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We study the mechanism of particle creation in the context of the emergent universe (EU) scenario which is privileged by certain important
characteristics such as the absence of time-like singularity. EU asymptotically coincides with an Einstein static model in the infinite past and
it approaches to a de Sitter expansion phase at late times. By introducing the conformal time, we obtain the solution of the Klein-Gordon
equation and by applying the “in” and “out” states method, the total number of produced particles and the total energy associated with them
are determined.
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1. Introduction

In recent years, there has been a great interest in the pro-
cess of pair creation by strong electric fields after the pio-
neering works of Sauter [1], Heisenberg and Euler [2] and
Schwinger [3]. Since then, the pair creation of particles and
antiparticles from the unstable vacuum by external electro-
magnetic fields became a curious process in quantum elec-
trodynamics (QED).

In a seminal study [3], Schwinger exactly calculated the
pair creation probability from the vacuum due to an external
field by applying the proper-time formulation. He showed
that the pure magnetic fields do not produce any pairs of
charged particles, but the presence of a magnetic field mod-
ifies the probability of pair creation when the vacuum is
perturbed by an electric field. The probability of pair cre-
ation in a constant homogeneous electric field is given by the
Schwinger rate [4,5], namely,

P ∝ e−π Ec
E , (1)

whereEc = (m2c3/e~) ' 1018 V/m is Schwinger’s critical
field. This exponential is independent of the spacetime vari-
ables and does not admit a Taylor expansion ine or E, which
indicates that this is a nonperturbative effect.

In addition, the theory of quantized fields in curved space-
time is one way of unifying Einstein’s general relativity and
quantum field theory in Minkowski background. The mecha-
nism of particle creation by the external electric field is analo-
gous to the particle production by a time-dependent metric of
a curved spacetime [6–9]. The cosmological particle creation
mechanism in a time-dependent gravitational field is one of
the most remarkable known results. This mechanism has an
important role in explaining the origin of the structures in our
Universe and opened a new field in physics.

In order to study the process of particle creation in a time-
dependent gravitational field, many different approaches
have been developed such as the Hamiltonian diagonaliza-
tion method [10, 11], path integral technique [12, 13], the
Green function approach [14], the semiclassical WKB ap-
proximation [15, 16], the method based on vacuum-vacuum
transition amplitude [3], and the “in” and “out” states formal-
ism [17,18].

Recently, the particle creation problem under the influ-
ence of electromagnetic and/or gravitational fields was stud-
ied in [19–27]. Also, more recently, the Schwinger effect by
an SU(2) gauge field during inflation for scalar particles and
fermions was calculated in [28] and [29,30].

On the other hand, one of the most serious questions in
the standard cosmology is whether the universe has a begin-
ning or has existed eternally, and this question has been lead-
ing us into a profound discussion by using general relativity
and modern cosmology. The standard cosmological model
implies that the universe stems from a Big Bang singularity.
To elude this singularity, Elliset al. [31, 32] proposed an in-
teresting model, called Emergent Universe (EU), in which the
universe originates from an Einstein static state rather than a
Big Bang singularity, and therefore, there is no time-like sin-
gularity.

In this paper, we study the mechanism of particle creation
in a spatially closed Robertson-Walker model with the scale
factora (t) = a0 + AeH0t, wherea0, A andH0 are positive
constants [33–35]. In this universe, there is no time-like sin-
gularity. It asymptotically coincides with the Einstein static
model in the infinite pasta (t) → a0 and, it approaches to
a de Sitter expansion phase at late timesa (t) → AeH0t. In
the beginning, we consider a spin-0 scalar in spatially closed
Robertson-Walker spacetime in the context of the emergent
universe scenario. Then we solve the Klein-Gordon equation
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by introducing two successive changes of variables. In or-
der to study the mechanism of particle creation, we use the
canonical method based on Bogoliubov transformation con-
necting the “in” and “out” coefficients. This method allows
us to find the number density of the created particles and the
total energy.

2. The Klein-Gordon equation

To study the process of pair creation, we consider the case of
spatially closed Robertson-Walker universe with the metric,

ds2 = dt2 − a2 (t)
[
dχ2 + sin2 χ

(
dθ2 + sin2 θdϕ2

)]
, (2)

where0 6 χ 6 π, , 0 ≤ θ < π, 0 < ϕ < 2π. The wave
equation for a real massive scalar field which is coupled to
the closed Robertson-Walker background, takes the form

1√−g
∂µ

(
gµν√−g∂νψ

)
+

(
m2 + ζR

)
ψ = 0, (3)

whereR = gµνRµν is the Ricci scalar andζ is a numerical
factor which takes the valueζ = 0 in the minimal coupling
case and,ζ = 1/6 when a conformal coupling is considered.
In this case, the equation of a massive scalar field is written
as

(
∂2

∂t2
+

3ȧ

a

∂

∂t
− 1

a2 (t)

[
∂2

∂χ2
+ 2 cot χ

∂

∂χ
− 1

sin2 χ

×
{

∂2

∂θ2
+cot θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

} ]
+ m2

)
ψ = 0, (4)

where we have neglected the numerical factorζ to yield min-
imal coupling (i.e. ζ = 0). To solve the differential equa-
tion (4), we write the solutionψ (t, χ, θ, ϕ) in the form

ψ (t, χ, θ, ϕ) = a−
3
2 (t)Y n,`,µ (χ, θ, ϕ)Ψ (t) , (5)

whereY n,`,µ are the scalar harmonics on three-sphereS3

and,n > ` > 0 and ` > µ > −`. These harmonics can
be expressed in terms of the standardS2 scalar harmonics
Y`,µ (θ, ϕ) as

Y n,`,µ (χ, θ, ϕ) = Hn,` (χ)Y`,µ (θ, ϕ) . (6)

The eigenfunctionsHn,` (χ) satisfy the following differen-
tial equation [36,37]

[
∂2

∂χ2
+ 2 cot χ

∂

∂χ
− ` (` + 1)

sin2 χ

]

×Hn,` (χ) = −n (n + 2) Hn,` (χ) . (7)

with

Hn,` (χ) = sin` χC`+1
n−` (cos (χ)) , (8)

and C`+1
n−` (cos (χ)) are Gegenbauer polynomials [36, 37].

TheS3 scalar harmonicsY n,`,µ satisfy the following ortho-
normality conditions:

∫
Y n,`,µ (χ, θ, ϕ)Y ∗n′,`′,µ′ (χ, θ, ϕ) sin2 χdχ

× sin θdθdϕ = δnn′δ``′δµµ′ . (9)

Substituting Eq. (5), (6) and (7) in Eq. (4), we obtain the dif-
ferential equation forΨ(t),

[
∂2

∂t2
+ ω2

n (t)
]

Ψ (t) = 0, (10)

where

ω2
n (t) = m2 − 3

2
AH2

0etH0

a0 + AeH0t
− 3

4

(
AH0e

tH0

a0 + AeH0t

)2

+
n (n + 2)

(a0 + AeH0t)2
. (11)

The Eq. (10) involvesn and so, in general, the number of
produced particles will depend onn. Equation (10), on the
other hand, does not depend on the angular eingenvalues`,
and so the number of produced particles are always indepen-
dent of` in closed Robertson-Walker spacetime. Note that
Eq. (10) is similar to that of the harmonic oscillator with a
time-dependent frequency.

Let us analyze the behavior of the time equation when
t → ±∞. In the asymptotic pastt → −∞, Eq. (10) reduces
to

[
∂2

∂t2
+ ωn,in

]
Ψ(t) = 0;

√
n (n + 2)

a2
0

+ m2 = ωn,in, (12)

with the solutions

Ψn,in ' e−iωn,int

√
2ωn,in

; Ψ∗n,in '
eiωn,int

√
2ωn,in

. (13)

On the other hand, in the asymptotic futuret → +∞,
Eq. (10) yields

[
∂2

∂t2
+ ωout

]
Ψ(t) = 0; ωout =

√
m2 − 9H2

0

4
, (14)

with the solutions

Ψout (t) ' e−iωout t

√
2ωout

; Ψ∗out (t) ' eiωout t

√
2ωout

. (15)

We see thatωout does not depend on the labeln. This result
is not surprising because in the future infinity we coincide
with a de Sitter spacetime [38]. By making two successive
changes of variables as

η =
∫

dt

a (t)
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andξ = eH0a0η, the Eq. (10) takes the form

(
(1− ξ) ξ

d2

dξ2
+ (1− 2ξ)

d

dξ
+

m2

H2
0
− 9

4

(1− ξ)

+
n(n+2)
H2

0a2
0

+ m2

H2
0

ξ
−

[
n (n + 2)

a2
0H

2
0

− 3
4

] )
Ψ(ξ) = 0. (16)

The singularities of this differential equation areξ = 0, 1 and
∞, and all are regular singularities. We can recognize this
differential equation as a hypergeometric one by imposing
the substitution,

Ψ(ξ) = (1− ξ)κ
ξυΞ (ξ) . (17)

This, substituted into the differential equation, gives,

(
d2

dξ2
+ (1 + 2υ − 2 (υ + κ + 1) ξ)

d

dξ

−
[(

υ + κ +
1
2

)2

+
n (n + 2)

a2
0H

2
0

− 1

])
Ξ (ξ) = 0, (18)

whereκ = (iωout/H0) andυ = (iωn,in/H0). The equation
above is a hypergeometric equation whose solution around
the originξ = 0 is given in terms of the hypergeometric func-
tions as [39]

Ξ1 = F
(

1
2

+ υ + κ + iϑn,

1
2

+ υ + κ− iϑn, 1 + 2υ; ξ
)

, (19)

Ξ2 = ξ−2υF
(

1
2
− υ + κ + iϑn,

1
2
− υ + κ− iϑn, 1− 2υ; ξ

)
, (20)

and the solutionΨ (ξ) of Eq. (16) finally reads,

Ψ1 = ξυ (1− ξ)κ F
(

1
2

+ υ + κ + iϑn,

1
2

+ υ + κ− iϑn, 1 + 2υ; ξ
)

, (21)

Ψ2 = (1− ξ)κ
ξ−υF

(
1
2
− υ + κ + iϑn,

1
2
− υ + κ− iϑn, 1− 2υ; ξ

)
, (22)

whereϑn =
√

(n (n + 2)/a2
0H

2
0 )− 1. Using the invari-

ance of Eq. (16) under the transformationξ → 1 − ξ and

ωn,in → ω
out

, we find another set of solutions

Ψ3 = (1− ξ)κ
ξυF

(
1
2

+ υ + κ + iϑn,

1
2

+ υ + κ− iϑn, 1 + 2κ; 1− ξ

)
, (23)

Ψ4 = ξυ (1− ξ)−κ F
(

1
2

+ υ − κ + iϑn,

1
2
− κ + υ − iϑn, 1− 2κ, 1− ξ

)
. (24)

In the next section we will use the solutions of the field equa-
tion to analyze the mechanism of particle creation.

3. Pair creation

In order to study the process of particle creation, we will dis-
cuss the asymptotic behavior of the solutions of the Klein-
Gordon equation whent → ±∞, or equivalently when
ξ → 0, 1. Firstly, whent → −∞ or ξ → 0, we have

lim
ξ→0

Ψ1 = lim
ξ→0

(1− ξ)κ
ξυ

√
2ωin

n

× F (a, b, c; ξ) ' eiωn,int

√
2ωn,in

, (25)

lim
ξ→0

Ψ2 = lim
ξ→0

(1− ξ)κ
ξ−υ

√
2ωn,in

× F (a′, b′, c′; ξ) ' e−iωn,int

√
2ωn,in

, (26)

whereF (a, b, c; 0) = 1. Then, ast → −∞, the positive and
negative frequency modes are

Ψ∗n,in = Ψ1; Ψn,in = Ψ2. (27)

The modes (25), (26) may be used to define particle states
and a Fock space in the Heisenberg picture in the standard
way. In particular, the field modesΨn may be expanded

Ψn = anΨn,in + a+
n Ψ∗n,in, (28)

where the operatorsan, a+
n obey the commutation relations

[
an, a+

n′
]

= δnn′ , [an, an′ ] =
[
a+

n , a+
n′

]
= 0. (29)

Similarly, in the “out” region, whent → +∞ or ξ → 1, we
have

lim
ξ→0

Ψn3 = lim
ξ→0

(1− ξ)κ
ξυ

√
2ωout

× F (a, b, c; 1− ξ) ' e−iωout t

√
2ωout

, (30)

lim
ξ→0

Ψn4 = lim
ξ→0

ξυ (1− ξ)−κ

√
2ωout

× F (a′, b′, c′; 1− ξ) ' eiωout t

√
2ωout

, (31)
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and the positive and negative frequency modes ast → +∞
are

Ψn4 = Ψ∗n,out; Ψn3 = Ψn,out. (32)

The field modesΨn can be expanded in terms of these “out”
modes as,

Ψn = bnΨout
n + b+

n Ψ∗out
n , (33)

where

[
bn, b+

n′
]

= δnn′ , [bn, bn′ ] =
[
b+
n , b+

n′
]

= 0. (34)

There are two different vacua|0in〉 and |0out〉 associated
with two Fock spacesF in andFout

{
an |0in〉 = 0, ∀ n
bn |0out〉 = 0, ∀ n

. (35)

The creation and annhilation operators are related by the re-
lations

{
an = αnbn + βnb+

n

bn = α∗nan − β∗na+
n

, (36)

whereαn andβn are the Bogolioubov’s coefficients. In or-
der to obtain the density of created particles, we use the so
called Bogoliubov transformation, connecting the “in” (at
t → −∞) with the “out” (att → +∞ ) states,

Ψn,in = αnΨn,out + βnΨ∗n,out. (37)

The “in” state is written in terms of the outgoing positive and
negative solutions and this is the origin of particle creation
by a gravitational field. The coefficientsαn andβn are the
Bogoliubov coefficients satisfying the bosonic relation given
by

|αn|2 − |βn|2 = 1. (38)

By using the relation between the hypergeometric functions
[39], namely,

F (a, b, c,κ) =
Γ (c) Γ (c− a− b)
Γ (c− b) Γ (c− a)

× F (a, b, a + b− c + 1, 1− κ)

+
Γ (c) Γ (a + b− c)

Γ (b) Γ (a)
(1− κ)c−a−b

× F (c−a, c−b, c−a−b+1, 1−κ) , (39)

and

F (a, b, c, y) = (1− y)c−a−b F (c− a, c− b, c, y) , (40)

we find that the Bogoliubov coefficients are

αn =

√
ωout

ωn,in
Γ

(
1− 2i

ωn,in

H0

)
Γ

(
−2iωout

H0

)

Γ
(

1
2 − i

ωn,in+iωout

H0
+ iϑn

)
Γ

(
1
2 − i

ωn,in+ωout

H0
− iϑn

) , (41)

βn =

√
ωout

ωn,in
Γ

(
1− 2i

ωn,in

H0

)
Γ

(
2iωout

H0

)

Γ
(

1
2 − i

ωn,in−ωout

H0
− iϑn

)
Γ

(
1
2 − i

ωn,in−ωout

H0
+ iϑn

) . (42)

So, the number of particles is given by:

Nn = 〈0in| b+
n bn |0in〉 = |βn|2 . (43)

A direct calculation gives

Nn =
cosh π

(
ωn,in−ωout

H0
− ϑn

)
cosh π

(
ωn,in−ωout

H0
+ ϑn

)

sinh 2πωn,in

H0
sinh 2πωout

H0

, (44)

where we used the relations,

|Γ (ix)|2 =
π

x sinhπx
; |Γ (1 + ix)|2 =

πx

sinh πx
;

∣∣∣∣Γ
(

1
2

+ ix

)∣∣∣∣
2

=
π

cosh πx
. (45)

The total number of the produced particles is obtained by taking the sum over all the oscillation modes as

N =
∞∑

n=0

(n + 1)2
cosh π

(
ωn,in−ωout

H0
− ϑn

)
cosh π

(
ωn,in−ωout

H0
+ ϑn

)

sinh 2πωn,in

H0
sinh 2πωout

H0

, (46)
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and the total energy is given by

E =
∞∑

n=0

ωout (n + 1)2
cosh π

(
ωn,in−ωout

H0
− ϑn

)
cosh π

(
ωn,in−ωout

H0
+ ϑn

)

sinh 2πωn,in

H0
sinh 2πωout

H0

, (47)

where(n + 1)2 is the degree of degeneracy.
In Fig. 1, we plot the total number of produced particles (N) as a function of variableM = m/H0 for several values of

h = a0H0. The Eq. (46) has an infinite sum over all oscillation modes. Thus, we need to truncate the infinite series in order
to perform a numerical study for the total number of particles. We calculated the sum for 100, 1000 and 10000 terms and
concluded that the number of particles increases with the number of terms taken into the summation indicating a divergence,
while leaving the character of the curves unchanged. For 100, 1000 and 10000 terms, we have the number of particles in the
numerical order104, 107∼8 and1010∼11, respectively. In Fig. 1, we present the values obtained for the summation of 100
terms that shows the curves clearly. The number of produced particles decreases rapidly withM . Changes in the parameterh
change the behavior of the curves very slightly. While small values ofh produce individual curves, the curves start to coincide
ash increases. We did not include the curve forh = 10000 for simplicity as it also coincides with the curves associated with
h = 100 andh = 1000.

Indeed, the sums in Eqs. (46) and (47) are quite divergent, therefore the “in” and “out” representations are unitarily in-
equivalent, since Bogoliubov transformations need not to be unitary. Otherwise, it is remarkable that the system evolves slowly
and continuously over time, which corresponds to the adiabatic regime. Consequently, the study of the frequencyω2

n (t) in
equations (10) and (11) implies that the asymptotic behavior ofΨ(t) whent → ±∞ is approximated by a WKB solution.
Therefore, in order to regularize this divergence to find a sensible result, we consider that the process of pair production occurs
at the time of maximum violation of the adiabatic condition, namely(d/dt) log

∣∣(ω̇/ω2)
∣∣ = 0, around timetc and we can

cut-off the sum atn = Nc, which is the highest value ofn [40–42]. Then the expressions of the total numberN of particles
and the total energy are written according toNc as follows

N =
Nc∑

n=0

(n + 1)2
cosh π

(
ωn,in−ωout

H0
− ϑn

)
cosh π

(
ωn,in−ωout

H0
+ ϑn

)

sinh 2πωn,in

H0
sinh 2πωout

H0

, (48)

E =
Nc∑

n=0

ωout (n + 1)2
cosh π

(
ωn,in−ωout

H0
− ϑn

)
cosh π

(
ωn,in−ωout

H0
+ ϑn

)

sinh 2πωn,in

H0
sinh 2πωout

H0

, (49)

and their asymptotic behaviours are given respectively by

N ' 1
3

N3
c

sinh
(

2πωout

H0

) , (50)

and

E ' 1
3

N3
c ωout

sinh
(

2πωout

H0

) . (51)

Finally, let us study the limita0 → 0 that reproduces the de Sitter case. By taking into account that

n (n + 2) → k2, H0 → H and lim
a0→0

ωn,in =
|k|
a0

, lim
a0→0

ϑn =
|k|

Ha0
, (52)

wherek2 = k2
x + k2

y + k2
n. For these conditions, Eq. (44) becomes

Na0→0 = lim
a0→0

cosh π

(√
m2

H − 9
4

)
cosh π

(
2|k|
Ha0

−
√

m2

H − 9
4

)

sinh
(

2π|k|
Ha0

)
sinh

(
2π

√
m2

H − 9
4

) . (53)

By using of the formula
lim

z→+∞
sinh z → ez; lim

z→+∞
cosh z → ez, (54)

we obtain

Na0→0 =
[
e2π

√
m2
H − 9

4 − 1
]−1

, (55)
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FIGURE 1.
(
N vs. M = m

H0

)
for some h= a0H0 values).

and this result agrees exactly with that of [43]. Integrating
this expression over all wave modes gives a divergent result,

1
(2π)3

∫
d3kNa0→0 =

Na0→0

(2π)2

+∞∫

0

k2dk. (56)

We introducekc as the highest value of the momentum for
which the pairs have been created at a given time [40–42].
Consequently, the total number of created particles is given
by

1
(2π)3

∫
d3kNa0→0 =

k3
cNa0→0

6π2
. (57)

4. Conclusion

We studied an explicit calculation of the Klein-Gordon equa-
tion in spatially closed Robertson-Walker universe with the
emergent universe (EU) scenarios whose scale factor evolu-
tion is modeled bya (t) = a0 + AeH0t. It is remarkable that
this universe is characterized by the absence of the time-like
singularity and, it asymptotically coincides with the Einstein
static model in the infinite past and it approaches to a de Sitter
expansion phase at late times.

The exact solution of the Klein-Gordon equation is ob-
tained in terms of the hypergeometric functions for the tem-
poral part, multiplied by the scalar harmonics on three-sphere
S3. To calculate the total number of produced particles
and the total energy associated with them, we analyzed the
asymptotic behavior of the solutions of the Klein-Gordon
equation whent → ±∞ in order to determine the suitable
choice of the “in” and “out” states. Consequently, we applied
the usual method of Bogoliubov transformations to find the
coefficients connecting the “in” and “out” states that directly
yield our results. We plotted the number of produced parti-
cles using a truncated series as a function ofm/H0 to see
that the number of produced particles decreases rapidly with
m/H0. Finally, we studied the limita0 → 0 that reproduced
the de Sitter case as expected.
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