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Synthesis of silicon quantum dots using chitosan as a novel reductor agent
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In the present paper we report a novel synthesis method of silicon quantum dots (SiQDs) using 3-Aminopropyltriethoxysilane (APTES) as
silicon precursor and low molecular weight chitosan (CS) as reducing agent. The obtained SiQDs have a hydrodynamic diameter of 2.3
nm, water dispersible, presents blue emission band at 434.5 nm (2.85 eV) with a Commission InternatioBaleickegk 1931 (CIE1931)
chromaticity coordinatese(= 0.1665, y = 0.1222), the experimental absorbance of the SIQDS was measured and the band gap (Eg)
was estimated through PerkinElmer’s method, for which the obtained value was 3.1 eV and a peqsitigatial of+ 35 mV, resulting in
photonics, microelectronics, and biotechnological potential applications.
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1. Introduction reactive sputtering [11], laser ablation [12], electrochemical
etching and sonication [4], SiOmplantation [13], and ther-

. i ) .. malannealing [14]. As aresult, the PL emission for quantum
Silicon (Si) has been successful as an active material in thgg;g (QDs) is in the range between 500 and 950 nm. On
electronic industry. Its characteristic indirect band gap hagye other hand, the chemical approach applies processes as
limited the appljcations based on the emission of light. HO‘_’V'microemuIsion synthesis [15], wet chemistry [9], synthesis
ever, this semiconductor has recently drawn the attentiok), inverse micelles [16], and solution synthesis [17], which

of researchers due to its novel properties in the nanometrig,, e produced QDs with an emission in the wavelength re-
scale, such as tunable photoluminescence response [1], loé'Yon from 300 nm to 500 nm [18].

toxicity [2], and biocompatibility [3]. The photolumines- _ )

cence (PL) studies of nanostructured silicon have increased !N the search for new eco-friendly synthesis methods,
since the emission at room temperature on porous silicoRN€ alternative is the replacement of the reducing agent. In
films [4]. Silicon quantum dots have a wide range of po-Previous mvgsugatlons, pqusacchandes as reducing agents
tential applications; they have been used to improve the effill Nanoparticles’ synthesis have been reported [19-21].
ciency of solar cells [5], in the manufacture of light-emitting Polyggccharldes exhibit characteristics such as high blo'c.om—
diodes (LED) [6], nonlinear optics, and secure communicaPatibility [22,23], low cost [24-26] and easy processability

tions cryptography [7]. The SiQDs have an extended fluol27,28]. Polysaccharides possess functional groups in their

rescence lifetime, according to multiples reports. This feaStructure, including amines, carboxyl, and hydroxyl. These

ture is particularly useful in cell imaging using fluorescence-unctional groups participate in REDOX reactions, the syn-

life imaging microscopy [8] and bioimaging [9]. As a result, thesis, and stabilization qf m'etallic nanopatrticles being one
the amalgamation of these silicon quantum dots characteri&f the most common applications [29,30].

tics creates a new pathway for potential biomedical applica- Biopolymers, such as chitosan, have been used to search
tions. Nowadays, silicon nanoparticles are commonly knowrfor eco-friendly and biocompatible reducing agents to syn-
as SiQDs. A significant breakthrough in this topic was the rethesize nanoparticles. The essential characteristics of CS are
port that relates the luminescence from these SiQDs to theits high biocompatibility, water solubility, and the high re-
size and their electronic structure changes; the quantum cosponse of its functional groups to pH [31]. The properties of
finement effect (QCE) is related to this phenomenon [10]chitosan are beneficial in applications such as water bioreme-
Therefore, investigations about new pathways for the syndiation [32], cell scaffolding [33], and controlled drug deliv-
thesis of SiQDs have recently increased; the chemical andry [34]. The presence of functional groups such asGH
physical approaches are the core classification of synthesend NH, gives it properties to reduce metallic salts to synthe-
techniques. The physical approach employs methods such aize metallic nanoparticles [35,36].
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FIGURE 2. Size distribution of SiQDs.
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sis of SiQDs.
FIGURE 3. ¢-potential of SiQDs.

2. Experimental

_ o _ 4. Results and discussion
Figure 1a) shows the schematic illustration of the process.

The synthesis of SiQDs uses the method described bg.1. Dynamic light scattering

Wang, changing the reducing agent to CS. [8]. For the syn-

thesis, the conditions were ambient temperature and atmd-igure 2 shown the hydrodynamic diameter of the quantum
spheric pressure. dots in a colloidal solution, with an average of 2.3 nm. The

The method consists of hydrolyzing APTES in deionizedsize of the QDs is_ close to that shown in pre\_/ious_works to be
water under magnetic agitation for 10 minutes. Then, a soRighly biocompatible [37], [38]. A small particle size allows
lution of CS (0.2 M) in deionized water was added to theth® QDS to be internalized by pathways that do not include
previous mixture and stirred for an additional 20 minutes, a&nergy waste (pinocytosis [39] or endocytosis [40]), which is
shown in Fig. 1b). In the next step, the resulting solution was® desired characteristic in cell markers.
centrifuged at 10000 RPM to separate the excess CS. The last )
step was collecting and storing supernatant for further chard-2- ¢-potential

acterization. Figure 3 exhibits the SiQD&-potential of +35 mV; the pres-
ences of amine groups in the APTES and CS are the cause of
3. Characterization this behavior. The system reported by Wang et al., in which
sodium ascorbate was used as a reducing agent, presents a
The size distribution and-potential of the SiQDs were mea- potential +30 mV [42]. The presence of a polymeric layer of
sured with a Malvern Zetasizer NanoSeries. The photolumiCS on the surface of the QDs causes this difference. A pos-
nescence spectrum was obtained using a Kimmon IK Serigtive character promotes cell internalization due to the elec-
He-Cd Laser of 325 nm and a HORIBA Scientific iIHR320 trostatic interaction between the QDs (with a lively character)
Spectrometer. The UV-vis absorption spectrum was meaand the lipid bilayer of the cell wall (with a negative charac-
sured using a PerkinElmer UV/Vis/NIR Lambda 19 spec-ter) [44]. This positive character is a desirable characteristic
trometer. in cellular markers that require access to the cytosol.
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FIGURE 4. Photoluminescence spectrum of the SiQDs.
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FIGURE 5. UV-Vis absorption spectrum of the SiQDs.

4.3. Photoluminescence

Figure 4 shows the photoluminescence spectrum of the
SiQDs at room temperature. We can observe the two char-
acteristic emissions of the silicon core and the S#b434.5

nm (2.85 eV) [42] and 447.5 nm (2.77 eV) [43], respectively.
The CS causes the third emission in 407.5 nm (3.04 eV), ac-
cording to several works [47,45]. Therefore, we can propose
a polymer layer of CS on the surface of the QD. The presence
of CS increases the nanoparticle’s biocompatibility [46,47],
which is highly desirable in biomedical applications. The Ficure 7. SiQDs under UV light.
figure inset shows a proposed schematic diagram of the kind,

composition, and shape of the SiQDs. A =400 x 107 mand 1 eV= 1.6 x 10~ J (conversion
factor). The estimated value obtained for the band gap was
4.4. Absorbance and band gap 3.1eV.

Figure 5 showg the absorption spectr_um of the SIQDs. Thﬁ.S. Comission Internationale de IEclairage 1931 chro-
synthesized SiQDs show an absorption spectrum showed a maticity coordinates

robust cut-off wavelength at 400 nm. PerkinElmer’s simple
method [48] and the band gap estimation was by the follow—rpe p| response of the SiQDs was characterized by CIE
ing Eq. @) using the experimental absorbance values. 1931 chromaticity coordinates [49], as shown in Fig. 6, ob-
Energy(E) = h* C/\ 1) tained using the photoluminescence speptrum and the soft-
ware ColorCalculator by OSRAM Sylvania, Inc. [50]. The
where: h is the Planck’s constart = 6.626 x 10734 Js,  SiQDs emit blue light{ = 0.1665, y = 0.1222) under UV
C = Speed of light= 3.0 x 10® m/s, \ cutoff wavelength  radiation as shown in Fig. 7. This emission offers potential
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TABLE |. Comparison of SiQDs properties for similar synthesis pathways.

Research’s authors Size distribution Photoluminescence Silicon source Reductor agent
(DLS)
P.A. Hernandez-Abril, 447.5 nm 434.5 nm ) )
~2.3nm APTES Low molecular weight chitosan
etal. and 407.5 nm.
Jing Wanget al. [8]. ~2.8 nm. 530 nm. APTES Sodium Ascorbate
Jintai Lin, et al. [53]. ~3-5nm. 440 nm. APTES Trisodium citrate
Yiling Zhong, et al. [9]. ~3.86 nm. 460 nm. APTES Trisodium citrate dihydrate

electronic applications such as down-shifting material on gerature and atmospheric pressure) was successful. In the

solar cell's window side to improve the photocurrent generasynthesis, low molecular weight CS was used as a reduc-

tion [51]. ing agent. Its photoluminescent properties and size can be
The use of CS as a novel silicon reducer for SiQDsused as fluorescent probes, solar cells down-shifting coat-

synthesis has some advantages when compared to othersiags, and bio-sensors. The nanoplatform has a core-shell

shown in Table I. Previous research reports the change pastructure in which the CS is on the surface. The posifive

ticles surface charges and the biocompatibility increase bpotential increases surface functionalization possibilities for

using CS. several biomedical applications that require cellular uptakes,
CS has been used to change particles’ surface charge asdch as controlled drug release and cell marker.

increase their biocompatibility [52]. One of the benefits of

using chitosan as a reducer is smaller particle sizes. In this

work, CS has a double function: to be the reducing agent and

functionalize the surface of the QDs. Acknowledgments
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