) shows the values for average degree (k), average clustering (C)
and average shortest path length (SPL).

EEG time series into graphs, they can be studied through their
topology. This is made by calculating and statistically check-
ing the average clustering coefficient and the average shortest
path length of the graphs.

In the construction of the Feigenbaum graph from the
data, most of the detailed information of the time series
will be reflected in some properties of the obtained network
topology and its statistical measurements. In this study, the
Feigenbaum graphs are used to analyze EEG data from the
Andrzejaket al. study [37]. Using statistical criteria, average
shortest path length, and average clustering coefficient were
used to discern between signals “F” from a focal region and
signals “N” from the non-focal region.

In Figs. 1 and 2, the Feigenbaum network is shown, along
with the values of the parameters, average degree (K), aver-
age clustering (C), and average shortest path length (SPL)

for two samples of 20 seconds type “F” and type “N” respec-
tively.

2. EEG signals

The Data used was taken from the publicly available source
of the Bern-Barcelona EEG database [37], where Andrzejak
et al. originally made a correlation study.

The data were taken from intracranial EEG from five dif-
ferent epileptic patients. The EEG recordings were made as
part of the diagnostics of the epileptic patients, prior and in-
dependently to this study. The EEG signals were either sam-
pled at 512 or 1024 Hz, depending on whether it was a more
or less than 64 channel record.

Each signal was filtered by a band-pass fourth-order But-
terworth filter, between 0.5 and 150 Hz. Signals that were
sampled at 1024 Hz, were down-sampled to 512 Hz.

Data were compiled into two different data sets: the “F”
set, are the data from the focal epileptic point, which was
identified as the first electrode that measures the epileptic
seizure. And the “N” set, are the data from the non-focal
points. A non-focal point is any other point that didn’t show
the epileptic seizure.

Each data set was assembled by randomly selecting 7500
signals from a pool of 10240 samples, these samples were
obtained by making windows of 20 seconds each. Record-
ings of seizure activity and three hours after were excluded
from the data set. Before being included in the database, the
signal was visually inspected to ensure non-significant arti-
facts were present. No clinical selection criterion, such as the
presence or absence of epileptiform activity were applied.

3. Theory

Graph Theory has been used to study both the static and dy-
namic descriptions of complex systems. The “particles” or
individual elements of the system are represented as nodes
in the network and the interactions or links between these
elements correspond to lines that join the nodes in pairs.
The topology of these abstract objects allows to character-
ize certain types of network (small world, free scale, etc.)
and associate them with some typical systems. The topol-
ogy is determined by the number of links each node pos-
sesses (degree distribution), the clustering coefficient, or the
average shortest path length between any pair of nodes. A
comprehensive review of the subject can be found athttp:
//networksciencebook.com/ [38].

3.1. Feigenbaum graphs

The Feigenbaum graphs are a tool that has been employed in
the characterization time series data. By constructing a net-
work from a given time series data set [39-41], the network
structure extracts important information from said time series
[42-46].
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FIGURE 3. a) A data set where the lines indicate a link in the net-
work. b) The network that results from the data in a), by following
the mentioned procedure.

FIGURE 4. a) EEG data from the [37] data set. b) The network that
results from the data in a), by following the mentioned procedure.

To characterize the data sets and achieve a systematic
method for identifying epileptic focal points, each signal
from the corresponding data set, “N” or “F”, was transformed
into a Feigenbaum graph. Following the idea that most of the
characteristics of the signals are translated to the topology of
the network, the analysis of this topology is relevant.

The process for building the network is as follows: For
each pointxi in the data set, a nodei is added to the network.
Then, for each pair of pointsxi andxj in the set, every time
the criterionxi, xj > xn for all n, such thati < n < j is
met, an edge is added between nodesi andj [12,44].

Following the aforementioned procedure for the example
data in Fig. 3a), the network from Fig. 3b) is built. By build-
ing the Feigenbaum network a new structure is met for the
data, and so it can be analyzed as such.

Take the EEG from Fig. 4a). For each data point, a node
is added to the network in Fig. 4b), and the edges are created
following the procedure in Figs. 3a) and Fig. 3b).

3.2. Statistical measurements

Once the Feigenbaum graphs were built, an analysis of the
structure of the graphs is in order. To find a measure to char-
acterize them as “N” or “F” whichever was the case, some
calculations on the topology of the networks are of use.

To this end, we calculated the average shortest path length
for each graph, as it has a direct correlation to the size of
the graph, and the data itself. On the other hand, we cal-
culated the average clustering coefficient. It is a measure-
ment of how the network is connected and correlates with
how auto-similar the data are.

Getting the average clustering coefficient for each net-
work, a single number is set to identify each of the time win-
dows in the data sets. Also by calculating the average shortest
path length for each network, a new single number is obtained
to identify each EEG signal of 20 seconds.

The average clustering coefficient is calculated in the sim-
ple form (1) [47].

C =
1
n

∑

v∈G

cv (1)

wheren is the number of nodes in the networkG, andcv is
the clustering coefficient for each nodev.

The clustering coefficientcv is calculated using Eq. (2)
[49].

cv =
2T (v)

k(v)(k(v)− 1)
(2)

whereT (v) is the number of triangles through nodev, and
k(v) is the degree ofv.

So the average shortest path length is calculated employ-
ing the Eq. (3) [50].

a =
∑

s,t∈V

d(s, t)
n(n− 1)

(3)

WhereV is the set of nodes in the graph,d(s, t) is the
shortest path length froms to t. And n is the number of
nodes in the graph.

Because the average shortest path length and the average
clustering coefficient of each graph are calculated, each sig-
nal in each data set gets identified by two singular numbers.
As these numbers on their own are not singularly defining, a
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FIGURE 5. a) Distribution of the shortest path length for the focal
data set, curve fitted toA exp(−bx)(x − c) whereA = 669.5,
b = 0.330 andc = 1.793. b) Average clustering distribution for
the focal data set, curve fitted toA exp(−(x− µ)2/(2σ2)), where
σ = −0.007 andµ = −0.089. Distributions of average shortest
path length 5a) and average clustering coefficient 5b) for focal data.

statistical approach must be made. For this end, each indi-
vidual set of parameters were assembled in distributions for
said parameter and data set, as shown in Figs. 5a), 6a), 5a)
and 6b).

4. Results and discussion

As every signal is processed, the parameters for the average
shortest path length, and average clustering coefficient, are
calculated and placed on their respective distribution.

The distribution for the average clustering coefficient was
assembled for each data set; hence, one distribution for the
EEG signals in the focal set “F”, and one for the EEG signal
in the non-focal set “N”. These distributions were curve fit-
ted to identify the difference or lack of between data sets. For
the average clustering coefficient, the histogram is presented
in the log scale and fitted toA exp(−(x − µ)2/(2σ2)), as
shown in Figs. 5b) and 6b). The tails on the average clus-

FIGURE 6. a) Distribution of the shortest path length for the non-
focal data set, curve fitted toA exp(−bx)(x−c) whereA = 1455,
b = 0.419 andc = 1.999. b) Average clustering distribution for
the non-focal data set, curve fitted toA exp(−(x − µ)2/(2σ2)),
whereσ = −0.007 andµ = −0.086. Distributions of average
shortest path length 6a), and average clustering coefficient 6b) for
non-focal data.

tering coefficient distributions are not accounted for, with-
out affecting the criteria for differentiation between focal and
non-focal data. For the average shortest path length, the his-
togram is curve fitted toA exp(−bx)(x − c), as shown in
Fig. 5a) and 6a).

In order to increase statistical accuracy and significance
20 subsets of 2000 signals were built from the original 7500
signal data set, for both “N” and “F” signals. These sets
were assembled by the same means of randomly selecting the
2000 signals from the pool. For these new 20 sets of signals,
the distributions of average clustering coefficient and average
shortest path length were assembled and fitted, as shown in
Figs. 7a) and 7b).

From the curve fitting of each new data subset, the rele-
vant fitting parameters are established. Theb parameter from
theA exp(−bx)(x−c) fit for the average shortest path length,
is a way of characterizing both sets of data “N” and “F”. A
comparison for this parameter is shown in Fig. 9a). Theµ
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FIGURE 7. a) Distributions of the shortest path length, curve fitted toA exp(−bx)(x − c), b) Average clustering distributions, curve fitted
to A exp(−(x− µ)2/(2σ2)). Distributions of average shortest path length 7a), and average clustering coefficient 7b) for 3 subsets of 2000
samples of focal data.

FIGURE 8. Fitting parameters for the average clustering coefficient and average shortest path length distributions.

parameter from theA exp(−(x − µ)2/(2σ2)) fit for the av-
erage clustering coefficient is also a way of differentiating
between both data sets “N” and “F” as shown in Fig. 9b).

Parametersb andµ are chosen since they have the biggest
weight in each curve fitting. As the data is assumed to have
different structures for the focal “F” and non-focal “N” data,
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FIGURE 9.a) Comparison of the value of theb parameter for “N” and “F” data. b) Comparison of theµ parameter for “N” and “F” data.
Relevant fitting parameters for Average clustering coefficient 9a) and average shortest path length 9b), 20 distributions of 2000 samples.

FIGURE 10. a) Comparison of theb parameter for “N” and “F” data. b) Comparison of theµ parameter for “N” and “F” data. Relevant
fitting parameters for Average clustering coefficient 10a) and average shortest path length 10b), 20 distributions of 1000 samples.

TABLE I. Values ofb andµ for focal and non-focal data.

µ b

Focal data −0.0891± 0.0004 0.3310± 0.0163
2000 samples

Non-focal data −0.0862± 0.0005 0.4174± 0.0172
2000 samples

Focal data −0.0890± 0.0005 0.3314± 0.0338
1000 samples

Non-focal data −0.0863± 0.0007 0.4214± 0.0275
1000 samples

these parameters are the most important. Furthermore, the
other parameters are non-significant to make any decisions if
the data comes from focal or non-focal EEG, as shown in the
plots for theσ, A, andc parameters in Fig. 8.

Following the same process, another 20 subsets of 1000
signals were built, for both “N” and “F” signals. The calcu-

lations of the average shortest path length and average clus-
tering coefficient for these subsets were also assembled in
distributions and fitted. The comparison of relevant fitting
parameters,b for the average shortest path length in Fig. 10a)
andµ for the clustering coefficient in Fig. 10b) are shown.

In Table I, the values to differentiate between focal and
non-focal data are presented. For the curve fitting of the av-
erage clustering coefficientA exp(−bx)(x − c) the param-
eterb. And the parameterµ for the curve fitA exp(−(x −
µ)2/(2σ2)) of the average shortest path length. The differ-
ences shown in Table I are consistent when calculating for
the entire data of 75000 samples, whereb = 0.419 for non-
focal data andb = 0.330 for focal data, andµ = −0.089 for
focal data andµ = 0.086 for non-focal data.

As a way to measure the effectiveness of these results,
complementary measurements were made. The Hurst expo-
nent, sample entropy approximate entropy and fractal dimen-
sion of the EEG recordings were calculated. Distributions for
each of these measurements are shown in Fig. 11, for both fo-
cal and non-focal EEG data.
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FIGURE 11. Non-linear measurements for EEG recordings.

TABLE II. KS-test results for different measurements

ks statistic P value

Fit parameter b for spl 1.0 0

Fit parameterµ for C 1.0 0

For 2000

sample data sets

Fit parameter b for spl 1.0 1.4508e−11

Fit parameterµ for C 1.0 1.4508e−11

For 1000

sample data sets

Fit parameter b for spl 1.0 1.4508e−11

Fit parameterµ for C 1.0 1.4508e−11

Sample entropy 0.30597 1.26894e−33

Approximate entropy 0.28731 1.21786e−29

Hurst exponent 0.10199 4.62265e−4

Fractal dimension 0.09577 1.24584e−3

The usefulness of these measurements to differentiate
each individual set of EEG recordings is estimated by means
of the Kolmogorov-Smirnov (KS) statistic test. The results
for the KS tests are presented in Table II, where one can see
the statistical significance of each property of the EEG.

5. Conclusion

In this work, a new method is proposed to identify epileptic
focal zones from the Andrzejaket al. database [37]. It is
managed by assembling Feigenbaum graphs and calculating
distributions for the average shortest path length and average
clustering coefficient from every data set. Fitting the average
clustering coefficient toA exp(−(x − µ)2/(2σ2)) and ob-
serving theµ parameter, ifµ = −0.089± 0.0005 the data is
said to be focal, also ifµ = −0.0863±0.0007 the data is said
to be non-focal. This yields a differentiating factor between
both focal and non-focal signals.

For the average shortest path length, the distribution,
curve fitting toA exp(−bx)(x − c) and checking for theb
parameter. Ifb = 0.4214 ± 0.0275, the data are said to be
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non-focal, and ifb = 0.3314±0.0338, the data are said to be
focal, giving another criterion to differentiate between focal
and non-focal signals.

As shown in Table I, this new approach yields better con-
fidence to differentiate between focal and non-focal EEG. For
the KS test, theb parameter andµ parameter can be used with
a p-value of0 and KS- statistic value of1, hence is a much
better differentiating factor than either of the Approximate
entropy, Sample entropy, Hurst exponent, or fractal dimen-
sion factors.

Following the idea and how the data set are assembled,
this measurement could be calculated for a single patient by
assembling a data set created from segments -time windows-
of EEG studies no matter the timeline, and analyzing each
signal. The calculation of the curve fit for the average short-
est path length distribution, and the average clustering coeffi-
cient of the Feigenbaum graphs of the data set can be used to
identify the focal EEG electrode readings.

Because the results are less scattered for the 2000 sample

set than the 1000 sample set, it suggests that 2000 samples
should be used for better results, although 1000 samples can
be used at a lesser computational cost, since the KS-test val-
ues are the same for both sample sizes,KS − statistic = 1,
andp− value = 1.4508e−11. This could help the physician
assess a better diagnosis for the patient in the determination
of epilepsy focal sites.

Subject to considering other databases and other proba-
bly more complex cases, we see that, with this technique, it
is possible to distinguish between the signal that comes from
an epileptic focus and another that does not, which can be of
great value both in diagnosis and in the practical determina-
tion of focal sites for surgical intervention.
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