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Simulation of the inner electrode geometry effect on the
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CICATA Queŕetaro, Cerro Blanco No. 141 Col. Colinas del Cimatario, 76090 Querétaro, Queŕetaro. Ḿexico.
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A 2D computational model, incorporating the Snowplow approximation in the mass balance, is used to simulate the acceleration of an annular
current sheath along two coaxial electrodes, with the inner one having either cylindrical or conical shape. The circuit, mass and momentum
equations are simultaneously solved in 2D (r, z) considering initial breakdown along the insulator surface, ideal gas mass accretion by the
current sheath (snowplow model) and distributed inductance along a coaxial transmission line short-circuited by the current sheath. Plasma
density and electron temperature in the current sheath are estimated using standard planar shock theory. Numerical integration of the model’s
equations for a given electrode geometry yields the temporal evolution of the current sheath parameters during the axial acceleration phase.
In order to see the effect of the inner electrode shape on sheath parameters (i.e. transit time, kinetic energy, total mass, shape, etc.) and/or
circuit properties (i.e. circuit inductance, voltage and current evolution, etc.), the portion of the inner electrode beyond the insulator was
given a conical shape. By changing the cone slant in a range between±5◦, it was found that the current driven on the plasma sheath
varies nonlinearly with the angle. The divergent (positive angle) electrode gives the sheath the highest kinetic energy, being twice the value
corresponding to that of the straight inner electrode case, and the transit time is reduced from 1.34 to 1.20µs. The estimates of plasma density
and electron temperature indicate that the achievable ion densities are on the order of4× 1022 m−3, which corresponds to 30 % ionization,
and typical temperatures at the end of the rundown phase are on the order of 8 eV. These values are comparable with those measured in
experimental devices. The development of this tool will enable us to benchmark its results against an experimental installation currently
close to being operational, and a future follow-up paper will be devoted to the comparison between the prediction of the rundown phase
behavior and experimental results using conical electrodes.
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1. Introduction

Plasma acceleration occurs when a given current distribution
carried by a plasma interacts with a magnetic field, either
self-generated or external, producing a net electromagnetic
force on the plasma that accelerates it in a particular direc-
tion. There are three well-known configurations of plasma
accelerators in straight cylindrical geometry, known since last
century: thez-pinch, the theta pinch and the plasma shock
tube. In thez-pinch, the current flows in the axial direction,
generates an azimuthal field and the force appears radially in-
ward [1-5]. In the theta pinch, an azimuthal current interacts
with an externally generated axial magnetic field and again
produces a radially inward force [6-8]. For the plasma shock
tube, also called coaxial plasma accelerators, a radial cur-
rent flow generates an azimuthal magnetic field, and an axial
force starts acting on the plasma [9,10]. Coaxial plasma ac-
celerators have many fields of applications as sources of high
velocity shockwaves, as well as sources of high velocity, en-
ergetic and dense plasma [11]. Such plasmas can be used
to study the interaction between plasma and solids [11-13],
including plasma-wall interaction in fusion reactor devices
[14,15]. Other applications of coaxial plasma accelerators

include helicity injection in tokamaks [16], particle accelera-
tion [17], plasma projection into vacuum and plasma propul-
sion [18-20].

For all these applications, it is quite useful to have a
model able to describe the plasma from its generation until it
reaches the end of the acceleration system [9,10]. The snow-
plow model [3] describes the dynamics of the current sheath
and can be applied to a variety of devices. This model solves
the coupled equations of the external equivalent circuit, the
dynamic equations describing the plasma sheath motion, and
the shock wave theory to compute the plasma temperature
and the electron density.

2. Coaxial plasma accelerator

2.1. General description

The simplest configuration of a coaxial plasma accelerator
consists of two coaxial conducting electrodes separated by an
insulating region at the breech, and the space between them
either pre-filled with gas or simultaneous gas puff injection
and voltage triggering [21,22], as shown in Fig. 1 above. The
outer electrode is a hollow cylinder, while the inner electrode
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may be either a solid or a hollow rod, and the insulator, either
made of ceramic, glass or polymer [23,24] is usually a spacer
or an integral part of the structure that holds the electrodes
in place. The electrodes are connected to an external circuit,
with one of the electrodes (typically the inner electrode) at
high voltage while the other is grounded, causing electrical
breakdown along the insulator surface, a process known as
the breakdown phase. An electric current circulates along the
ionized gas, forming a current sheath between the two elec-
trodes [25].

The electrical circuit of the system is shown in Fig. 1b).
At t = 0, the spark gap switch is closed and the capacitor
bankC0, charged with voltageV0 drains its charge into the
circuit. A large electrical potential difference is established
between the inner electrode, connected to the switch, and the
grounded outer electrode (Fig. 1). The current flowing radi-
ally between the electrodes through a plasma sheath produces
a magnetic field in the interelectrode region. The electromag-
netic interaction between the current and its self-generated
magnetic field produces a Lorentz force that is perpendicular
to both the current densityj and the magnetic fieldB vectors,
given by j × B. If the current only has a radial component,
the resultant force pushes the current sheath axially [26]. As
a result of the initial shape of the plasma and thej ×B forces,
the sheath develops a curvature, so the current in the plasma
sheath will have both radial and axial components.

As the sheath moves along the interelectrode space, two
important changes to the system will occur. The moving cur-
rent sheath changes the electrical circuit, since an increas-
ing length of the interelectrode space (which is essentially a
transmission line) is traveled, producing a change of the cir-
cuit impedance. Also, as the sheath moves in the axial direc-
tion, it sweeps the neutral gas in front of it and incorporates

FIGURE 1. a) Schematic of a simple coaxial plasma accelerator,
b) EquivalentRLC circuit for the coaxial plasma accelerator.

that material into the sheath, ideally leaving a vacuum be-
hind it. This oversimplified approximation of mass accretion
by the sheath is known as the “snowplow model”, first pro-
posed by Rosenbluth in the context of radial compression in
z-pinches [3]. Despite its simplicity, the snowplow model
has been notoriously accurate in the overall description of
plasma acceleration in coaxial accelerators and pinch devices
[27,28].

2.2. Coaxial plasma accelerator geometry

The geometry of the coaxial plasma accelerator is shown in
Fig. 2. In the figure, a conical inner electrode with taper an-
gle α is shown. Divergent electrodes correspond toα > 0,
convergent electrodes correspond toα < 0 and a straight
electrode corresponds toα = 0. The radial position of the
external electrode’s inner wall isrext, while rint is the radial
position of the inner electrode’s outer surface, given by the
following function of the axial distancez:

rint =
{

rint,0 for z ∈ [0, zins]
rint,0+(z−zins) tanα for z ∈ (zins, zmax]

. (1)

Here,rint,0 is the inner electrode radius in the zone of the
insulator. As can be seen in Fig. 2, the current sheath cov-
ers an axial range delimited by the point where it touches the
outer electrode,zext, and the point where it touches the inner
electrode, represented byzins. The rundown phase, wich is
the subject of this paper ends inz = zmax.

2.3. Coaxial plasma accelerator circuit

The impedance in the electrical circuit of Fig. 2 has two con-
tributions: a fixed one given by external circuit resistanceR0

and inductanceL0, and the variable impedance formed by the
resistanceRs and inductanceLS associated with the sheath
shape and position along the interelectrode space. The ap-
plication of Kirchoff’s voltage law to the circuit shown in
Fig. 1b), yields:

d

dx
I(L0 + LS) + I(R0 + RSG + Rs)

+
1
C0

t∫

0

I(t′)dt′ = 0. (2)

Here,RSG represents the electrical resistance of the spark
gap switch. Equation (2) can be expressed as two coupled
first-order differential equations:

d

dt
(L0 + Lp)I + (R0 + RSG + Rp)I = Vc, (3)

dVC

dt
= − 1

C0
. (4)

The values ofR0, L0 andRSG can be considered con-
stants over time. The inductanceLs and resistanceRs vary
as the sheath travels along the coaxial electrodes. The sheath
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FIGURE 2. Geometry of the coaxial plasma accelerator in the case
of a tapered inner electrode with angleα and passive and active
inductance contribution diagram.

resistanceRs is assumed to be negligible, and the induc-
tanceLS is separated into two components: one given by the
length of the coaxial electrodes already traveled by the cur-
rent sheath,Lcoax, and an active contribution by the current
sheath itselfLsheath:

Ls = Lcoax+ Lsheath. (5)

In Fig. 2, regions contributing to these two inductances
have been indicated. The passive contribution of the coax-
ial conductor array already traveled by the sheath is given
by [29]:

Lcoax =
µ0

2π

zext∫

0

ln
(

zext

rint(z)

)
dz . (6)

The current sheath contribution to the time-dependent in-
ductance,Lsheath, will be discussed in the following section.

2.4. The current sheath and its mass and momentum
conservation

The current sheath between the two electrodes is described
by a 2D curve in the (r, z) plane, as shown in Fig. 2 and in
more detail in Fig. 3. The length along the current sheath will
be denoted asλ. The current flows along the inner electrode,

FIGURE 3. Definition of the differential current sheath element and
the quatitites associated with it.

then along the current sheath and finally along the outer elec-
trode inducing a magnetic fieldB in the azimuthal direc-
tion. Between the electrodes the current flows only along
the sheath with a current densityj , tangent curve describ-
ing the current sheath. The interaction of the current density
with the magnetic field generates a perpendicular forceF at
each point of the sheath. In that regard, the shape and move-
ment of the sheath will be similar to that of a perfectly elastic
membrane subject to a non-isotropic pressure field with per-
fect slip boundary conditions. The pressureP is given by
the interaction between the current in the sheath and its self-
generated magnetic field:

P (t, r) =
µ0I

2

8π2r2
(7)

The force differential exerted by this pressure on a differ-
ential current sheath elementdλ as shown in Fig. 3, is given
by:

dF = pds = 2πrpdλn̂ =
µ− 0I2

4πr
dλn̂, (8)

wheren̂nn is a vector normal to the length element, as shown in
Fig. 3.

The force differential in Eq. (8) produces a linear mo-
mentum change in the differential sheath element. This linear
momentum differentialdp for the same element is given by:

dp = mdv + vdm. (9)

The linear momentum differential has two contributions:
one due to the acceleration, the first term in the RHS of
Eq. (9), and the other due to the mass increase in the sheath
element as it sweeps the volume in front of it, the second
term in Eq. (9). If the sheath element is moving with velocity
v and the gas in front of the current sheath element has den-
sity ρ, the rate of mass increase in the current sheath element
according to the snowplow model is given by:

dm

dt
= 2πρr(v · n̂)dλ. (10)

Combining Eqs. (9)-(10), the equation of motion for the
differential current sheath element is obtained:

dv

dt
=

dλ

m

(
µ0I

2

4πr
n̂− 2πρr(v · n̂)v

)
. (11)

As mentioned previously, each differential element of the
current sheath contributes to the time-dependent circuit in-
ductance. The contribution of all the current sheath differen-
tial elements to the circuit inductance,Lsheath, is given by:

Lsheath=
µ0

2π

∫
cos θ ln

(
rext

rint(z)

)
dλ, (12)

whereθ is the angle between the vector normal to the ele-
ment and thez-axis. Equation (12) effectively couples the
hydrodynamic model to the circuit model. The inductance is
a strong function of time since the sheath length and shape
varies with time. The functionrint(z) is given by Eq. (1).
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3. The computational model

In order to have the complete description of the sheath mo-
tion and the circuit temporal behavior, the following set of
equations needs to be solved:

d vi

dt
=

dλi

m− i

(
µ0I

2

4πr
n̂i − 2πρri(vi · n̂i)vi

)
, (13a)

dmi

dt
= 2πρrimi(vi · n̂i)dλi, (13b)

dr i

dt
= vi , (13c)

Ls =
µ0

2π

[ zmin∫

0

ln
(

rext

rint(z)

)
dz

+

·∫

λ

cos θ ln
(

rext

rint(z)

)
dλ

]
, (13d)

d

dt
I(L0 + Ls) = VC − (R0)I, (13e)

dVC

dt
= − I

C0
. (13f)

The subscript i in Eqs. (13a)-(13f) indicates that there is
one such equation for each sheath element. In these equations
vi andr i are 2D vectors; therefore, if the sheath is subdivided
into n segments, the total number of coupled equations to be
solved is5n + 3.

Equations (13a)-(13f) can be discretized in time and
space, using the superscripth for the time discretization and
the subscripti for sheath length discretization:

vh+1
i = vh

i +
λh

i

mh
i

(
µ0I

h2

mh
i

n̂h
i

− 2πρrh
i (vh

i · n̂h
i )vh

i

)
∆t, (14a)

rh+1
i = rh

i + vh
i ∆t, (14b)

mh+1
i = mh

i + 2πρrh
i (vh

i · n̂h
i )λh

i ∆t, (14c)

Ls =
µ0

2π

[ zmin∫

0

ln
(

rext

rint(rh
i )

)
dz

+
n∑

i=0

cos θi ln
(

rext

rint(rh
i )

)
dλ

]
, (14d)

Ih+1=
1

L0 + Lh+1
[Ih(L0+Lh)+(V h

C−RIh)∆t], (14e)

V h+1
C = V h

C − Ih

C0
∆t. (14f)

Equations (14a)-(14f) assume a constant length for the
sheath segments; however, since the sheath length typically

does not stay constant as it moves from the surface of the in-
sulator towards the muzzle of the coaxial plasma accelerator,
a reshaping technique [30] is used to have a constant sheath
element length. A simple forward difference Euler method
was used to solve Eqs. (14a)-(14f) and give the evolution of
the sheath and circuit parameters over time.

4. Estimation of density and temperature in
the current sheath

To obtain temperature and density estimations in the sheath,
the ideal strategy would be to add an energy equation and
Maxwell’s equations to the system of equations in Eq. (14).
However, reasonable estimates can be obtained without re-
sorting to adding significant complexity to the computational
model presented here. Following an approach reported in the
literature [31,32], it is assumed that the sheath is a normal
shock wave characterized by a shock pressurePS and ve-
locity vS corresponding to each current sheath element. For
convenience we will describe the case of diatomic molecules,
and specifically the case of deuterium gas. The pressure is
readily available from the ideal gas law due to the particular
pressure regime within the system:

PS = nSkTD, (15)

wherenS is the shock gas density,kT is the shock tempera-
ture andD is the departure coefficient, which for a diatomic
gas is given by:

D = 2(1 + Zeff). (16)

In the case of deuterium, the effective atomic numberZeff

is a number between 0 and 2, dependent on the degree of ion-
ization. The application of the Rankine-Hugoniot jump con-
ditions [33] yield expressions that relate the parameters of the
current sheath (number densitynS and velocityvS) with the
corresponding values of the neutral gas (n0 andv0):

nS

n0
=

γ + 1
γ − 1

, (17a)

vS

v0
=

γ + 1
2

. (17b)

The parameterγ is the heat capacity ratio, which for the
case of an ideal gas is equal to 5/3 [34]. In normal shock the-
ory the shock pressure and its speed and density are related if
the pressure in the sheath and the gas are small:

PS =
2

γ + 1
Mw

NA
n0v

2
s =

2
γ + 1

ρ0v
2
s . (18)

The molecular weightMw and Avogadro’s numberNA

are required to switch between particle number density and
mass density, the latter being the quantity typically used in
normal shock analysis. Substitution of the previous equations
in Eq. (15) yields an expression for the shock temperature in
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terms of the sheath velocity, already known from the snow-
plow calculation:

kT =
2

γ + 1
Mw

NA

n0

ns
v2

s =
2Mw

NAD

γ − 1
(γ + 1)2

v2
s . (19)

From the total massmi accrued on each current sheath,
the mass density of each sheath element is given by:

ρs,i =
mi

Vi
=

mi

δiAi
, (20)

where δi and Ai are the thickness and surface area (the
latter obtained by rotating the differential sheath element
around the central axis). The density can be estimated from
Eqs. (17a) and (17b):

ρs,i = ns
Mw

NA
= ρ0

γ + 1
γ − 1

. (21)

Using the last two expressions, the sheath element thick-
nessδi is obtained:

δi =
mi

Aiρ0

(γ − 1)
(γ + 1)

. (22)

According to Eq. (22), the thickness is independent of the
shock parameters. A dependence with temperature can be in-
troduced by considering an expression for the heat capacity
ratio in partially ionized gases [35]:

γ

γ + 1
=

Eiz

kT (1 + Zeff)
. (23)

Once the shock temperature is known from Eq. (19), the
Saha equation is used to estimate the electron densityne in
the shock region:

ne,i =

√
ns,i

λ3
exp

(
− Eiz

kT − i

)
. (24)

5. Results

5.1. Effect of electrode taper on plasma acceleration

In order to study the effect of the taper of the inner electrode
on the sheath characteristics, its motion between electrodes
with different taper angles was described using the numer-
ical model described in the previous section. The configu-
rations are shown in Fig. 4. Figure 4a) shows the case of a
straight inner electrode (a solid cylinder) with a sleeve insu-
lator shown in gray on the left and the outer electrode starting
on the back of the insulator. In Fig. 4b) a similar arrangement
is shown, but the inner electrode now has a negative taper. Fi-
nally, Fig. 4c) shows an inner conical electrode with positive
taper angle. For the simulations, the taper angle was varied
from−5◦ to +5◦ in 1◦ increments.

The geometry and circuit parameters for the simulation
are listed in Table I. This set of parameters were selected to
initially benchmark the calculations done with this model

FIGURE 4. Inner electrode and insulator geometry. a) straight elec-
trode with sleeve insulator; b) negative -5◦ taper with sleeve insu-
lator; and c) positive +5◦ taper with sleeve insulator.

TABLE I. Set of electrode parameters used for the calculations in
the case of the straight electrode (0◦ taper) with sleeve insulator.

Parameter (unit) Value

Insulator length (cm) 3.4

Electrodes length (cm) 13

Insulator outer radius (cm) 1.7

Inner electrode radius (cm) 1.2

Outer electrode radius (cm) 2.4

Circuit inductance (nH) 75

Capacitance (F) 7.2

Circuit resistance (mΩ) 3

Neural gas density (kg/m3) 4.8× 10−4

Charging voltage (kV) 25

against similar studies already reported [36]. A good agree-
ment was found between the results of the finite difference
scheme used here and the behavior reported in the literature
for the case of the straight electrode (0◦ taper). This means
that the results obtained from simulations considering tapered
inner electrodes are reliable.

The plasma breakdown and evolution of the rundown
phase at the start of the simulation are similar, but as the
sheath advances and approacheszmax, its shape and length
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FIGURE 5. Shapes of the plasma sheath at the end of the electrode
at taper angles -5◦ , 0◦ and +5◦ .

FIGURE 6. Evolution of the total magnetic force on the sheath cur-
rent for three different taper angles.

differ in accordance to the taper. Figure 5 shows a schematic
of the sheath shape as it reaches the end of inner electrodes
with −5, 0 and 5◦ taper angles.

Figure 6 shows the magnetic force as a function of time
for different values of the taper angle. As can be seen, the
radial distance plays an important role, giving much higher
magnetic force for the negative taper electrodes. All simula-
tions are run until the sheath reachesz = zmax, and Fig. 7
clearly shows another important characteristic introduced by
the taper angle: the sheath transit time is affected by the elec-
trode geometry.

Figure 7 shows the sheath transit time as a function of ta-
per angle. The sheath travels the length of the inner electrode
in 1.25µs for the convergent electrode, and it takes 1.6µs
for the 5◦ divergent electrode, a 30% increase. This finding
is counterintuitive, since the convergent electrodes (negative
values of taper angle) sweep more gas and therefore acquire
more mass, as shown in Figs. 8 and 1. However, by looking
at Fig. 6, it can be seen that the increase in magnetic force for
lower values of the taper angle causes a higher energy injec-
tion into the sheath, which allows for a sheath with 5 times
more mass to reach the same velocity.

FIGURE 7. Transit time for the sleeve insulator as a function of ta-
per angle. The current sheath reaches the inner electrode end earlier
for negative angles with the sleeve insulator.

TABLE II. Peak and average values of temperature and density in
the current sheath at the end of the simulation.

Taper Peak Peak Average Average

Angle Temperature density Temperature density

(deg) (eV) (m−3) (eV) (m−3)

-5 97.5 8.75E23 7.02 2.40E22

0 32.8 5.05E23 8.32 4.41E22

5 16.8 2.31E23 11.24 1.03E23

The estimation of temperature and electron density in the
sheath allows for the calculation of the internal energy. The
internal energy of the sheath is calculated as:

Eint =
n∑

i=1

ne,ikTiδiAi, (25)

where the sum is over the segments of the discretized sheath.
Table II presents the peak and average values of density and
temperature of the sheath when it reaches the end of the inner

FIGURE 8. Total mass swept by the current sheath upon reaching
the end of the electrode as function of taper angle.
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FIGURE 9. Sheath internal energy as function of taper angle when
the end of the inner electrode is reached.

FIGURE 10. Time evolution of the internal to kinetic energy ratio
for three inner electrode configurations: convergent (-5◦), straight
(0◦) and divergent (5◦).

electrode for the extreme taper angle cases and the straight
electrode. The temperature and density values obtained with
this computational model are consistent with those reported
on the literature for both simulations and experiments [32,37-
39]. Figure 9 shows the internal energy of the sheath when it
reaches the end of the inner electrode as a function of taper
angle. There is not a great variation in total internal energy,
oscillating between 0.6 and 0.9 J in the taper angle range.
However, as the taper angle gets more positive, the sheath
sweeps less mass due to the decrease in separation between
the electrodes. Therefore, for a given internal energy of the
sheath, the internal energy per unit mass will be higher for the
divergent electrodes since it gets divided by a smaller num-
ber.

Figure 10 presents the ratio of total internal to kinetic en-
ergy for−5, 0 and 5◦ taper angles as the sheath moves along
the interelectrode space. The lowest value of the ratio (0.6%)
corresponds to the convergent electrode, while the highest
value (2.3%) corresponds to the divergent electrode. The di-
vergent electrode presents the higher ratio because it has the
lowest kinetic energy (it has the longest transit time and the

FIGURE 11. Normalized density and temperature profiles along
the length of the sheath when it reaches the end of the electrode.
Curves are for convergent (-5◦), straight (0◦) and divergent (5◦)
inner electrode.

smallest mass) and, according to Table II and Fig. 9, it has a
higher average internal energy. It can be concluded that while
the convergent electrode has a higher kinetic energy, the di-
vergent electrode is 4 times more efficient in transforming the
energy transferred to the sheath into internal energy.

The values from Table II suggest that there is inhomo-
geneity in the density and temperature along the sheath, espe-
cially for the convergent electrode, which shows a significant
difference between the average and peak values. Figure 11
shows the distribution of density and temperature along the
sheath for -5, 0 and 5◦ electrode taper angle. To allow for a
better comparison of the profiles between cases, density and
temperature are normalized against their peak values (which
always occur at the point of contact with the inner electrode),
and the length coordinate is normalized to the total length
of the sheath for each case, such that coordinates in both
axis are between 0 and 1. Indeed, a strong temperature and
density gradient along the sheath for the negative taper angle
can be observed in Fig. 11, with the highest values close to
the electrode; there, according to Table II, the electron tem-
perature is close to 100 eV and the density is on the order of
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FIGURE 12. Ratio of radial to axial component of the final average
velocity of the sheath.

1024 m−3. For the sheath end near the outer electrode,
all three cases have nearly the same value for temperature
(∼ 10 eV) and density (1023 m−3).

It is clear that a convergent electrode yields a sheath with
higher kinetic energy, but it is interesting to explore how that
velocity is imparted. For applications involving plasma pro-
jections into targets, a sheath with a high axial velocity com-
ponent and a low radial velocity would be preferred. There-
fore, a small ratio of radial to axial velocity is desired. Fig-
ure 12 shows the radial to axial average velocity ratio as a
function of taper angle when the sheath reaches the end of
the inner electrode. The ratio presents an inverse proportion-
ality with taper angle.

FIGURE 13. Two insulator configurations for the coaxial plasma
accelerator: a) sleeve insulator, b) plug insulator.

FIGURE 14. Comparison of the ratio of radial to axial component
of the final average velocity of the sheath for sleeve-type and plug-
type insulators.

5.2. Effect of insulator configuration on the current
sheath behavior

The most common configuration for the insulator in coaxial
plasma accelerators is a cylindrical sleeve around the start of
the inner electrode, as shown in Fig. 4. The initial phase of
the sheath movement implies acquiring velocity in the radial
direction to detach from the insulator. To explore how sensi-
tive the sheath evolution is to initial acceleration conditions, a
different insulator geometry was simulated. Figure 13 shows
the two-insulator configurations that will be compared: the
sleeve-type insulator (Fig. 13a), where the insulator surface
normal points in the radial direction; and the plug-type insu-
lator (Fig. 13b), where the insulator surface normal points in
the axial direction.

Physically, the sleeve-type insulator is a thin cylindrical
shell with a given length, while the plug-type insulator is a
thin hollow disk with given inner and outer radiuses. Results
presented in the previous section correspond to the sleeve in-
sulator, and the same sensitivity analysis for the taper angle
was carried out for the other sheath initial condition, along a
constantz surface rather than a constantr surface. The cir-
cuit, energetics and mass swept are not affected by the new
boundary condition. The most important difference between
the two configurations was found in the velocity distribution
of the sheath.

Figure 14 shows the ratio of average axial to radial ve-
locities for the last sheath as a function of taper angle, while
Fig. 15 shows the local ratio along the sheath when it reaches
the end of the electrode for -5, 0 and 5◦ for both sleeve and
plug insulator configurations. For the sleeve type insulator,
the sheath at the end of the electrodes has a radial to axial
velocity ratio close to 2 in the zone near the outer electrode,
an effect more pronounced in the convergent electrode which
has a longer sheath. By switching to the plug type insulator
(Fig. 15b), a drastic reduction on the ratio is observed, with
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FIGURE 15. Comparison of local ratio of radial to axial component
along the sheath when it reaches the inner electrode end for three
inner electrode configurations: convergent (-5◦), straight (0◦) and
divergent (5◦). a) Sleeve-type, b) plug-type.

a peak value of 1.2 near the middle of the sheath. The aver-
age radial to axial velocity ratio for the -5◦ convergent elec-
trode with plug-type insulator drops 30% in comparison to
the same electrode with a sleeve-type insulator, leaving it
with a value of 0.8. The switch from a sleeve-type insulator
to a plug-type insulator removes one of the main drawbacks
of a convergent electrode configuration.

It is clear that the effect of switching to a plug-type insu-
lator is to promote the kinetic energy in the forward direction.
To highlight this fact, a comparison between kinetic and in-
ternal energy is done; however, rather than taking the ratio of
internal to total kinetic energy as before (as shown in Fig. 10),
now the kinetic energy in the forward (z component) direc-
tion will be considered. Figure 16 compares the evolution
of this internal to forward kinetic energy ratio as the sheath
travels for the two types of insulator when a straight electrode
is used. The plug configuration shows slight discontinuities
associated with mass loss due to the blow-by effect [37].

FIGURE 16. Time evolution of the internal to forward kinetic en-
ergy ratio for three inner electrode configurations: convergent (-
5◦), straight (0◦) and divergent (5◦). a) Sleeve-type, b) plug-type.

6. Conclusions

A 2D computational model has been developed for the study
of the rundown phase of a current sheath traveling in the
space between two coaxial electrodes. The code allows for
the introduction of a taper angle in the inner electrode, such
that it can represent a conical rather than a cylindrical sur-
face. The cone can be either convergent or divergent, and
both scenarios were explored here.

It was found that the negative taper configuration (con-
vergent electrode) transfers a larger amount of average lin-
ear momentum to the current sheath: it sweeps more mass
and has a lower transit time; this is explained by the mag-
netic force increase associated with the convergent electrode.
However, the sheath momentum upon reaching the end of the
inner electrode region has a large radial component, which is
undesirable when the goal is to transfer forward momentum.
In that regard, the divergent electrode gives a better perfor-
mance, since the radial to axial velocity ratio decreases as
taper angle increases.

Internal to kinetic ratio also was found to increase with in-
creasing taper angle, and this increase was mostly due to the
mass reduction as the taper angle increases, and not to signif-
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icant changes in temperature and density parameters, since
for all taper angles the average values of these quantities re-
main within the range15 − 20 eV and1022 − 1023 m−3 for
temperature and density, respectively. Although the average
values of density and temperature are similar, it was found
that the long sheaths associated with more negative taper an-
gle values present high densities and temperatures near the
inner electrode and low values near the outer one, with the
peak temperature (at the contact point with the inner elec-
trode) being 20 times higher than that calculated at the point
where it touches the outer electrode, and the density being
10 times higher between those two points.

The switch from a sleeve-type insulator to a plug-type in-
sulator seems to promote kinetic energy transfer to the sheath
in the axial direction, since a reduction in the ratio of radial
to axial component of the final average velocity of the sheath
was found, especially for convergent electrodes. This trend
was also observed for the ratio of internal energy to forward
kinetic energy; the -5 degree taper angle (convergent) elec-
trode with a plug insulator has a ratio 65% lower than the
same electrode with the sleeve configuration. The ratio is the
same for both insulator configurations when the taper angle
is 5 degrees (divergent).

It is expected to validate experimentally these findings in
the PGQ-1 device and report in a follow-up paper.
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