
RESEARCH Revista Mexicana de Fı́sica67 (1) 75–83 JANUARY-FEBRUARY 2021

Merger of galactic cores made of ultralight bosonic dark matter
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We study binary mergers of ultralight bosonic dark matter cores by solving the Gross-Pitaevskii-Poisson system of equations. The analysis
centers on the dynamics of the relaxation process and the behavior of the configuration resulting from the merger, including the Gravitational
Cooling with its corresponding emission of mass and angular momentum. The oscillations of density and size of the final configuration
are characterized, indicating that for the equal mass case the dependency of the amplitude and frequency of these oscillations on the impact
parameter of the pre-merger configuration is linear. The amplitude of these oscillations changes by a factor of two or more indicating the final
configuration does not approach a clear stationary state even though it oscillates around a virialized state. For the unequal mass case, global
quantities also indicate the final configuration oscillates around a virialized state, although the density does not show a dominant oscillation
mode. Also the evolution of the angular momentum prior and post merger is analyzed in all cases.
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1. Introduction

One of the viable dark matter candidates currently under
study is the ultralight spin-less boson [1, 2], which is attrac-
tive because of some interesting properties consistent with
observations. For instance when its mass is of orderm ∼
10−22 eV structures do not develop cusps due to the large de
Broglie length [3–6], whereas at large scale the behavior is
consistent with that of CDM [7, 8]. At the same time, this
model is also consistent with the small structure abundance
of the mass power spectrum [1,2,4,9].

Local scale dynamics on the other hand, should indicate
differences between CDM and ultralight bosonic dark matter
and impose constraints on the latter. For instance, the relax-
ation process should be special, being the gravitational cool-
ing process an option [10, 11] in which matter carries out ki-
netic energy, leaving the structure under relaxation in a nearly
virialized state, or other processes involving dynamical fric-
tion [12], or damping [13] could provide the relaxation mech-
anism. Also the collisions and interaction between structures
can provide important restrictions to the model, for exam-
ple the density resulting from head-on core mergers [14] that
may result in the destruction of luminous matter clusters dur-
ing the process for certain particular scenarios [15]. Other
restrictions, such as those on the boson mass are found from
the analysis of core oscillations that may or may not allow
the formation of star clusters in galaxies [16].

Locally, the dynamics of this dark matter model is ruled
by the Gross-Pitaevskii-Poisson (GPP) system, that describes
the evolution of a Bose-Einstein Condensate in the Gross-
Pitaevskii mean field approximation, contained by the grav-
itational potential generated by itself. One point the various
studies and approaches at local scale of the model have in
common, is that this type of dark matter clumps into struc-

tures with a universal profile, either into an equilibrium con-
figuration of the GPP system for isolated systems [11, 17],
or composed of a core, sometimes called solitonic profile
that matches the density profile of an equilibrium configu-
ration [7], and a surrounding cloud with a NFW profile ob-
tained from simulations involving structure formation clus-
tering [7,8,12,18–20].

Among the common interactions between structures or
cores, the merger of two of them is very important and is the
subject of this paper. Configurations resulting from a merger
with angular momentum, naturally inherit rotation from the
original merging cores. Rotating structures within this dark
matter model are interesting for various reasons. One of them
is that rotation is an extra parameter for BEC dark matter ha-
los that helps fitting galactic rotation curves by keeping the
boson mass unchanged [21,22], and will possibly help to re-
duce the dispersion of boson mass in rotation curve fitting of
big catalogs [23]. In a similar context, ellipsoidal analytic
solutions to the GPP with rotation have been associated with
possible vortex solution [24]. And more recently, new exact
solutions of the GPP system with rotation are also being con-
structed with the aim of studying this dark matter model at
the local scale [25,26].

The study of core mergers in orbit or during structure for-
mation, within the context of ultralight bosonic dark matter is
not new. In fact also multiple soliton mergers have also been
studied [12,19,27]. Specially in [19], the mergers have been
analyzed in detail, from the initial conditions to the proper-
ties of the final configuration. Among the most interesting
results, it was found that the final mass of the merger does
not depend on the initial momentum of the orbiting objects
and only depends on mass ratio, the total initial mass, and the
total energy of the system. Also in [18], the density of cores
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resulting from mergers is compared with the solitonic profile
in the context of structure formation simulations.

The analysis in our paper is very similar to that in [19],
however, some new results arise. Important differences are
that we solve the GPP system without using the Madelung
transformation, not for calculations nor for diagnostics of
macroscopic quantities. We in fact confirm that the final mass
of the merger does not depend on the initial angular momen-
tum of the pre-merger configuration, however, we find this
result holds only for the equal mass case. We also find that
the angular momentum of the final configuration depends on
the initial conditions prior to merger, for both the equal and
unequal mass cases.

On the other hand, in Ref. [6], within the analysis of
structure formation, it is found that cores exhibit strong un-
damped oscillations. Our results are consistent with this ev-
idence. From our analysis, we find that the configuration re-
sulting from the merger of two cores exhibits a dynamical
behavior, characterized by oscillations with considerable am-
plitude that depend on the parameters of the binary system.
The final structure does not relax, however by fitting the den-
sity profile at different times we illustrate how the core radius
and central density change in time.

The paper is written with the following structure. In
Sec. 2 we describe the method used to simulate the mergers.
In Sec. 3 we analyze the equal and unequal mass scenarios.
In Sec. 4 we draw some conclusions.

2. Evolution of the system

Like in the analyses of structure formation and binary merg-
ers mentioned before, we assume the dynamics of the ul-
tralight bosonic dark matter is ruled by the GPP system of
equations. Likewise we assume the free field regime, where
the self-interaction among bosons is neglected, the so called
fuzzy dark matter regime. Finally, we solve the equations
using numerical methods and initial conditions described be-
low.

2.1. Numerical methods

We solve the time dependent GPP system of equations which
in code units is written as

i∂tΨ = −1
2
∇2Ψ + V Ψ

∇2V = |Ψ|2, (1)

that describes the evolution of the fuzzy dark matter. Here,
Ψ represents the wave function of the system and|Ψ|2 is in-
terpreted as the macroscopic density of the condensate andV
is the gravitational potential sourced by the condensate itself.
We solve these equations forΨ in a cubic finite domain, with
initial data forΨ consistent with the potentialV . In this sys-
tem, Poisson equation is a constraint that has to be solved on
the fly as the bosonic gas density evolves.

We solve the Gross-Pitaevskii equation numerically in
3D using the method of lines for the evolution across spa-
tial slices separated by intervals of time∆t. The spatial do-
mainD = [xmin, xmax] × [ymin, ymax] × [zmin, zmax] is de-
scribed with a Cartesian and uniformly discretized grid de-
fined by xi,j,k = xmin + i∆x, yi,j,k = ymin + j∆y and
zi,j,k = zmin + k∆z, for i = 0, ..., Nx, j = 0, ..., Ny,
k = 0, ..., Nz, with an isotropic resolution∆x = ∆y =
∆z = (xmax − xmin)/Nx.

We discretize the equations with second order accurate
finite difference stencils for spatial derivatives. For the sake
of accuracy in the region of the merger, we use fixed mesh
refinement based on the Berger-Oliger algorithm [28], with
concentric refinement boxes. The resolution factor between
successive refinement levels is one half. Considering that for
the stability of the evolution, time and space resolution are
limited by the conditionC = ∆t/∆x2 < 0.25/

√
3, we

choose the value ofC to be that corresponding to the most
refined level.

We solve Poisson equation forV with a Multigrid algo-
rithm with subcycles that use the Successive Over Relaxation
method. This equation is solved at initial time and during the
evolution. Due to its computational cost, the integration of
Poisson equation represents the major bottleneck of the code
during the simulations.

Since we want to avoid reflections of matter from the
boundary of the numerical domain, and because the Grav-
itational Cooling depends on the emission of matter that
carries kinetic energy with it, we implement a sponge con-
sisting of the addition of an imaginary potential such that
V → V + Vim, acting as a sink of particles following the
recipe in [29]. We make sure that the transition region of the
sponge lies exclusively in the coarsest refinement level.

2.2. Initial conditions

We assume the colliding objects are equilibrium configura-
tions, which are spherical stationary solutions, constructed
by assuming a harmonic time dependence of the wave func-
tion Ψ = e−iωtψ(r), whereω is the eigenvalue of the Sturm-
Liouville problem resulting from the spatial and time sym-
metries ofΨ as described in [29].

The initial wave function for the collision of two config-
urations is the superposition of the wave functions of two of
these equilibrium configurations with different masses and
linear momentum. For the superposition we use the method
in [14], specifically, we do not solve the Sturm-Liouville
problem for two equilibrium configurations with different
masses. Instead, we exploit the scale invariance of the GPP
system of equations [29], namely that by scaling physical
quantities ast = λ2t̂, x = λx̂, Ψ = Ψ̂/λ2, V = V̂ /λ2,
wherex represents any of the spatial coordinates andλ is a
number, the GPP system (1) remains unchanged. Thus, the
solution of the GPP system for a given configuration means
one can construct all other equilibrium configurations using
this scaling property. In fact, a consequence of this scaling

Rev. Mex. Fis.67 (1) 75–83



MERGER OF GALACTIC CORES MADE OF ULTRALIGHT BOSONIC DARK MATTER 77

is that density and mass also scale asρ̂ = λ4ρ, M̂ = λM
which are important physical parameters of a scaled configu-
ration used below.

In practice the typical equilibrium configuration is that
with the central value of the wave functionψ(r = 0) = 1
that we will callψ(r)1 and has mass we callM1. We choose
one of the two configurations that will collide, to be precisely
this standard configuration.

The second configuration that will collide, is a config-
uration constructed with the scaling relations above, repre-
sented by the wave functionψ(r)λ = λ2ψ(r)1, with mass
Mλ = λM1. Notice that the scaling parameter happens to be
the mass ratioλ = Mλ/M1 = λ = MR between the first
and the second configurations used for the collision. In the
analysis we consider the convention0 < λ < 1 in all cases,
so thatMλ < M1 always.

We then interpolate and superpose the two configurations
in the numerical domainD. In order to maintain the sys-
tem evolving within the numerical domain, we set the cen-
ter of mass of the configuration at the coordinate origin. We
parametrize the initial conditions by fixing the coordinates
of the lighter configuration with massMλ at (x0, y0, 0) with
x0, y0 > 0. Then, in order for the center of mass to lie at the
origin, the center of the heavy configuration with massM1

must be centered at coordinates(−λx0,−λy0, 0). In this set
upy0 will play the role of impact parameter prior to merger.

The angular momentum is added through the imprint of
linear momentum to the configurations along thex direc-
tion only. For this, we parametrize the momentum with the
x−component of the heavy configuration with massM1 that
we set topx0. Then again, in order to keep the center of mass
approximately at the coordinate origin, the momentum of the
light configuration must bepx0/λ. The momentum is applied
to each of the configurations by redefiningψ1 → eipx0xψ1

andψλ → e−ipx0xψλ. Finally the wave function of the bi-
nary system at initial time isΨ = ψ1 +ψλ and the scheme in
Fig. 1 illustrates the initial conditions.

FIGURE 1. Scheme of the initial conditions on thexy−plane, for
the two configurations described byψ1 andψλ. It illustrates the
initial position and momentum in terms of the mass ratioλ, which
are defined such that the center of mass is located at the origin and
is expected to remain there.

2.3. Diagnostics

We monitor the dynamics of the system by evaluating some
macroscopic variables. These include the massM , kinetic
energyK, gravitational energyW and thez component of
the angular momentumLz. These quantities are

M =
∫

Ψ∗Ψd3x

K = −1
2

∫
Ψ∗∇2Ψd3x

W =
1
2

∫
Ψ∗V Ψd3x

Lz = −i

∫
Ψ∗

(
x

∂Ψ
∂y

− y
∂Ψ
∂x

)
d3x (2)

where the integrals are calculated using the second order ac-
curate trapezoidal rule. A first important quantity is the total
energyE = K + W , whose sign determines when a system
is bounded (E < 0) or unbounded (E > 0). A second one is
Q = 2K + W which should be zero for a virialized system
and allows one to determine when a system is near, tends to
or is far from a virialized state.

3. Analysis

3.1. Parameter space

There is a wide variety of possible configurations that can
be explored. However, three parameters influence the be-
havior of the configuration resulting from the interaction be-
tween the two cores, namely, the mass ratioMR, momentum
px0, and impact parameter. These three parameters determine
wide ranges of angular momentum and total energy values at
initial time. It would be ideal to have the possibility of ex-
ploring a wide range of this parameter space. Nevertheless,
due to the expensive computational cost of simulations, we
restrict the exploration to illustrate the influence of some pa-
rameters using specific values.

First, we set two possible values of the mass ratioMR =
λ = 0.5, 1, which are the equal mass scenario and the two to
one mass ratio case, which will illustrate well the behavior of
the system in unequal mass encounters.

Second, we consider various values of the impact pa-
rametery0. The radius of the configuration with massM1

is r95 ∼ 3.93 in code units [29], whereas that of mass
M1/2 is twice as big. Thus we study the range of values
y0 = 1, 2, ..., 10 that accounts for scenarios ranging from
nearly head-on to a separation various times bigger than the
size of the structures.

Third, we distinguish between merger and unbounded
scenarios. In the first scenario the two configurations end
up together and form a final configuration. In the second sce-
nario, either the configurations flyby each other or behave as
solitons. The momentumpx0 is useful to generate the two
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scenarios, because it sets the amount on kinetic energyK of
the two configurations together. With a low value of this pa-
rameter the gravitational energyW dominates, implying that
E < 0, otherwise a high momentum contributes toK that
can contribute importantly to the energy to be positive and
produce unbounded configurations. The threshold value for
the head-on scenario is found to bepx0 ∼ 0.7 [30] which
serves as a guide to avoid non-merging cases.

We empirically found a range of values ofpx0 for which
at initial time the total energy is negative for the two val-
ues ofMR and all the values ofy0. Values in the range
px0 ∈ [0, 0.3] produce configurations with negative energy.
In what follows we use the casepx0 = 0.1 to illustrate the
generic properties of mergers.

The values of these physical parameters suggest the nu-
merical parameters to be used. The first parameter is the lo-
cation of the lighter configuration at(x0, y0, 0) with x0 = 10
in all cases. We use this value because the interference at
the origin betweenψ1 andψλ, 〈ψ1, ψλ〉 is less than10−8.
We consider the domain to be the boxD = [−40, 40]3 and
cover it with two refinement levels, and maximum resolution
∆x = 0.1r95 in the inner box, which covers the region where
the dynamics is more importantDh = [−20, 20]3.

3.2. Global quantities

In a merger scenario, the two cores collide and form a sin-
gle final configuration whose density profile can eventually
be fitted with a simple function that can be further used to
understand and analyze the physics of different processes.

We study now this scenario usingpx0 = 0.1 for the two
values ofMR and all the values of the impact parameter
y0. The system of Eq. (1) is solved numerically for the ini-
tial conditions described above and we show the evolution of
some of the scalars defined in Sec. II.C in Fig. 2, for the ten
values ofy0 = 1, ..., 10.

The energyE is shown normalized with the absolute
value of its initial value. Notice that the total energy becomes
more negative than at initial time, which indicates that the
gravitational energy plays a more important role with time.
The energy is also lost in a bigger proportion for smaller im-
pact parametery0, and forMR = 1 than forMR = 0.5.

The mass is normalized with the mass of the standard
equilibrium configurationM1, therefore forMR = 1 the
total mass is initiallyM = 2, whereas forMR = 0.5 the
initial mass isM = 1.5. Notice that the mass decreases be-
cause matter is ejected and eventually captured by the nu-
merical sponge. The combination of these two observations
indicates that the mass lost during the process carries kinetic
energy with it, exemplifying the Gravitational Cooling pro-
cess [11,31].

Notice also that forMR = 1, the total mass is higher at
initial time, but is also lost in a bigger percentage compared
to the case ofMR = 0.5. It can also be seen that the bigger
the impact parametery0, the smaller the mass ejected during
the process. ForMR = 1 the final mass converges to the

FIGURE 2. For the casepx0 = 0.1, we show the total energy
E, the total massM andLz for the two mass ratios considered
MR = 0.5, 1 and the ten impact parameter valuesy0 = 0, ..., 10.
Labels are used only for the two extreme values ofy0 = 1, 10,
whereas the unlabeled curves correspond to the other eight inter-
mediate values ofy0.

same value independently ofy0, or equivalently to the initial
angular momentum of the pre-merger configuration as dis-
covered in [19]. Nevertheless forMR = 0.5 this is not the
case, at least within the time window of our simulations.

Another interesting result is that the matter also carries
angular momentum with it. In the bottom panel of Fig. 2, the
proportion of angular momentum during the merger is shown.

The evolution of angular momentum shows an interest-
ing behavior. ForMR = 0.5 the amount ofLz released is
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FIGURE 3. Density contours on thexy−plane for the equal mass
merger withpx0 = 0.1 andy0 = 5.

between∼ 20% for y0 = 1 and∼ 40% for y0 = 10. In this
sense, the simulations indicate that the merger process can
produce final configurations with a wide range of values of
angular momentum that could give origin to rotating galactic
cores. However, forMR = 1 the loss of angular momentum
radiated away is of∼ 65% for y0 = 10 and even turns neg-
ative fory0 = 1, 2, 3 in the time window of the simulations
and could hold also for other values in a bigger time domain.
This result is interesting and the reason for the change of sign
is that small values ofy0 correspond to nearly head-on situ-
ations. Sincey0 is the value of the impact parameter only
at the center of each configuration, part of the matter ejected
should be that initially located farther from thex−axis which
carries angular momentum with it when it abandons the do-
main. This turn in the direction of rotation could be an in-
teresting sign that eventually may provide restrictions to the
model or predictions.

3.3. Equal mass case

The evolution of a specific simulation is shown in Fig. 3 for
the equal mass case. The final configuration remains centered
at the coordinate origin, rotates and has an ellipsoidal den-
sity profile. Animations of this and cases with various other

FIGURE 4. For the casepx0 = 0.1 and MR = 1, we show
Q = 2K + W and the central value of the density as a function of
time fory0 = 0 andy0 = 10. Oscillations are smaller fory0 = 10
than for the nearly head-on casey0 = 1.

parameter values are available in the supplemental mate-
rial [32].

In order to learn more about the dynamical behavior of
the final configuration, we track the value of the central den-
sity andQ = 2K + W as functions of time that are shown
in Fig. 4 for the two extreme values of the impact parame-
ter y0 = 1, 10. It can be seen that the quantityQ oscillates
around zero with a decreasing amplitude as expected for the
Gravitational Cooling [14].

The central density oscillates changing values by factors
between two and three in the nearly head-on casey0 = 1
and smaller oscillations fory0 = 10. Figure 4 suggests that
the amplitude of the oscillations and the central value of the
density depend on the impact parameter. In order to find a de-
pendency ony0 we calculated the average densityρavg and
its standard deviation to have a measure of the amplitude vari-
ation around the averageρdev, for t > 200. The results are
shown in Fig. 5, which suggest that both, the central density
and oscillation amplitude depend ony0 linearly. Finally, cal-
culating a Fourier Transform within the same time domain,
we obtain the peak frequency associated to the dominant den-
sity oscillation mode, which also depends on the impact pa-
rameter as shown in the third panel of Fig. 5. Knowing that
the final mass is the same for all values ofy0, the oscillation
frequency is genuinely different for different values ofy0.
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FIGURE 5. For the casepx0 = 0.1, MR = 1, the stars indicate
the average in time of the central density of the final configuration
ρavg, its standard deviationρdev and the peak frequencyν for the
ten values ofy0 used. For each of these quantities we show a linear
fit, suggesting the dependency ony0 can be linear.

In structure formation simulations [7, 8, 12, 18, 19] the
density distributions resulting from the interaction of two or
more configurations are associated to density profiles with
a solitonic core and a tail, however it is not quite specified
whether these are final, relaxed configurations or not. As far
as we can tell, the oscillations shown in Fig. 4 do not corre-
spond to a relaxed structure. Even though the density profile
can be fitted with the core profile

ρsoliton(r) = ρ0

[
1 + 0.091

(
r

rc

)2
]−8

, (3)

TABLE I. Fitting parameters ofρ(x, 0, 0) for the caseMR = 1,
px0 = 0.1 and three values of the impact parametery0.

y0 ρ0 rc t comment

1 8.280 0.647 351 density at a maximum

2.684 0.978 358 density at a minimum

5 6.862 0.776 348 density at a maximum

2.566 0.982 355 density at a minimum

10 5.053 0.852 254 density at a maximum

2.571 4.023 261 density at a minimum

as indicated in [7, 12], whereρ0 is the central density andrc

is a core radius.

The issue is that the density is oscillating with consider-
able amplitude as seen in Fig. 4. Nevertheless, the fitting was
performed on the density profile when the central density is
at a local maximum and at a local consecutive minimum. The
fitting parameters results appear in Table I for the projection
of ρ along thex−axis. Notice that the central density changes
by a factor between two and three from a minimum to a max-
imum, whereas the core radius changes by nearly 50%. An
example of how the density profile changes in time is illus-
trated in Fig. 6, where the projection of the density alongx
is shown at two specific times fory0 = 10 at a minimum
(t = 254) and at a maximum (t = 261).

In order to have an idea of the physical time scale of these
oscillations, we use the recipe in [12]. Considering a boson
mass value2.5 × 10−22 eV and that core radius of the final
configuration is converging torc = 1 kpc, using the range of
frequenciesν ∈ (0.084, 0.1) from Fig. 5, the period of the
density oscillations is in the rangeT ∼ 0.76 − 0.91 Gyr. If
the core radius is considered to berc = 0.25 kpc the period
is within the rangeT ∼ 47− 57 Myr.

FIGURE 6. Density profile at two different times for the case
px0 = 0.1, MR = 1 andy0 = 10. The dynamics can be seen
in the corresponding animation within supplemental material [32].
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FIGURE 7. Density isocontours on thexy−plane for the collision
for MR = 0.5 with px0 = 0.1 andy0 = 7.

3.4. Unequal mass case

As described before, the case we look at in detail corresponds
toMR = 0.5. The time dependence ofM , Q andLz appears
in Fig. 2. General properties are very similar to those of the
equal mass case. The loss of mass and angular momentum is
smaller when the impact parameter is bigger.

Snapshots of the unequal massMR = 0.5 merger with
y0 = 7 are presented in Fig. 7. The resulting high density
region wobbles around the origin due to the asymmetric dis-
tribution of matter and at some point evolves toward the coor-
dinate origin. Animations for other values of the parameters
are also shown in the supplemental material [32].

What is different from the equal mass case is the relax-
ation process. The evolution ofQ = 2K +W and the central
value of the density are shown in Fig. 8 for the two extreme
values of the impact parametery0 = 1, 10. The value ofQ
oscillates around zero with amplitude an order of magnitude
smaller than in the equal mass case. For density, on the other
hand, since the configuration is wobbling around the coordi-
nate origin, instead of tracking the central value of the density
we track its maximum valueρmax. The result in Fig. 8 is the
generic behavior for the unequal mass cases with values of
MR between 0.5 and 1 we experimented with. The highly

FIGURE 8. For the casepx0 = 0.1 andMR = 0.5, we show
Q = 2K + W and the maximum value of the density as a function
of time for the casesy0 = 1 andy0 = 10.

dynamical behavior is due to the fact that the small configura-
tion with massMλ approaches with a higher velocity and the
distribution is much less symmetric than forMR = 1. This
explains a quick ejection of kinetic energy so thatQ acquires
small values.

The density does not show any clear sign of relaxation or
a particular dominant mode during the time window used in
the simulations. This is perhaps a major obstacle when the
density is fitted with a space-dependent density fitting func-
tion. Unlike the equal mass case, where the average of the
density is a good estimate of the asymptotic value, here the
expected value of the central density is uncertain. Neverthe-
less, Fig. 8 indicates that the central density of the final con-
figuration depends on the impact parametery0.

4. Conclusions and discussion

We have presented the merger process of ultralight bosonic
dark matter cores, with detailed illustrations of the equal
mass caseMR = 1 and a representative unequal mass case
MR = 0.5.

In the equal mass case it was found that the final config-
uration oscillates with amplitudes that depend on the param-
eters of the binary prior to merger, namely, the mass ratio of
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the two initial cores, linear momentum and impact parame-
ter. The resulting final configuration was fitted with a soli-
tonic density profile at different times during the relaxation
process. It was found that the density may change by factors
of nearly three, whereas the core radius can change by nearly
50% percent, and that the amplitude and frequency of the os-
cillations can be linearly related to the impact parameter of
the merger.

In the unequal mass case, due to the size of the initial con-
figurations, the interference becomes important in the sym-
metry of the final high density zone, which wobbles around
the center of mass before it settles toward a nearly fixed lo-
cation. The density in this case oscillates, however with an
irregular superposition of modes, although with values ofQ
indicating that globally the system evolves around a virial-
ized state.

In both scenarios, it draws attention the fact that the den-
sity seems far from a stationary state in cosmological time
scales. The reason is that the amplitude of oscillations of

the configuration resulting from a merger is not small, and
perhaps it would be useful to consider time averages in such
fittings.

In order to determine observational restrictions of this
dark matter model, it seems unavoidable to systematically an-
alyze the effect of the dynamics of a configuration resulting
from a merger on the luminous matter that can be involved
in the process. For example their survival questioned for spe-
cific scenarios of the head-on case in [15] or restrictions from
the existence of star clusters near galactic cores [16].
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