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Ultrafast dynamics of carriers and phonons of
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Aluminum nitride is attracting great interest of the industry and scientific community due to its interesting properties. In this paper is
performed a theoretical study on the ultrafast transient transport properties of photoinjected carriers in wurtzite AlN subjected to electric
fields up to 80 kV/cm. For this, the Nonequilibrium Statistical Operator Method was used. The evolution towards the steady state of drift
velocity of carriers (electrons and holes) and nonequilibrium temperature (carriers and phonons) subpicosecond scale were determined.
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1. Introduction

The wide-band gap semiconductor materials such as silicon
carbide, gallium nitride, aluminum nitride, diamond, and oth-
ers, are often referred to as third-generation semiconduc-
tor materials. Aluminum nitride (AlN) with a large direct
band gap of 6.2 eV is a typical representative of these ma-
terials. Due to its ultra-wide direct band gap, high carrier
mobility, large breakdown field, high thermal conductivity,
high volume resistivity, high chemical and thermal stabilities,
high dielectric strength, and low dielectric loss, make AlN
an excellent material for novel electronic and opto-electronic
device applications:i) laser diodes (LDs), deep-ultraviolet
(DUV) solid-state light-emitting diodes (LEDs);ii ) high fre-
quency, high-power, and high-temperature electronic appli-
cations; iii ) for packaging and substrates for high-density
or high-power assemblies of microelectronic components [1-
23].

The study of photoinjected (or photoexcited) carriers in
AlN-based semiconductors can provide information regard-
ing both their phonon and carrier dynamics properties, which
are important for a better device design. Basic research re-
garding the ultrafast transport transient of hot carriers is rele-
vant for technological applications in sub-micron devices.

In this paper, an analysis was performed to investigate
the ultrafast transport properties of photoinjected carriers in
wurtzite AlN subjected to electric fields up to 80 kV/cm. The
optical and transport properties of semiconductors have been
studied mainly by using Nonequilibrium Green’s Functions
Techniques [24], Monte Carlo simulation [25,26], balance
equation approach [27,28], Boltzmann transport equations
[26,29,30], etc. In this paper was used the “Nonequilibrium
Statistical Operator Method” (NESOM) [31-35]. The NE-

SOM is a powerful formalism that seems to offer an elegant
and concise way for an analytical treatment in the theory of
irreversible processes, adequate to deal with a large class of
experimental situations, and physically clear picture of irre-
versible processes. The NESOM is also practical and effi-
cient in the study of the optical and carrier dynamics in semi-
conductors [36-42]. More specifically, a Non-Equilibrium
Quantum Kinetic Theory [43] derived from NESOM was
used in this paper.

2. The evolution equations

We consider a pure WZ AlN sample, with a concentrationn
of electron–hole pairs created by an intense laser light pulse.
The photoinjected carriers were far from equilibrium with the
lattice but thermalized between themselves by Coulomb in-
teraction after a fraction of picosecond. A constant electric
field E was applied to the sample to accelerate the carriers as
well as relax the energy and momentum to the phonon field
simultaneously. The sample was in contact with a thermal
reservoir at temperatureT0.

The following variables were used to describe the
nonequilibrium thermodynamic state of the system:i) The re-
ciprocal of the carrier nonequilibrium temperature,β∗c (t) =
(1/kBT ∗c ); ii ) The reciprocal of the longitudinal optical
phonon nonequilibrium temperature,β∗LO(t) = 1/(kBT ∗LO);
iii ) The reciprocal of the acoustic phonon nonequilibrium
temperature,β∗AC(t) = 1/(kBT ∗AC); iv) The variables,
−β∗c (t)µ∗e(t) and−β∗c (t)µ∗h(t), whereµ∗e(t) andµ∗h(t) are
the electron and hole chemical potentials, respectively;v)
The variables:−β∗c (t)ve and−β∗c (t)vh, whereve andvh

are the electron and hole drift velocities, respectively. Here,
kB is the Boltzmann constant. Note that the term “nonequi-
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librium temperature”, symbolized byT ∗, is also referred to
as “quasi-temperature”.

The nonlinear coupled set of integro-differential gen-
eralized transport equations that govern the time-evolution
of these nonequilibrium thermodynamic variables is based
on nonlinear quantum kinetic theory, which is based on a
nonequilibrium statistical ensemble method [43], and the
Markovian approximation is used [44]. The equations of evo-
lution for the carriers’ linear momentum, carriers’ energy and
LO, TO, AC phonons energy are as follows [43]:
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In Eqs. (1) and (2) the first term on the right side is
the force produced by the electric field (J

(1)
Pe

= −NeE,

J
(1)
Ph

= NeE), whereN = nV , with n being the concentra-
tion of electron–hole pairs, andV the volume of the sample.
In Eqs. (1) and (2) the second term on the right side is the rate
of momentum transferred to the phonons [43].

In Eq. (3) the first term on the right side accounts for the
rate of energy pumped to the carrier system owing to the the
electric field,

J
(1)
Ec

(t) = eE ·
(

Ph(t)
m∗

h

− Pe(t)
m∗

e

)
, (6)

and the second term on the right side represents the rate of
excess energy transferred to the phonons [43].

The populations of theLO- andAC- phonons [43] are ex-
pressed as follows:

νLO(t) =
1

eβ∗LO(t)~ωLO − 1
, (7)

νAC(t) =
1

eβ∗AC(t)~ωAC − 1
, (8)

whereω(LO) andω(AC) are the frequencies of the (LO) or
(AC) phonons, respectively. We take the “Einstein model”
dispersionless frequency relation forLO phonons, that is:
~ωq,LO = ~ω0 (i.e. all LO phonons have the same angu-
lar frequencyω0), and the “Debye model” dispersionless fre-
quency relation forAC phonons, that is:~ωq,AC = ~qvs,
wherevs is the sound velocity. Note that theAC and LO

phonons were considered to be internally thermalized, disre-
garding possible differentiated distribution of populations in
reciprocal space as a result of what can be termed as Fröhlich-
Cherenkov effect [45-48]. The inhomogeneous distribution
in reciprocal space is restricted to a very small region of the

Brillouin zone [45-48] and such effect can be neglected in the
present study.

In Eqs. (4) and (5) the first term on the right side are the
gain of energy pumped on the phonons (LO andAC, respec-
tively) by the “hot” carriers, and the second term on the right
side in Eqs. (4) and (5) are the transfer, via anharmonic ef-
fects, of the energy ofLO-phonons to theAC-phonons [43]

J
(2)
LO,an(t) =

V ~ωLO

Vcell

[νLO(t)− νAC(t)]
τop,an

, (9)

whereτop,an is the relaxation time obtained from the band
width from Raman scattering experiments [49] andVcell is
the volume of the unit cell.

The second term on the right side in Eq. (5) is the same of
Eq. (4), but with the opposite sign. The last term in Eq. (5) is
the contribution of thermal diffusion to the reservoir (thermal
bath) at temperatureT0.

Finally, it noteworthy that, to close the system of equa-
tions, we must express the linear momentum of the carriers,
and the energies of the phonons and carriers, as follows [43]:

Ec = 3kBT ∗c (t) + N
m∗

ev
2
e(t)

2
+ N

m∗
hv2

h(t)
2

, (10)

Pe(t) = Nm∗
eve(t), (11)

Ph(t) = Nm∗
hvh(t), (12)

ELO(t) =
V ~ωLO

Vcell
νLO(t). (13)

EAC(t) =
3V

Vcell

1
β∗AC(t)

. (14)

3. Results

The calculations were performed in WZ AlN for photoin-
jected carriers with a concentrationn = 1018 cm−3 and an
excess energy of 0.6 eV per pair gained from photon absorp-
tion. After Coulomb thermalization, the initial carrier tempe-

FIGURE 1. Time evolution of carriers nonequilibrium temperature
in photoinjected WZ AlN for four electric field intensities.
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TABLE I. Parameters of wurtzite AlN.
Parameter Value

Electron effective mass,m∗
e 0.48m0 [50]

Hole effective mass,m∗
h 3.53m0 [40]

Band gap,Eg 6.2 eV [51]

Intervalley energy separation 0.7 eV [51]

Lattice parameter,a 3.11Å [52]

Lattice parameter,c 4.98Å [52]

Static dielectric constant,ε0 8.5 [53]

High frequency dielectric constant,ε∞ 4.77 [53]

Optical phonon energy,~ω0 99.2 meV [53]

Mass density,ρ 3.23 g/cm3 [54]

Longitudinal sound velocity,vsl 10127 m/s [55]

Transversal sound velocity,vst 6333 m/s [55]

Acoustic deformation potential,E1 9.5 eV [55]

Piezoelectric constant,hpz 0.92 C/m2 [50]

rature was approximatelyTc(0) = 2321 K. The thermal bath
temperature considered wasT0 = 300 K, and the carrier scat-
tering mechanisms considered in the numerical calculations
included piezoelectric, deformation acoustic and polar opti-
cal (or Fr̈ohlich’s interaction). Table I summarizes the mate-
rial parameters of the WZ AlN used in numerical calculations
in this paper. In Table I,m0 is the free electron mass.

Figure 1 shows, for four values of the electric field inten-
sities, the time evolution of the nonequilibrium temperature
of the carriers, describing a extremely rapid process of relax-
ation of energy to the lattice. It can be noticed that forE .
80 kV/cm the carriers cool down to a steady state in less than
0.4 ps.

Figure 2 shows, for an electric field strength of 80 kV/cm,
the evolution of the rate of change of the carriers nonequilib-
rium temperature with respect to time,dT ∗c /dt. The rate of
change (in arbitrary units) is negative for up to 0.05 ps. The
arrow in Fig. 2 indicates this point. For values greater than

FIGURE 2. Time evolution of rate of change of carriers nonequilib-
rium temperature in photoinjected WZ AlN, in arbitrary units, for
an electric field of 80 kV/cm.

0.05 ps the rate of change becomes positive. The behavior
of the curves for the other electric field values are similar.
Note that Eq. (3) comprises two terms:J

(1)
Ec

andJ
(2)
Ec

. The

first term,J (1)
Ec

, is a source term. It is the energy received of
the carriers due to applied electric field. The second term,
J

(2)
Ec

, is the dissipation of energy: the carriers lose his initial
excess of energy (gained in photon absorption processes) for
the phonons. In larger electric fieldsJ (1)

Ec
is also larger, and

the total dissipation of energy (J
(1)
Ec

+ J
(2)
Ec

) is slower that for
smaller values of electric fields.

Figure 3 shows the time evolution of the electron (Fig. 3a)
and hole (Fig. 3b) drift velocities for four electric field inten-
sities. After a transient regime in the order of picoseconds, a
steady state was achieved. Similar to Fig. 1, as larger the elec-
tric field more time the system takes to reach the steady state.
During the transient regime, it can be noticed the behavior of
the maxima existence for holes, with one of the maxima cor-
responding to a velocity drift overshoot for fields larger than
approximately 40 kV/cm. The structured ultrafast hole drift
velocity in photoinjected WZ AlN is explained in this paper
uniquely through the crossover of the evolution curves for the
transport and momentum relaxation times, whose definition
is based on the nonequilibrium variables used to describe the
system [56]. The values obtained for the hole drift velocities

FIGURE 3. Time evolution of drift velocity: a) electrons and b)
holes, in photoinjected WZ AlN for four electric field intensities.
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FIGURE 4. Time evolution of nonequilibrium temperature ofLO-
phonons (top) andAC-phonons (bottom) in photoinjected WZ AlN
for four electric field intensities.

are much smaller than those of electrons. This fact can be
ascribed to the holes having a higher effective mass than the
electrons:m∗

h/m∗
e ' 7.3 (see Table I).

Using the results of Fig. 3, we can derive the mobility,
Me(h), of the electrons and holes, as given byMe(h) =
|ve(h)|/|E|. For a electric field of 20 kV/cm the electron and

hole mobility are approximatelyMe ' 213 cm2/V·s and
Mh ' 21.3 cm2/V·s, respectively. These values are among
the range of theoretical and experimental data obtained for
the WZ AlN [15,50,53,57].

Figure 4a) displays the time evolution of the nonequilib-
rium temperature of theLO-phonons for four different val-
ues of the electric field intensities. We can verify that the
LO-phonon quasitemperature does not increase appreciably
above equilibrium temperatureT0: approximately3% for an
electric field of 80 kV/cm, the higher field we have consid-
ered. Figure 4b) shows the time evolution of the nonequilib-
rium temperature of theAC-phonons for four different values
of the electric field intensities. It is possible to verify that the
temperature increase of theAC-phonons are irrelevant.

4. Conclusions

In this study, we obtain equations that govern the time evo-
lution of the nonequilibrium state of highly photoinjected
double plasma in the semiconductor WZ AlN subjected to
electric field intensities to 80 kV/cm. For this study, we
used a nonlinear quantum transport theory derived from the
Nonequilibrium Statistical Operator Method [31-35]. We
presented a study regarding ultrafast transport transient char-
acteristics, focusing on the dependency of the nonequilibrium
temperatures (carriers and phonons) as well as the electron
and hole drift velocities on the electric field strength. Max-
ima of the hole drift velocity in its transient regime should be
observable depending on the evolution of the nonequilibrium
macroscopic state of the photoinjected carriers in WZ AlN.
The transient regime occurred on a picosecond scale. The
longitudinal optical phonons are slightly heated up in scat-
tering events involving Fr̈ohlich interaction with the carriers,
and the temperature increase of theAC-phonons was irrele-
vant.
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