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In a previous work reported in this journal, the thermodynamical properties ofd-wave superconducting ground states close to half filling
were obtained by using a generalized Hubbard model. In the present work, extended s-wave (s∗) symmetry superconducting ground states
are considered within the same model and a comparison is made between these two symmetries for those properties depending on the carrier
density (n) and first- (t) and second-neighbor (t′) electron hopping parameters. Fors∗-wave superconducting states, the electron-electron
interaction Hamiltonian parameters is fixed as in thed-wave case with∆t = 0.5 eV, ∆t3 = 0.05 eV, and two cases were studied;U = 0

andU = 2 eV. Without considering the diluted regime (n → 0), in the intervaln ∈ [0, 1], for both symmetries, the maximum critical
temperatures (Tc,max) at optimal doping (nop) are lower than those attained at high electron densitiesn ∈ [1, 2]. The superconducting gap at
T = 0 K and the corresponding ground state energy (Eg), for all the carrier concentrations, were also obtained. The superconductor state
with d-wave symmetry does not depend onU and a supremum fornop(nop,sup), where bothTc,max(nop,t′ andEg(nop,t′ are minimum, can
be found close to half filling. However, in general, for as∗-wave superconductorTc,max andEg attain their minimum values at different
(nop, t

′) points and anop,supcannot be properly defined.
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1. Introduction

The Hubbard model (HM) was proposed by J. Hubbard in
1963 [1] in order to understand the extensive variety of phys-
ical properties of transition metals (TM) with narrow elec-
tronic bands, and since then till nowadays it has been used
as a basic model to study diverse phenomena, such as anti-
ferromagnetism and charge density waves [2], both phenom-
ena also related to high-Tc superconductors. Moreover, it is
widely accepted that the single-band Hubbard model is an ap-
propriate starting point to describe the electronic correlations
on the copper-oxygen planes of the cuprate superconductors
[3]. In particular, the hole superconductivity proposed by J.
Hirsch [4], based on a generalized Hubbard model that in-
cludes nearest neighbor hopping (t) and the so-called nearest-
neighbor correlated hopping interaction (∆t), could explain
superconducting states with an extendeds-symmetry energy
gap. However, the inclusion of the next-nearest-neighbor
hopping could play a crucial role in the competition between
antiferromagnetism and superconductivity in cuprate super-
conductors [5]. Moreover, phase sensitive experiments have
shown that the cuprate superconductors have ad-wave sym-

metry superconducting gap [6]. In this context, L. A. Pérez
and C. Wang showed that when both next-nearest neighbor
hopping (t′) and next-nearest-neighbor correlated hopping
interaction (∆t3) are taken into account, ad-wave supercon-
ducting ground state can be found in a two-dimensional lat-
tice [7]. This generalized Hubbard model allows to describe
many properties of superconducting ground states in a square
lattice with different superconducting gap symmetries [8-10].

In a previous work [11], we studied how the critical tem-
peratureTc of d-wave superconducting states on a square
lattice depends on the electron density (n) and the second-
neighbor hopping (t′) for a given set of electron-electron
interaction parameters (U, V,∆t, ∆t3). In other words, for
each value oft′, we calculatedTc(n) and the particular value
nop(t′) whereTc is maximum is called the optimal density.
Moreover, we also studied the particular valuenop,supwhere
the minimum value ofTc(nop) is found. This value, which
corresponds to the minimum value of the critical temperature
among the set formed by the maximum values ofTc, has been
dubbed the supreme value ofTc (Tc,max,sup). Moreover, we
have found that the minimum superconducting ground state
energy is attained at this particular valuenop,sup[11].
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By locatingnop-sup for a fixed∆t3 = 0.05 eV, critical
temperatures ofTc ≈ 40 K andTc ≈ 100 K, can be found
that correspond to La2−xSrxCuO4 and YBa2Cu3O7−x with
∆t = 0.1 eV and∆t = 0.5 eV, respectively [11].

Motivated by this scenario, in this work the critical tem-
perature of systems with an extendeds-wave (s∗) super-
conducting gap as a function ofn and t′ (for a given set
of electron-electron interaction parameters) has been stud-
ied. Considering that thed-wave superconducting state arises
from theV and∆t3 interactions, while thes∗-wave one orig-
inates from both∆t and∆t3, V will be set to zero to keep
a minimum set of parameters. It is worth mentioning that
for d-wave superconductors,U does not change the super-
conducting critical temperature [7,10], whereas fors∗-wave
superconductorsU hinders the superconducting gaps and the
critical temperatures [7,10]. In contrast with thed-wave case
[11], the results show that, for thes∗-wave case, the mini-
mum of Tc(nop) it is not attained at the same value ofnop

(andt′) where the minimum ground state energy is found, al-
though forU = 2 eV, the minimum ofTc(nop) andEg are
attained close to half filling but at slightly different values of
nop. The different behaviors found ford-wave ands∗-wave
symmetries are related to the fact that, for the latter case the
superconducting gap has an isotropic (∆s) and anisotropic
(∆s∗ ) amplitudes.

2. The model

Within the single-band Generalized Hubbard Hamiltonian
[10], with on-site electron-electron Coulombic interaction
(U ), inter-site Coulombic interaction (V ), first-(∆t) and sec-
ond neighbor (∆t3) correlated-hopping interactions, the in-
teraction (Vk,k′,q) between electrons with antiparallel spins
in the reciprocal space can be written as [10,11]:

Vk,k′,q = U + V β(k − k′) + ∆t(β[k + q ] + β[−k + q]

+ β[k′ + q] + β[−k′ + q] + ∆t3(γ[k + q, k′ + q ]

+ γ(−k + q,−k′ + q))], (1)

whereq is the wave vector of the centre of mass of the two
interacting electrons with relative wave vectorsk andk′.

For a square lattice with lattice parametera, we have [11]:

β(k) = 2(cos[kxa] + cos[kya]), (2)

γ(k · k′) = 4 cos[kxa] cos[k′ya] + 4 cos[k′xa] cos[kya]. (3)

Within the mean-field BCS formalism [10], we obtain the
following two coupled integral equations which determine
the superconducting gap∆α(k) with symmetryα = s∗, d,
and the corresponding chemical potentialµα for a given tem-
peratureT and electron density (electrons per lattice site)n:

∆α = − a2

8π2

∫∫

1BZ

Vk,k’,0
∆α(k′)
Eα(k′)

tan

×
(

Eα(k′)
2kBT

)
dk′xdk′y, (4)

n− 1 = − a2

4π2

∫∫

1BZ

ε(k)µα

Eα(k)
tanh

(
Eα(k′)
2kBT

)
dkxdky. (5)

Here1BZ refers to the first Brillouin zone of a square
lattice, defined as

[−π

a
,
π

a

]
⊗

[−π

a
,
π

a

]

andEα(k) is the quasi-particle energy given by:

Eα(k) =
√

(εMF (k) + µα)2 + ∆2
α(k), (6)

where(εMF (k)) is the mean field (MF) dispersion relation
given by

εMF (k) = EMF + 2tMF (cos[kxa] + cos[kya])

+ 4t′MF cos(kxa) cos(kya), (7)

with:

EMF =
(

U

2
+ 4V

)
n, (8)

t′MF = t′ + 2n∆t3, (9)

tMF = t + n∆t, (10)

wheret andt′ are the nearest and next-nearest neighbor hop-
ping parameters. Here we taket < 0. Once the electron-
electron interactionVk,k’,q of Eq. (1) is replaced into Eq. (4)
and the possible superconducting gap solutions withd- and
s∗-wave symmetries are considered (first column of Table I),
we obtain the equations shown in the second column of Ta-
ble I.

TABLE I. Superconducting gap equations ford- ands∗-wave symmetries.

Superconducting gap Superconducting-gap equation

d-wave

∆d(k) = ∆d(cos[kxa]− cos[kya]) 1 = − (V−4∆t3)a2

4π2

∫∫
1BZ

(
[cos{kxa}−cos{kya}]2

2Eα(k)

)
tanh

(
Eα(k)
2kBT

)
dkxdky (11)

s∗-wave

∆s∗(k) = ∆s + ∆s∗(cos[kxa]− cos[kya]) ∆s∗ = −4∆t3(I2∆s∗ + I1∆s)− 4∆t(I1∆s∗ + I0∆s) (12)

∆s = −U(I1∆s∗ + I0∆s)− 4∆t(I1∆s∗ + I1∆s) (13)
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For thes∗-wave symmetry superconducting gap∆s∗(k) = ∆s + ∆s∗(cos[kxa] + cos[kya]), ∆s and ∆s∗ denote the
isotropic and anisotropic gap amplitudes, respectively, and the integralsIl for l = 0, 1, 2, are given by

Il =
a2

4π2

∫∫

1BZ

(cos[kxa] + cos[kya])l

2ES∗(k)
tanh

(
ES∗(k)
2kBT

dkxdky

)
. (14)

The critical temperature (Tc), can be determined from Eq. (11), or from Eqs. (12) and (13) together with Eq. (5) by
considering that∆α(T = Tc) = 0. In this case, the equations in Table I, can be reduced to those shown in Table II.

TABLE II. Critical temperature equations ford- ands∗-wave symmetries.

Superconducting gap symmetry Critical temperature equation

d-wave 1 = − (V−4∆t3)a3

4π2

∫∫
1BZ

(
[cos{kxa}−cos{kya}]2

2|εMF (k)−µd|

)
tanh

(
|εMF (k)−µd|

2kBTc

)
dkxdky (15)

s∗-wave 1 = (I2
1 − I2I0)(4∆t3 − (4∆t)2) + 4∆t3I2 + UI0 + 8∆tI1 (16)

where

Il =
a2

4π2

∫∫

1BZ

(cos[kxa] + cos[kya])l

2|εMF (k)− µs∗ |

× tanh
( |εMF (k)− µs∗ |

2kBTc

)
dkxdky. (17)

On the other hand, the ground state energy (Eg,α) per site
can be obtained from the following equation [12]:

Eg,α =
1

Ns
〈ψg,α|ĤMF |ψg,α〉

=
1

Ns

∑

k

(ξMF,α[k] + Eα[k])

+
1

Ns

∑

k

∆2
α(k)

2Eα(k)
+ µαn−

(
U

4
+ 2V

)
n2. (18)

where ĤMF is the mean field Hamiltonian of the system
[10,11],Ns is the number of lattice sites,

ξMF,α = εMF (k)− µα,

and
ψg,α =∝k (uk,α + vk,αc†k,↑c

†
−k,↓)|φ〉

is the ground state BCS-like wave function for singlet pairs.
The probability amplitudes to find the states〈k ↑,−k ↓〉 oc-
cupied (unoccupied) arevk−α(uk−α) are given by:

vk,α =

√
1
2

(
1− ξα(k)

Eα(k)

)
,

uk,α =

√
1
2

(
1 +

ξα(k)
Eα(k)

)
. (19)

Notice thatv2
k,α + u2

k,α = 1.

3. Results

We investigated the critical temperature as a function of the
electron density (n) and the next-nearest neighbor hopping
parameter (t’) for a system with an extendeds-wave (s∗) su-

FIGURE 1. The critical temperature (Tc) (open light gray circles)
versus the electronic density (n) and the next-nearest neighbor hop-
ping parametert′ for V = 0, ∆t = 0.5 eV, ∆t3 = 0.05 eV and
U = 2 eV. The gray circles correspond to local maxima (Tc,max)
of the critical temperature as a function ofn for a givent′. The pro-
jections of these curves on the planen − t′ are marked with small
gray dots and the values ofn whereTc,max occur are the optimal
electron density or optimal dopingnop.

perconducting gap andV = 0, ∆t = 0.5 eV and∆t3 =
0.05 eV. Figure 1 showsTc(n, t′) for U = 2 eV. Notice
that the highest values ofTc occur at high electron densi-
tiesn. From these data, the maximum ofTc,max as a func-
tion of n can be extracted for each value oft′ and the par-
ticular value ofn(nop) at which this maximum is attained is
recorded. These values ofTc,max at the optimal doping (nop)
are marked with open gray circles in Fig. 1. Figure 2 shows
the isotropic∆s(nop(t′)) (open gray circles) and anisotropic
∆s∗(nop(t′)) (open black circles) superconductings-wave
gap amplitudes at the optimal doping (nop(t′)) for each value
of t′ for the same systems shown in Fig. 1. Figure 3 shows
the corresponding ground state energies ofs∗-wave super-
conducting states at the optimal doping for each value of
t′, i.e., Eg,s∗ (nop(t′)), calculated with
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FIGURE 2. Superconducting gap amplitudes∆a,max, for α = s
(open gray circles) andα = s∗ (open black circles) evaluated at
the optimal carrier concentration or dopingnop(t

′) considering the
same set of parameters as in Fig. 1.

FIGURE 3. Ground state energy (open gray circles) evaluated at
the optimal carrier concentration or dopingnop(t

′) considering the
same set of parameters as in Fig. 1 together with the caseU = 0
(open black circles).

Eq. (18) withU = 2 eV (open gray circles) andU = 0 (open
black circles). For the case withU = 2 eV, Tc,max has a
minimum atnop = 0.55, whereasEg,s∗ has a minimum at
nop = 0.63. This is in contrast to what happens in thed-
wave case where both the minimum of the energy and the

minimum ofTc,max (among the set of maximumTc′,s) occur
at the same value ofnop [11]. This could be related to the
fact that thes∗-wave superconducting gap has two gap am-
plitudes(∆s,∆s∗) that atTc become zero at the same time,
whereas atT = 0 they could even have different sign. In
contrast, thed-wave superconducting gap only has a single
superconducting gap amplitude(∆d).

Tables III and IV summarize the superconducting gap
amplitudes∆s and∆s∗ , the Fermi energies (EF ), i e., the
chemical potentials atT = 0 K, and the ground state ener-
gies (Eg) for s∗-wave superconducting states with optimal
doping (nop) close to those where the minimum ofTc,max

(nop = 0.55) and the minimum ofEg(nop = 0.63) are at-
tained, for systems withU = 2 eV, V = 0, ∆t = 0.5 eV and
∆t3 = 0.05 eV. In general, for high electron optimal densi-
tiesTc,max is higher than at low electron densities. However,
in the case ofd-wave superconducting states with large elec-
tron densities (n) above have fillingi.e. n ∈ [1, 2], which
correspond to low hole densities (nh = 2 − n), the Fermi
energy at the under doped hole regime (nh < nh,op) does not
lie within the single-electron band and no Fermi surface is en-
countered. This electron-density zone could be related to the
pseudo gap regime of cuprate superconductors which is char-
acterized by the disappearance of Fermi surface [13]. Fig-
ure 4 shows the optimal electron density or doping,nop, for
s∗- (open circles) andd-wave (open squares) superconduct-
ing states with the same parameters as in Fig. 2 and for dif-
ferent values oft′. Notice that fort′ ∈ [0.4|t|, 0.5|t|], nop(t′)
coincide for boths∗- and d-wave superconducting states and
these occur at low densities,i.e., nop ∈ [0, 0.365]. This is due
to the fact that for these values oft′, the van Hove singularity
of the single-particle electronic density of states (DOS) of a
square lattice with first (t) and second neighbor (t′) hoppings
at the bottom of the band is enhanced, as shown in the inset
of Fig. 4, where the DOS fort′ = 0.45t andn = 0.15 (black
line) is depicted. The black arrow in the figure indicates this
enhancement in comparison with the DOS fort′ = 0.352|t|
andn = 0.55 (grey line). Due to this increment of the DOS,
both superconducting states are enhanced at low carrier con-
centrations close to the bottom of the band. Also, in Fig. 4,
the black solid and the gray solid symbols correspond to the
minima ofTc,max andEg,α, respectively, for each symmetry
α. Observe that ford-wave superconductors these two min-
ima (solid squares) occur at almost the same optimal electron
density(nop = 0.805) [11], whereas fors∗-wave supercon-
ductors they occur at different optimal dopingnop = 0.55
andnop = 0.63 (solid circles), respectively.

TABLE III. Physical properties fors∗-wave superconducting states close to minimal ofTc,max for ∆t = 0.5 eV, ∆t3 = 0.05 eV, and
U = 2 eV.

−t′/t nop Tc,max (K) Eg (eV) ∆s∗ (eV) ∆s (eV) EF (eV)

0.354 0.54 137.15 -0.620463 0.0140545 -0.0192207 -0.759190

0.352 0.55 137.03 -0.623059 0.0138245 -0.01885295 -0.733963

0.35025 0.56 137.04 -0.625388 0.0135944 -0.01849778 -0.708160
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TABLE IV. Physical properties fors∗-wave superconducting states close to minimal ofEg,s∗ for ∆t = 0.5 eV, ∆t3 = 0.05 eV, and
U = 2 eV.

−t′/t nop Tc,max (K) Eg (eV) ∆s∗ (eV) ∆s (eV) EF (eV)

0.33875 0.62 138.17 -0.632258 0.0122655 -0.0162540 -0.555360

0.3370 0.63 138.60 -0.632309 0.0120629 -0.0159037 -0.529490

0.3350 0.64 139.09 -0.631959 0.0118857 -0.0155746 -0.504122

FIGURE 4. Optimal doping as a function of the next-nearest-
neighbor hopping (nop(t

′)) for s∗- (open circles) andd-wave (open
squares) superconducting states, for the same systems shown in
Fig. 2. The solid black and gray circles correspond to the minimum
Tc,max and Eg,α, respectively. Inset: Single-particle electronic
densities of states for systems with two different second-neighbor
hoppingst′ and optimal densitiesnop.

Figure 5(a) depicts the Fermi surface (FS) for a system
with n = 0.55, U = 2.0 eV, V = 0, ∆t = 0.5 eV
and∆t3 = 0.05 eV which correspond to the minimum of
Tc,max. Notice that the FS consists of two disconnected
parts, one electron-like (circle at the center of the first Bril-
louin zone) and another one with branches as hole-like FS.
Figure 5(b) shows the single-particle excitation energy gap
(∆0) for this s∗-wave superconducting state as a function
of polar angleϕ = tan−1(ky/kx), which is defined as the
minimum value ofEs∗(k) (Eq. 6) along the direction ink-
space given byφ [10,11]. Observe that, although the super-
conducting gap has an extended s-wave symmetry given by
∆s∗(k) = ∆s + ∆s∗ [cos(kxa) + cos(kya)], ∆0(φ) has a
very complex pattern with two types of antinodes with dif-
ferent values, the larger ones atφ = 0◦, 90◦, 180◦, 270◦,
and the lower ones atφ = 45, 135◦, 225◦, 315◦, and four
nodal lines atφ = 30, 60◦, 120◦, 150◦. This complex pat-
tern comes from the interplay between the dispersion relation
εMF (k) (Eq. 7) and∆s∗(k) which appear inEs∗(k).

4. Conclusions

In summary, within the generalized Hubbard model, we have
comparatively studied how the critical temperature and the

FIGURE 5. a). Fermi surface for a square lattice withn = 0.55,
t′ = 0.352|t|, V = 0, ∆t = 0.5 eV, ∆t3 = 0.05 eV andU = 2
eV. For this case the Fermi energy isEF = −0.734 eV. b). Single
particle excitation energy gap (∆0(φ)) for an s∗-wave supercon-
ductor with the same parameters as in Fig. 5. The polar angle (φ)
is given byφ = tan−1(ky/kx).

the ground-state energy ofd- ands∗-wave superconducting
states depend on the electron density n and the first- and
second-neighbor hopping parameterst and t′. Within the
BCS formalism, thed-wave superconducting properties are
calculated by solving the coupled integral Eqs. (5) and (11),
whereas thes∗-wave superconducting properties are obtained
by means of Eq. (5) together with Eqs. (12) and (13). The
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A COMPARISON OF OPTIMAL DOPING BEHAVIORS BETWEEND− AND S∗−WAVE SUPERCONDUCTING GROUND STATES 317

ground state energy (Eg) was obtained for all the optimal
electron concentrations (nop) whereTc is maximum for each
value of t′. For t′ ∈ [0.4|t|, 0.5|t|], nop is located close to
the bottom of the band and it is the same ford- ands∗ -wave
systems, since for these values oft′ the van Hove singularity
at the bottom of the band is enhanced. Also, at low electron
densities, the behavior ofs∗-wave superconducting states dif-
fer from that observed in d-wave superconductors where the
minimum of the set of maximum critical temperatures (the
supremum ofTc,max) is attained at the same parameter space
point (n, t′) where the ground state energy is minimum. This
does not occur fors∗-wave superconductors where the supre-
mum of Tc,max is not attained at the same (n, t′) where the
minimum of the ground-state energy is located and, then, a
supremum ofnop (nop,sup) for s∗-wave can’t be defined. For
high electron densities close ton = 2, similarly to thed-wave
case, the superconducting chemical potential lies outside of
the single-particle electronic band and the Fermi surface dis-
appears, which could be related to pseudo gap zone experi-
mentally found for high-Tc superconductors [13]. The fact

that anop,sup can be properly defined ford-wave supercon-
ductors, and not fors∗-wave ones, deserve a further investi-
gation in relation with other symmetries different fromd and
s∗-wave, such asp-wave symmetry, to elucidate if this fact
is only a peculiarity ofd-wave superconducting states or if it
could have more profound implications.

In a future work, we will study the possible supercon-
ducting symmetries that can be found in a cubic or tetragonal
lattice within the generalized Hubbard model.
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