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In this paper, we investigate the influence of energy-dependent potentials on the thermodynamic properties of the Klein-Gordon oscillator
(KGO). With the obtained energy eigenvalues, all the thermal properties of the system have been calculated using the well-known Euler-
Maclaurin method. The investigation is extended to the study of the Superstatistics properties of the system. The probability densityf(β)

follows χ2 Superstatistics (Tsallis statistics or Gamma distribution) for the system. Under the approximation of the low-energy asymptotics
of Superstatistics, we calculated partition function and other thermal properties of the system. This approximation leads to a universal
parameterq for any Superstatistics, not only for Tsallis statistics. By using the desired partition function, all thermal properties have been
obtained in terms of this parameter. Also, the influence of the potentials on the thermal properties, via the parameterγ, are well discussed.
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1. Introduction

Wave equations such as Schrödinger, Klein-Gordon, and
Dirac with energy-dependent potentials have been studied
for a long time now. It can be seen in Klein-Gordon and
Dirac equations that considering a particle in an external elec-
tromagnetic field [1] arising from momentum-dependent in-
teractions and energy-dependent potentials, one can deduce
the non-relativistic quantum mechanics, as shown by Green
[2]. The presence of the energy-dependent potential in many
wave equations has several non-trivial implications because
of the complex nature of the problems. For instance, the
Klein-Gordon equation is the modification of the scalar prod-
uct necessary to ensure the conservation of the norm (see ap-
pendix A for details).

Following the works of Sazdjian and Formanek [3,4], we
observed that the scalar product in the Klein-Gordon equa-
tion must be modified concerning the usual definition to have
a conserved norm. This modification of the Klein-Gordon
equation leads to some good behavior of the physical prop-
erties for the system. Many authors have investigated the
Schr̈odinger, Klein Gordon, and Dirac equation with energy-
dependent potentials. In recent times, Boumaliet al., [5]
studied the influence of energy-dependent potentials on the
thermal properties of the one-dimensional harmonic oscilla-
tor using the Euler-Maclaurin approach. To the best of our
knowledge, no relativistic case has been reported on the in-
fluence of energy-dependent potentials on the thermal prop-
erties of the one-dimensional harmonic oscillator. Therefore
the main aim of this paper is to study the effects of the mod-

ified scalar product arising in the energy-dependent Klein-
Gordon oscillator problem. The reasons are in two folds:
(i) firstly due to the importance of the Klein-Gordon oscil-
lator and its numerous physical applications, and (ii) sec-
ondly motivated by the recent study on the effect of energy
dependent potentials on the Shannon and Fisher quantities
in quantum information theory [6]. After studying the nor-
mal thermal properties, we will extend our treatment to study
the Superstatistics and its thermal properties of the system.
The properties of these systems have become a topic of great
interest in the last few years, and it has found many appli-
cations in several branches of physics (see Ref. [7] and ref-
erences therein). It is known that Superstatistics is a branch
of statistical mechanics or statistical physics that is devoted
to the study of non-linear and non-equilibrium systems. It is
characterized by using the superposition of multiple statisti-
cal models to achieve the desired non-linearity. In terms of
ordinary statistical ideas, this is equivalent to compounding
the distributions of random variables and it may be consid-
ered as a simple case of a doubly stochastic model. Besides
in Superstatistics it is argued that a system where fluctuations
of temperature do exist, coarse-grained measurements of en-
ergy performed over spatial and temporal scales are larger
than those defined by the correlation properties of the tem-
perature will yield statistical distributions that can be written
as a superposition of canonical distributions. More precisely,
Superstatistics is a superposition of different statistics such as
ordinary Boltzmann factor and the fluctuation of the intensive
parameter with inverse temperature. Therefore, Superstatis-
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tics describes a non-equilibrium system with stationary state
and intensive parameter fluctuations. IfE is the energy of
a microstate, the Boltzmann factor in the Superstatistics is
written as,

B (E) =

∞∫

0

f (β) e−βEdβ, (1)

whereB (E) is a kind of effective Boltzmann factor for the
non-equilibrium system for the Superstatistics of the system,
f (β) is the distribution function,e−βE is the Boltzmann fac-
tor andE is the energy level for the system.B(E) differs
significantly from the ordinary Boltzmann factor, which is
recovered whenf(β) = δ(β − β0). From (1), we can recog-
nize that the generalized Boltzmann factor of Superstatistics
is given by the Laplace transform of the probability density
f (β). Although there are many possibilities, certain criteria
must be fulfilled for physical relevant of the system:

• The probability functionf (β) must be a normalized
probability density. It may, be a physically relevant
density from statistics, say Gaussian, uniform, chi-
squared (Gamma distribution), log-normal.

• The integral
∫∞
0

f (β) e−βEdβ must exist, and conse-
quently, the new statistics must be normalizable.

• The new statistics should reduce to BG-statistics if
there are no fluctuations in intensive quantities at all.

In this stage, two remarks seem pertinent: (a) although any
f(β) is possible in the Superstatistics approach, in prac-
tice, one usually observes only a few relevant distributions:
(i) χ2-Superstatistics (=Tsallis statistics), (ii) inverseχ2-
Superstatistics, and (iii) log-normal Superstatistics. In our
case, we will focus only onχ2-Superstatistics or Gamma
distribution: this choice is justified by the wider use of this
distribution in the literature. As an example, in blinking
quantum dots, cosmic ray statistics, and various scattering
processes in particle physics. Other recent applications of
the Superstatistics are briefly reviewed by Refs. [8, 9]. (b)
The applicability of this formalism impose that the Super-
statistics formalism can only be applied if you have sufficient
time scale separation in the complex system. Beck and Tsal-
lis [10,11] show the existence of a mapped of the superstatis-
tical non-equilibrium system onto an equilibrium system of
ordinary statistical mechanics with an average inverse tem-
peratureβ0 ≡ 〈β〉.

This mapped allows us to say that it is possible to carry
out ordinary statistical mechanics to the Superstatistics of a
non-equilibrium system with all the known formulas. Thus,
the second task of this work is to use the formalism of Su-
perstatistics to study the one-dimensional Klein-Gordon os-
cillator and calculate the Superstatistics properties of this os-
cillator. This study, to the best of our knowledge, is new,
novel, and has not been treated and discussed in the avail-
able literature. Finally, this paper will also study the effect of
the saturation of the spectrum on the thermodynamic proper-
ties of the one-dimensional Klein-Gordon oscillator for both

ordinary statistical mechanics and generalized statistical me-
chanics for superstatistical systems. Firstly, we will study the
effect of the saturation of the spectrum on the thermodynamic
properties for this oscillator in ordinary statistical mechanics,
and then extend the discussions to the case of generalized sta-
tistical mechanics for superstatistical systems. In both cases,
the dependence with the gamma parameter of the partition
function, and other thermal quantities such as free energy, to-
tal energy, entropy and specific heat have been determinate.
In our case, we have a choice of a functionf(β) following a
Gamma distribution, which is defined by

f (β) =
1

bΓ (c)

(
β

b

)c−1

e−
β
b . (2)

where (b > 0, c > 1) are real parameters.
This choice is justified by the wider use of its distribution

in the literature. Now, by using the function, we will calcu-
late at first the generalized Boltzmann factor,B(E), and con-
sequently the partition function for the systemZ (β). With
the partition function, all other thermodynamic properties, as
well as their dependence with the parameterγ, will be ob-
tained.

The paper is organized as follows. We study in Sec. 2, the
thermal properties of the oscillator for the case of the poten-
tials dependent on energy in the framework of the statistical
mechanics. Then Sec. 3 is devoted to the formalism of Su-
perstatistics. Section 4 will be brief a conclusion.

2. The thermal properties of the one-
dimensional Klein-Gordon oscillator with
energy-dependent potentials

2.1. The eigensolutions: review

The free Klein-Gordon equation is(~ = m = ω = c = 1) [6]
{
p2 − (

E2 − 1
)}

ψ = 0. (3)

In the presence of the oscillator interaction, (3) becomes
{
(p + ix) (p− ix)− (

E2 − 1
)}

ψ (x) = 0, (4)

or explicitly, we write
(

p2

2
+

x2

2

)
ψ (x, E) =

{
E2 − 1

2

+
1
2

(1 + γE)
}

ψ (x,E) . (5)

To obtain Eq. (5), we make the substitutionpx → px +
i (1 + γE)x, in which the parameterγ is is the energy-
dependent term, then Eq. (5) represent an equation of a har-
monic oscillator in one-dimension. So, the corresponding
eigensolutions are given as [6]

ψ (x,E) = CnHn

(√
λx

)
exp

(
−λ

2
x2

)
, (6)
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E4 − 2E2 − 4n2 − 4n2γE + 1 = 0, (7)

with λ =
√

1 + γE , andCn is the normalization constant
and is calculated as follows

C2
n =

1
2nn!

(1 + γE)
1
4

√
π

{
E − γ

2
√

1 + γE

(
n +

1
2

)}−1

,

HereHn is the Hermite polynomials. The Eq. (7) is an al-
gebraic equation of degree 4, which has real and complex
solutions. The complex solution does not have any physical
meaning except the real solutions. Therefore, some interest-
ing results can be extrapolated directly as follows:

• the modified scalar product is the origin of the spec-
trum that exhibits saturation instead of growing in-
finitely,

• this saturation appears for the high levels contrary to
what has been found in the non-relativistic case,

• the analytical asymptotic limits are well depicted,

• the beginning of the saturation starts from a specific
quantum numberNmax. These parameters decrease
rapidly when|γ| increases slowly.

Now, we intend to show the influence of the parameterγ on
the probability densityρKG. The probability density is ex-
pressed by the following equation (see Appendix A for de-
tails)

ρKG(x, E) = ψ (x,E)∗
{

2E − ∂V (x,E)
∂E

}
ψ (x,E) ,

=
(

2E − 1
2
γx2

)
|ψ (x,E)|2 , (8)

So thatρKG represent a physical system, only two possi-
bilities can exist regardless of the sign ofρKG, i.e., either
ρKG < 0 or ρKG > 0. Thus, as a consequence of this, the
sign of the parameterγ is negative for particles, and positive
for antiparticles (see Ref. [6])

2.2. The thermal quantities in ordinary statistical me-
chanics via the Euler-MacLaurin formula

To obtain the partition function from the obtained energy
spectrum, we adopt the following way, which the partition
functionZ is defined by [5]:

Z =
∞∑

n=0

e−βEn , (9)

wereβ = (1/kBT ) with kb is the Boltzmann constant and
T is the temperature in Kelvin. Tto calculate this function,
we adopt two approaches: (i) we first fixed the parameterγ,
and then varied the values ofn until we obtain the saturation
phenomena in our spectrum of the energy (Eq. (7)) and so on,

and (ii) via the method used by the authors [5] which is well
described in their work. Following this, Eq. (9) becomes

Z ≡
∞∑

n=0

e−βEn '
N∑

n=0

e−βEn

︸ ︷︷ ︸
I

+ All levels are

in saturations'
N∑

n=0

e−βEn

︸ ︷︷ ︸
contribution of few levels

. (10)

The first term in (10) is the contribution of all levels until the
beginning of a saturation behavior in the spectrum of energy.
The second one is the contribution of all saturation levels.

To evaluate the partition function, we use the Euler-
Maclaurin formula [13–18]

∞∑
n=0

f (x) =
1
2
f (0) +

∞∫

0

f (x) dx

−
∞∑

p=1

B2p

(2p)!
f (2p−1) (0) , (11)

whereB2p are the Bernoulli numbers. andf (2p−1) is the
derivative of order(2p− 1) . In statistical mechanics, the
Boltzmann factore−βE is an essential tool used to deter-
mine thermodynamic quantities such as the partition function
Z(β), free energyF (β), total energyU(β), entropyS(β),
and specific heatC(β), for a given system. These quantities
are defined as

F = − 1
β

lnZ, U = −∂lnZ

∂β
, (12)

S

kB
= lnZ − β

∂lnZ

∂β
,

C

kB
= β2 ∂2lnZ

∂β2
. (13)

In what follows we will focus our study on the influence of
the parameterγ on these quantities for the case of the one-
dimensional Klein-Gordon oscillator.

2.3. Results and discussions

We give our basic results in Figs. 1, 2, 3, and 4, where we
plot the variation of all thermal functions versus the inverse
of the temperatureβ for different values ofγ. We emphasize
that the behavior of the partition function, specific heat, free
energy, and entropy are not identical to those obtained for the
relativistic oscillators. The reason for this is fundamentally
related to the nature of the interactions of KG oscillator and
the potential that are linearly depends on the energy consid-
ered here. We must mention that all these results found here
about the thermal properties in our problem can be extended
to the case of 1D Dirac oscillator (both Eqs. (7) and (B.8).

In Fig. 1, we plot the variation of the partition functionZ
concerningβ for different values ofγ. Figure 1 shows that
partition function increases with decreases values ofβ. Be-
sides the effect of the parameterγ on the partition function is
more apparent for nearly high temperatures.
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FIGURE 1. The partition functionZ versusβ with different param-
eters ofγ.

FIGURE 2. The free energyF versusβ with different parameters
of γ.

In Fig. 2, we give the variation of the free energyF as
a function of the parameterβ for different values ofγ: we
can see that the free energyF has an upper limit for the low
temperatures.

In Fig. 3 we observe that the entropy decreases with pa-
rameterβ and has an upper limit for the high temperatures:
The effect ofγ on the entropyS is more apparent for the high
temperatures. For the low temperatures, we haveS → 0.

In Fig. 4 the specific heatCv versus the temperature in-
verseβ for different values ofγ values have been well de-
picted. We observe that, for each specific value ofγ, each
curve has a peak symmetry around a suitable temperatureβ.
The intensity of these peaks increases asγ increases. For the
high values ofβ we haveCv → 0: the third law of thermo-
dynamics is well fulfilled.

Now, we are ready to extend our discussions to the case of
Generalized statistical mechanics for a superstatistical frame-
work.

FIGURE 3. The entropyS versusβ with different parameters ofγ.

FIGURE 4. Specific heat versusβ with different parameters ofγ.

3. Superstatistical properties of the one-
dimensional Klein-Gordon oscillator with
energy-dependent potentials

3.1. Partition function in Superstatistics

Instead to use the habitual stationary probability distribution

e−βE

Z , (14)

we have

p (E) =
B (E)
Z , (15)

with
Z (β) =

∑
n

B (En) ,

whereZ(β) is the normalization constant ofe−βE for a given
β (or partition function).

Rev. Mex. F́ıs. 66 (5) 671–682



SUPERSTATISTICS OF THE ONE-DIMENSIONAL KLEIN-GORDON OSCILLATOR WITH ENERGY-DEPENDENT POTENTIALS 675

In what follows we use theχ2-distribution or Gamma dis-
tribution: the probability density function reads as

f (β) =
1

bΓ (c)

(
β

b

)c−1

e−
β
b . (16)

Note here that in the superstatistics approach, only a few pos-
sible distributionsf(β) are relevant: (i)χ2-superstatistics
(=Tsallis statistics), (ii) inverseχ2-superstatistics, and (iii)
log-normal superstatistics. In our case, we are focused on
Gamma distribution defined by Eq. (16): this choice is jus-
tified by the wide use of this distribution in the literature: as
an example, we can cite the following: in blinking quantum
dots, cosmic ray statistics, various scattering processes in par-
ticle physics [9], one-dimensional Dirac oscillator [7] and the
thermo-magnetic properties of a system of 2D GaAs quantum
dots [34]. Other recent applications of the superstatistics are
briefly reviewed by Refs. [8,25,26] and references therein.

The integration overβ yields the generalized Boltzmann
factor

B (En) = {1 + bEn}−c
. (17)

Now, according to the following works of Tsallis [19–23],
the non-extensive statistics of Tsallis defined by the so-called
q-exponential function

e−β0E
q = (1 + (q − 1)β0E)−

1
q−1 , (18)

with the q-exponential function is defined by [22,23]

eq (x) =

{
(1 + (1− q) x)−

1
q−1 0 < q < 1

ex q = 1
, (19)

and where the parameterq is the index of non-extensive sta-
tistical mechanics: if we identifyc = 1/q − 1 andbc = β0

whereβ0

β0 ≡ 〈β〉 =

∞∫

0

βf (β) dβ = bc, (20)

is the average ofβ, Eq. (17) becomes the generalized Boltz-
mann factor[(1 + (q− 1) 〈β〉En)−(1/q−1)] of non-extensive
statistical mechanics. In this case, Eq. (17) is transformed
into

B (E) = e−〈β〉En
q . (21)

Note here that in the limit whereq → 1, we recover both (i)
the habitual exponential function and (ii) the ordinary statis-
tics mechanics.

In our case, to seek simplicity, we use the approximation
of the low-energy asymptotics (for more detail, see Ref. [7]).
This approximation represents the leading order correction to
ordinary statistical mechanics in our system with temperature
fluctuations for small values of the energyE. More precisely,
the low-energy asymptotics behavior is universal: that means
that the generalized Boltzmann factor for a different choice

of Superstatistics is expressed in terms of the universal pa-
rametersq andβ0 as follows:

B (En) ≈ e−β0En

(
1 +

a

2
〈β〉2 E2

n

+ g (q) 〈β〉3 E3
n + · · ·

)
, (22)

where the functiong(q) depends on the Superstatistics cho-
sen,e, on the choice off (β). In our case (Gamma distribu-
tion), g (q) = −(a2/3).

Now, due to this universality, Beck [24] introduced a uni-
versal parameterq for any Superstatistics, not only for Tsallis
statistics: this parameter is given by the following relation

q =

〈
β2

〉

〈β〉2 . (23)

The physical meaning of the parameterq is just the coefficient
of variation of the distributionf (β), defined by the ratio of
standard deviation and mean. If there are no fluctuations ofβ
at all, we obtainq = 1 as required.

So, according to this approximation, the generalized
Boltzmann factor, can be rewritten as

B (En) = e−
1

q−1 ln(1+(q−1)〈β〉En) ≈ e−β0En

×
(

1 +
a

2
〈β〉2 E2

n −
a2

3
〈β〉3 E3

n + · · ·
)

, (24)

with a = q − 1. The zeroth-order approximation toB (En)
corresponds, as is expected, to the “pure” Boltzmann statis-
tics

B (En) ∼ e−〈β〉En . (25)

3.2. Generalized statistical mechanics for superstatisti-
cal systems

As we know in statistical mechanics, the habitual Boltzmann
factor e−βE is an essential tool used to determine thermo-
dynamic quantities such as the partition functionZ(β), free
energyF (β), total energyU(β), entropyS(β) and specific
heatC(β), for a given system. These quantities are defined
as

F = − 1
β

lnZ, U = −∂lnZ

∂β
, (26)

S

kB
= lnZ − β

∂lnZ

∂β
,

C

kB
= β2 ∂2lnZ

∂β2
. (27)

Recently, a remark about the validity of the applicability of
the Eqs. (26) and (27) to the case of Superstatistics seems
important has been treated. To extend all well-known formu-
lae of normal statistical mechanics to the case of Superstatis-
tics, are restricted by the following conditions; First, Super-
statistics is characterized by using the superposition of mul-
tiple different statistical models to achieve the desired non-
linearity. In terms of ordinary statistical ideas, this is equiv-
alent to compounding the distributions of random variables.
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More precisely, Superstatistics assumes that the correct en-
semble is not canonical, but a superposition of canonical en-
sembles at different (inverse) temperatures weighted by a fac-
tor f(β). So, the Superstatistics denoted by symbolB(E),
allows the infinite types of system’s distribution with respect
to E, once the fluctuating distributionf (β) is given. This
factor is based on three crucial premises; (i) a system is parti-
tioned into cells that can be considered to be reached an equi-
librium locally, which is characterized by a singleβ, (ii) its
statistical factor is Gibbsian and (iii) the separation between
two time scales is adequate, that is, the time for approach-
ing to each local equilibrium state is much faster than that for
varyingf(β). This last criterion means that the framework of
the theory of Superstatistics regards the existence of tempo-
rally local equilibrium within each of the cells that subdivide
a non-equilibrium thermodynamic system. Thus, this formal-
ism can only be applied if we have sufficient time scale sep-
aration in the complex system, so that the system has enough
time to find local equilibrium in the local cells with a given
β. In the local cells, local equilibrium statistical mechanics
is then valid for the givenβ in that cell (for more detail see
Ref. [7] and references therein). In conclusion, and following
these arguments, it is possible to do ordinary statistical me-
chanics for this superstatistical non-equilibrium system, with
all the known formulae such as described by Eqs. (12 and
13)). Note here that some recent theoretical developments,
in the context of the theory of superstatistics, have used the
known formulae of normal statistical mechanics in their in-
vestigation on some problems in physics [27–33]. Their re-
sults can be accepted only in the framework of the above
arguments about the applicability of the habitual thermody-
namics laws in the superstatistics formalism.

In the recent paper of Castañoet al [34], the authors used
the q-algorithm of the q-calculus formalism [22, 23] to dis-
cuss thermo-magnetic properties of a system of 2D GaAs
quantum dots. Here we can mention two remarks about this
formalism:

• When we use a q-logarithm, the algebra of our problem
is deformed, and it follows the theory of q-calculus for-
malism with the following q-sum and q-product defini-
tions [22,23]

x⊗q y =
(
x1−q + y1−q − 1

) 1
1−q

+
, (x >, y > 0) (28)

x⊕q y = x + y + (1− q)xy. (29)

• Following this algebra, theq-derivative definition, in
the framework of theq-calculus formalism, is given
by [35–39]

Dqf (x) ≡ lim
x→y

f (x)− f (1y)
xªq y

= {1 + (1− q)x} df (x)
dx

. (30)

Although the superstatistics is a non-equilibrium process,
the authors (i) do not give the arguments of the validity of ap-
plicability of habitual law thermodynamics in superstatistics
for their case, and (ii) they have not used Eq. (30) in their
calculations.

Now, when we starting with the following generalized
Boltzmann factor defined by E. (24), the partition function
is

Z =
∑

n

B (En) =
∑

n

e−〈β〉En

×
(

1 +
a

2
〈β〉2 E2

n −
a3

3
〈β〉3 E3

n

)
,

=

(
1 +

a

2
〈β〉2 d2

d 〈β〉2 +
a3

3
〈β〉3 d3

d 〈β〉3
) ∞∑

n=0

e−〈β〉En ,

=

(
1 +

a

2
〈β〉2 d2

d 〈β〉2 +
a3

3
〈β〉3 d3

d 〈β〉3
)

Z. (31)

To evaluate this partition function, we calculate at first the
term Z with the same method used above. Thus, we found
That

Z (〈β〉) =

(
1 +

a

2
〈β〉2 d2

d 〈β〉2 +
a3

3
〈β〉3 d3

d 〈β〉3
)

×
N∑

n=0

e−〈β〉En

︸ ︷︷ ︸
contribution of few levels

(32)

So,Z is an essential tool used to determine thermodynamic
quantities such as the partition functionZ(β), free energy
F (β), total energyU(β), entropyS(β), and specific heat
C(β), for a given system. These quantities are defined by
replacingβ by 〈β〉 in Eqs. (12) and (13).

3.3. Results and discussions

Now, after this discussion about (26) and (27) in the case of
the Superstatistics formalism, we are ready to discuss our nu-
merical simulations found. In our case, we concentrate only
on the main function, such the entropy, and the specific heat
to seek the existence of saturation and the nature of this satu-
ration.

Our basic results are plotted in Figs. 5, 6, 7 and 8, in
these figures, we plot the variation of the entropy and the
specific heat versus the inverse of the temperatureβ for dif-
ferent values ofγ and q: recall that these parameters denote
the parameter of the dependence of the potential with energy
and the parameter of deformation respectively.

Besides these figures are subdivided into four canvas fol-
lowing the choice of the parameterγ. Here we have selected
four values ofγ < −1 [6], which correspond the case of
particles (E > 0). Each canvas is presented and specified
by a value of the parameterγ. It contains the curves of the
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FIGURE 5. Thermal quantities of 1D (KGO) forγ = −0.1 and different values ofq.

FIGURE 6. Thermal quantities of 1D (KGO) forγ = −0.3 and for different values ofq.

entropy and the specific heat for different values of the pa-
rameter of deformationq. We emphasize that the behavior of
these functions is not identical from canvas to another.

Now, from these canvases, three remarks can be made
about the influence of both parametersγ andq on the ther-
mal properties of our oscillator:

• From canvas to another, we can see that the number
of Gaussian-like shape in specific heat curves is differ-
ent. For a specific value of the parameterγ, we observe
that (i) these curves have a peak symmetry around a
suitable temperatureβ, (ii) the intensity of these peaks
increases asq decreases and (ii) finally, they appear
when q → 1 . Also, the number of these peaks de-
creases when|γ| increases, and they increase whenγ
decreases: in our case, we have a maximum number of
these peaks whenγ = −0.1.

• These peaks correspond to the phenomena of satura-
tion that appear in the case of the problems with the
potentials dependence energy. In this context, we note
that the observation of peaks in the curves of specific
heat indicates that there are a small number of discrete
energy levels dominating the behavior of our system
in question. This behavior is due essentially to the de-
pendence of the potential of our oscillator with the en-
ergy: as argued in [5], this situation is very similar to
the case of Schottky peak (Schottky anomaly) which
is a broad maximum in the specific heat observed in
systems with several discrete energy levels, and not a
phase transition.

• Contrarily to the non-relativistic limit( see Ref. [5]),
the limit of specific heat is equal zero only in very
high-temperatures(β → 0). In very low-temperatures
(β →∞), for different values ofγ, this limit depends
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FIGURE 7. Thermal quantities of 1D (KGO) forγ = −0.5 and for different values ofq.

FIGURE 8. Thermal quantities of 1D (KGO) forγ = −0.7 and for different values ofq.

on the value of the parameterq. Whenq is around1,
we obtain the well know third thermodynamic law.

• On the other hand, in the range of high temperatures
(β → 0), we haveC → 0 : this situation, for all can-
vas, can be argued to the existence of saturation of
spectrum of energy for this type of potential,i.e., the
energy-dependent potential. So, all curves, exhibit a
transition phase between the growth phase, and the so-
called saturation phase. In our best knowledge, this
phenomena do not treated and discussed in the litera-
ture.

Recently, the superstatistical of the one-dimensional Dirac
oscillator has been well studied [7]. Although arguments of
the validity of applicability of law thermodynamics in su-
perstatistics for both Dirac and Klein-Gordon equations are

the same, the difference is very clear. The reason for this is
twofold:

• This study in question is devoted to the case of the one-
dimensional Dirac oscillator describing fermionic par-
ticles without energy-dependent potentials.

• Although the eigenvalues of one-dimensional Dirac
oscillator with energy-dependent potentials have the
same form of energy as those for our considered case,
the situation is not the same: the probability density, in
this case, is given by [3]

ρ =
−
ψγ0

(
1− ∂V

∂E

)
ψ. (33)

whichψ is a spinor, not a scalar. This definition is very
different from the case of the Klein-Gordon equation
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(see Eq. (A.17)), which describing the bosonic parti-
cles.

In conclusion, in order to understand well the influence of the
parameter ofq of our Superstatistics formalism on the ther-
mal properties of our oscillator, we choose the lowest values
of the parameterγ. This parameter contains all information
about the potentials which depend on energy.

4. Conclusion

In this work, we studied the influence of energy-dependent
potentials on the thermodynamic quantities of a one-
dimensional Klein-Gordon oscillator. The variation of these
functions vsβ have been given in the figures. We have ob-
tained the variation of thermal functions such as the free en-
ergy, the entropy, and the specific heat withβ, and also dis-
cussed the results for high temperatures for different values
of γ.

Also, we considered the Superstatistics of the statistical
mechanics of 1D-(KGO). We derived, by using the form of
the energy spectrum of this oscillator, the partition function
of our problem in question. In the framework of the applica-
bility of this formalism, which imposes that the Superstatis-
tics formalism can only be applied if you have sufficient time
scale separation in the complex system. So, we show the ex-
istence of a mapped of the superstatistical non-equilibrium
system onto an equilibrium system of ordinary statistical me-
chanics exists. This mapped allows us to tell that it is possible
to do ordinary statistical mechanics for this superstatistical
non-equilibrium system, with all the known formulas.

In our case, we have used (i) this mapping to determinate
the Superstatistics of our problem in question, and (ii) choice
a functionf(β) following a Gamma distribution which is de-
fined by Eq. (2). Now, by using this function, we have cal-
culated at first the generalized Boltzmann factor,B (E), and
consequently the desired partition function for our problem
Z (β). According to this function, all thermodynamic prop-
erties such as mean energy, Helmholtz free energy, entropy,
and the specific heat have been determinate: as a result we
observe that phenomena of saturation in the curve of spe-
cific heat appear only in the lowest values ofγ (in our case
γ = −0.1) and when the parameter of our Superstatistics for-
malismq → 1. Finally, the limit of specific heat is equal to
zero only in very high-temperaturesβ → 0. In very low-
temperatures(β →∞), for different values ofγ, this limit
depends on the value of the parameterq. Whenq is around
1, we obtain the well-known third thermodynamic law. In the
range of high temperatures(β → 0), we have(C → 0). This
situation, can be argued to the existence of saturation of the
spectrum of energy for this type of potential,i.e., the energy-
dependent potential. So, all curves, as in the non-relativistic
limit, exhibit a transition phase between the growth phase and
the so-called saturation phase.

Appendix

A. Modified product scalar in the Klein-Gordon
equation

Let us examine this problem of normalization by considering
the Klein-Gordon equation [3]

∂2ψ

∂t2
−∆ψ + m2ψ + V

(
r, i

∂

∂t

)
ψ = 0, (A.1)

and its complex conjugate

∂2ψ∗

∂t2
−∆ψ∗ + m2ψ∗ + V

(
r,−i

∂

∂t

)
ψ∗ = 0 (A.2)

When we multiply these two equations multiplied byψ∗ and
ψ respectively, and after a subtraction we obtain

∂

∂t

(
ψ

∂ψ∗

∂t
− ψ∗

∂ψ

∂t

)
+ ∇ (ψ∗∇ψ − ψ∇ψ∗)

+ ψ

{
V

(
r,−i

∂

∂t

)
ψ∗

}

− ψ∗
{

V

(
r, i

∂

∂t

)
ψ

}
= 0. (A.3)

By using that

f(t) =
∂

∂t

t∫
dsf (s) , (A.4)

and to obtain the continuity equation(∂ρ/∂t)+(∂j/∂x) = 0,
with j = ψ∗∇ψ − ψ∇ψ∗, we have

∂

∂t

[
ψ

∂ψ∗

∂t
− ψ∗

∂ψ

∂t
+

∫ t

ds

×
[
ψ (r, s)

{
V

(
r,−i

∂

∂s

)
ψ∗ (r, s)

}

− ψ∗ (r, s)
{

V

(
r, i

∂

∂s

)
ψ (r, s)

}]]

+ ∇ (ψ∗∇ψ − ψ∇ψ∗) = 0. (A.5)

Here the densityρ is written as

ρ =
1
i

{
ψ

∂ψ∗

∂t
− ψ∗

∂ψ

∂t
+

t∫
ds

×
[
ψ (r, s)

{
V

(
r,−i

∂

∂s

)
ψ∗ (r, s)

}

− ψ∗ (r, s)
{

V

(
r, i

∂

∂s

)
ψ (r, s)

}]}
. (A.6)

As we have that ∫
d3rρ = 1, (A.7)
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so

∫
d3r

1
i

[
ψ

∂ψ∗

∂t
− ψ∗

∂ψ

∂t
+

t∫
ds

t∫
ds

×
[
ψ (r, s)

{
V (r,−i

∂

∂s
)ψ∗(r, s)

}

− ψ∗ (r, s)
{

V (r, i
∂

∂s
)ψ(r, s)

} ]]
= 1, (A.8)

is the exact expression of normalization.
Putting now that

ψ (r, t) =
∫

dEaEϕE (r) e−iEt, (A.9)

ψ∗ (r, t) =
∫

dE′a∗E′ϕE′
∗ (r) e+iE′t (A.10)

so we have

iρ = i

∫ ∫
dEdE′a∗E′aEϕE (r) ϕE′

∗ (r)

×
[
e−i(E−E′)t (E′ + E)

−
{

e−i(E−E′)t

E′ − E
+ Cte

}

× {V (r, E′)− V (r, E)}
]
. (A.11)

Now, if we choose that

aE = δ (E − E0) , (A.12)

aE′ = δ (E′ − E0) , (A.13)

and after a limit development ofV with

V (r, E′) = V (r, E) + (E′ − E)
∂V (r, E)

∂E

+
1
2

(E′ − E)2
∂2V (r, E)

∂E2
+ ..., (A.14)

Eq. (A.11) becomes

iρ = i

∫ ∫
dEdE′δ (E − E0) δ (E′ − E0)ϕE (r)ϕE′

∗ (r)

× e−i(E−E′)t

[
E′ + E − ∂V (r, E)

∂E
− 1

2
(E′ − E)

× ∂2V (r, E)
∂E2

+ ...

]
+ Cte

[
(E′ − E)

∂V (r, E)
∂E

+
1
2

(E′ − E)2
∂2V (r, E)

∂E2
+ .

]
(A.15)

After integration onE andE′, we arrive at the final result

ρ = ϕE0 (r) ϕE0
∗(r)

{
2E0 − ∂V (r, E0)

∂E0

}
, (A.16)

and the condition of normalization becomes
∫

d3rϕE0 (r)ϕE0
∗ (r)

{
2E0−∂V (r, E0)

∂E0

}
=1. (A.17)

B. The eigensolutions of 1D Dirac oscillator with
energy-dependent potential

The free Dirac equation is:
[
α

(
p− iλγ0x

)
+ γ0

]
ψ = Eψ. (B.1)

whereλ =
√

1 + γE, α = σx andγ0 are the Dirac matrices.
These matrices are given by

σx =
(

0 1
1 0

)
, γ0 = σz =

(
1 0
0 −1

)
. (B.2)

From (B.1) we get a set of coupled equations as follows:

(px − iλx)ψ1 = (E + 1) ψ2, (B.3)

(px + iλx)ψ2 = (E − 1)ψ1. (B.4)

Using (B.4) we have

ψ2 =
(px − iλx)
(E + 1)

ψ1 (B.5)

Putting (B.5) into (B.3), we get

(px + iλx) (px − iλx)ψ1 =
(
E2 + 1

)
ψ1 (B.6)

In the presence of a potential with energy-dependent poten-
tial, (B.6) changes into

(
p2

x

2
+

1
2
λ2x2

)
ψ1 (x,E)

=
(

E2 − 1 + λ

2

)
ψ1 (x,E) (B.7)

the Eq. (B.7) is the standard equation of a harmonic oscillator
in one-dimensional. The energy levels are well-known, and
are given by

E4 − 2E2 − 4γn2E − 4n2 + 1 = 0, (B.8)

and the wave functions is

ψ1 (x,E) = CnHn

(√
λx

)
exp

(
−λ

2
x2

)
. (B.9)

The total associated wave function is

ψ (x,E) = Cn

(
1

(px−iλx)
(E+1)

)

×Hn

(√
λx

)
exp

(
−λ

2
x2

)
(B.10)
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whereCn is the normalization constant, andHn is the Her-
mite polynomial

C2
n =

√
λ√
π

(
2nn!

(
1− γ

2λ

(
n +

1
2

))
+

(
2n
√

λ

(E + 1)

)2

× 2n−1 (n− 1)!
(

1− γ

2λ

(
n− 1

2

)) )−1

. (B.11)
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