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Green sulfur bacteria is a photosynthetic organism whose light-harvesting complex accommodates a pigment-protein complex called Fenna-
Matthews-Olson (FMO). The FMO complex sustains quantum coherence and quantum correlations between the electronic states of 7 sep-
arated chromophores as energy moves with nearly a 100% quantum efficiency to the reaction center. We present a method based on the
quantum uncertainty associated to local measurements to quantify discord-like quantum correlations between two subsystems where one is
a qubit and the other is a qudit. We implement the method by calculating local quantum uncertainty (LQU), concurrence, and coherence
between subsystems of pure and mixed states represented by the eigenstates and by the thermal equilibrium state determined by the FMO
Hamiltonian. Three partitions of the seven chromophores network define the subsystems: one chromophore with six chromophores, pairs
of chromophores, and one chromophore with two chromophores. The robustness of the LQU method allows quantification of quantum
correlations that had not been studied before, identification of the strongest correlations in qubits networks , and a possible implementation
in dynamical models to study efficient energy transport pathways. Finally, we take the LQU of the most quantum correlated subsets of
chromophores as the signature of the non-classicity of the system to study physical properties such as populations, energy fluctuations, and
specific heat. We find that a Schottky-like anomaly in the specific heat identifies the availability of energy levels, which in turn define the
relation between a measurable macroscopic magnitude and non-classical resources.
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1. Introduction

In the initial stage of photosynthesis, light is absorbed by
pigment-protein complexes (PPC) and the electronic excita-
tion energy is transfered to a reaction center (RC), where a
charge separation reaction occurs [1].

Green sulfur bacteria is a photosynthetic organism whose
light harvesting complex is composed of a chlorosome an-
tenna anchored to aggregates of a protein called Fenna-
Matthews-Olson complex (FMO) [2, 3]. The FMO complex
serves as a quantum wire that delivers electronic energy from
the chlorosome to the RC with a quantum efficiency close to
100% [4].

The FMO complex is a trimeric protein of identical sub-
units which function independently of each other. Subunits
of the FMO complex consist of twoβ sheets that form a hy-
drophobic pocket which holds 7 strongly coupled pigment
molecules, called chromophores or bacteriochlorophyllsa
(BChla) [2,3].

Quantum coherence can be used as an operational re-
source to acomplish tasks that would not be possible by clas-
sical means [5–7]. Ultrafast two-dimensional electronic spec-
troscopic experiments have revealed that during energy trans-

port the FMO complex sustains electronic coherence between
the seven chromophores. Coherence lasts for at least 300 fs
at room temperature, long enough to impact energy trans-
fer dynamics [8–10]. In the FMO protein, the functional
role of coherence manifests in an interplay between coher-
ent dynamics of the system and incoherent effects of envi-
ronment that assists quantum transport efficiency [4, 11–14].
Subsequent two-dimensional electronic spectroscopy experi-
ments [15,16] and a theoretical examination [17] demonstrate
that the excitation coherently moves through two alternative
energy transfer pathways depending on the site that is initially
excited.

Quantum correlations between different parts of a system
are a true signature of their non-classical nature. Quantum
discord is a quantifier of quantum correlations that includes
entanglement as a subset and is more robust than entangle-
ment against environment influences [19, 20]. Quantum dis-
cord can be exploited as a useful resource to perform tasks
in manners that are classically impossible like the implemen-
tation of quantum computation and quantum communication
protocols [21–26].

Investigations in the energy transfer dynamics of the
FMO complex have revealed the existence of bipartite and
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global entanglement between the electronic states of spatially
separated chromophores [14, 27–31]. These studies of exci-
tation dynamics in the FMO protein show that entanglement
lasts for 1-2 ps under Markovian models and for over 4 ps un-
der more accurate non-Markovian models. According to the
authors, the fact that the entanglement lifetime is comparable
with the timescale of energy transfer in the FMO complex,
a few picoseconds, suggests that quantum correlations may
benefit excitation transport. Interestingly, quantum discord
between pairs of chromophores lives for longer times than
entanglement [29]. A functional role for quantum correla-
tions in pigment-protein complexes is consistent with coher-
ence enhancing properties of energy transport like efficiency
or robustness [4, 11–14]. We believe that the results of re-
cent research where it is demonstrated that entanglement is
maximum along the two electronic energy transfer pathways
also support the idea of a functional role for quantum cor-
relations [32–34]. Three investigations have studied the role
that non-classical correlations between chromophores play in
energy transmission efficiency: two of them [35, 36] did not
find any conclusive results and the third [37], with positive
results, was subject to harsh criticism from the group who
first quantified entanglement in the FMO protein [30].

The minimum quantum contribution to the uncertainty
associated to the measurement of composite systems with lo-
cal observables is known as local quantum uncertainty (LQU)
[38]. Recently, it has been proved that LQU meets the crite-
ria for a discord-like quantifier of quantum correlations. The
LQU approach has been used as a reliable measure to charac-
terize nonclassical correlations in a few frameworks [39–44]

The general motivation for studying coherence and quan-
tum correlations in light-harvesting structures is that the pre-
cise characterization of these quantum resources is essential,
on the one hand, for understanding their functional relation
with the energy transfer mechanism and, on ther other, to be
able to construct naturally robust quantum devices based on
that mechanics. Our principal aim is to demonstrate that the
Local Quantum Uncertainty is a highly flexible, robust, and
consistent metric to characterize quantum correlations, which
is and a novel approach that had not been studied before. We
determine the Local Quantum Uncertainty in subsets of the
chromophores network in a Gibbs thermal ensemble because
a correct picture of which chromophores remain quantum
correlated at long times depends on the thermal equilibrium
state reached by the system.

Specifically, we implement the LQU method in subsys-
tems of pure and mixed states represented by the eigenstates
and by the thermal equilibrium state determined by the FMO
Hamiltonian from Chlorobium tepidum. Remarkable advan-
tages of the LQU approach discussed in this work over other
methods are: LQU is a discord-like quantifier of quantum
correlations so it is more general than the entanglement based
techniques, LQU is easier to calculate than direct definition
of quantum discord, the LQU approach can be readily imple-
mented in dynamical systems, and the LQU method flexibil-
ity allows to describe the sets with the strongest non-classical

associations in qubits networks. The identification of the
strongest associations as subsystems of three sites serves to
investigate whether it is possible to relate quantum corre-
lations with energy transport pathways. Finally, we take
the LQU of the most quantum correlated subsets of chro-
mophores as the signature of the non-classicity of the sys-
tem to study physical properties such as populations, energy
fluctuations, and specific heat. This analysis shows that the
availibility of energy levels determined by increasing temper-
ature dictates the relation between a measurable macroscopic
magnitude and non-classical resources.

This paper is organized as follows: Sec. 2 describes the
quantum states that emerge from the excitonic Hamiltonian
of the FMO complex; Sec. 3 describes the aspect of quan-
tum coherence that defines it as a quantifiable resource to
be consumed in quantum information protocols; Sec. 4 de-
velops the LQU method of quantifying quantum correlations
in a chromophores network; Sec. 5 shows results of LQU,
concurrence and coherence in subsystems of pure and mixed
states of the FMO complex; finally, in section 6 we present an
overview of the implementation of the LQU approach: use-
fulness, advantages, limitations and scope.

2. Model for the FMO complex chromophores
network

The FMO protein is a trimer constituted of three identical
monomers which function independently. For this reason, we
focused on electronic energy transfer (EET) in only one of the
monomers. Each monomer has a 7 chromophores network
embedded in its structure. In the network, wave functions
of the chromophores are distant enough from each other to
overlap.

The electronic state of chromophorem goes from its
ground state|mg〉 to the first excited electronic state|me〉
when it absorbs a photon from the light-harvesting com-
plex. EET through the chromophores network takes place
one excitation at the time so we use the site basis{|m〉} with
m = 1, ..., 7:

|m〉 = |me〉
∏

n 6=m

|ng〉, (1)

where the base vector|m〉 stands for sitem in the excited
state while the rest of the sites are in the ground state. The
molecular state represented by|m〉 is called a site exciton.
Thus, the excitonic HamiltonianH is expressed as:

H =
7∑

m=1

Em|m〉〈m|+
∑

m6=n

Vmn|m〉〈n|, (2)

where site energiesEm are the optical transition energies for
each site and interaction termsVnm of energy transfer corre-
spond to dipole-dipole electric interactions between pairs of
site excitons.

Adolphs and Renger [45] calculated individual excitation
energiesEm running a genetic algorithm that takes site en-
ergies as parameters that are optimized to fit experimental
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linear absorption spectra and linear and circular dichroism;
interaction termsVmn were calculated using structural data
from the FMO protein crystal.

We find the delocalized exciton eigenstates{|M〉} and
energy eigenvalues{εM} by solving the Hamiltonian eigen-
value equation:

H|M〉 = εM |M〉, (3)

with M = 1, ..., 7. Eigenstates{|M〉} are a quantum super-
position of site excitons:

|M〉 =
∑
m

cM
m |m〉, (4)

wherecM
m is the probability amplitude associated to eigen-

state|M〉 for sitem to be in the excited state. Each eigenstate
{|M〉} has associated a density matrix{ρM} whose repre-
sentation in the site basis reads:

ρM = |M〉〈M | =
∑
mn

λM
mn|m〉〈n|, (5)

where the density matrix elements of the eigenstates are:

λM
mn = cM

m c̃M
n , (6)

and the superindexM indicates the eigenstate they belong to.
If the system is in thermal equilibrium the mixed state can

be written as:

ρt =
1
Z

exp (−βH) =
1
Z

∑

M

exp (−βεM ) |M〉〈M |

=
∑
mn

λt
mn|m〉〈n|,

whereZ = tr{exp (−βH)} is the partition function,β =
1/kBT is the thermal energy factor and:

λt
mn =

1
Z

∑

M

exp (−βεM )λM
mn, (7)

are the density matrix elements when the state is spanned in
terms of the site basis.

3. Coherence as a quantifiable resource

In quantum information science, coherence is used as a re-
source that is consumed to perform tasks that are not possible
by classical means. The resource theory for coherence inter-
prets physical laws as constraints on the set of free quantum
operations to be implemented on quantum states. If a coher-
ent state is the resource to be consumed then the set of free
quantum operations are incoherent operations and the avail-
able free states are incoherent states. A proper measure of
coherenceC must fulfill the following conditions:C(ρ) = 0
whenρ is a incoherent state,C does not increase under in-
coherent operations (monotonicity),C does not increase on

average under selective incoherent operations (strong mono-
tonicity),C does not increase under mixing of quantum states
(convexity). Thel1 norm of coherenceCl1 [5,6] defined by:

Cl1(ρ) ≡
∑

i 6=j

|ρij |, (8)

fulfills the former conditions so we will use it as a proper
measure of coherence. For ad-dimensional Hilbert space
with a reference basis{|i〉}i=0,...,d−1 the maximally coher-
ent state is:

|Ψd〉 =
1√
d

d−1∑
0

|i〉. (9)

For the state|Ψd〉 the l1 norm of coherenceCl1 takes the
value:Cl1 (|Ψd〉) = d− 1. We have introduced the quantifi-
able aspect of coherence to compare it with quantum corre-
lations and to investigate the relation between two different
quantum resources.

4. Quantum correlations in C2 ⊗ Cd systems

The first proposals for measuring the non-classical share of
correlations were based on the nonseparability of the subsys-
tems states,i.e., quantum entanglement. However, entangle-
ment does not account for all non-classical correlations be-
cause separable mixed states usually contain quantum corre-
lations. Quantum discord is a more general quantifier of non-
classical correlations than the entanglement based ones [48].
Quantum discord is based on the idea that by measuring one
of the subsystems one can extract the shared classical infor-
mation. Except for a few simple cases quantum discord is
hard to compute, nevertheless a seemingly disadvantageous
feature of quantum mechanics (uncertainty) provides an eas-
ier method for calculating quantum discord.

There is a close link between quantum-induced uncer-
tainty and quantum correlations that can be exploited to es-
tablish a discord-like quantifier of quantum correlations [38].
In quantum systems the measurement uncertainty may have
classical and quantum contributions. If the state to be mea-
sured is incoherent in the observable eigenbasis the measure-
ment output statistics will be classical: measurement of a
pure state is completely deterministic and it will exhibit zero
variance but for mixed states the contribution to the variance
comes from classical uncertainty due to the mixedness of the
state. In states displaying coherence, the measurement uncer-
tainty has two contributions, apart from the classical random-
ness that comes from the mixing, there is a quantum random-
ness that is intrinsic to coherence. This quantum randomness
manifests in the interference pattern of the outcome statistics
and is an additional quantum component to the uncertainty.

The quantum contribution to the uncertainty is due to the
non-commutativity between the stateρ and the observable
K [39]. A reliable measure of quantum uncertainty is zero
if and only if ρ andK commute (ρ is a eigenstate ofK or a
mixture of eigenstates ofK), does not increase under classi-
cal mixing and is equal to the variance for pure states. The
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Wigner-Yanase skew informationI(ρ,K) [49], defined by:

I(ρ,K) = −1
2
tr

{[
ρ1/2,K

]2
}

, (10)

fulfills the former conditions so we will use it as a convenient
measure of quantum uncertainty.

We have identified the quantum share to the measure-
ment uncertainty and quantified it by a measure of the non-
commutativity between the stateρ and the observableK.
Now we will proceed to establish the relationship between
quantum uncertainty and quantum correlations. In a bipartite
system only zero discord states:

ρ =
∑

i

pi|iA〉〈iA| ⊗ ρB , (11)

can commute with local observablesKA⊗IB (vectors{|iA〉}
form an orthonormal basis whereKA is diagonal). If the bi-
partite system shares non-classical correlations its quantum
state does not commute with any local observableKA ⊗ IB
and single observable measurements onA will display an in-
herent quantum uncertainty. The minimum skew informa-
tion associated to a local measurement on subsystemA is
called local quantum uncertainty (LQU) and will be denoted
by UA(ρ):

UA(ρ) = min
KA

I(ρ,KA ⊗ IB), (12)

where the minimization is over the set of local observables
with non-degenerate spectrum. It can be proven that the LQU
fulfills the requirements to be a discord-like quantifier of non-
classical correlations in bipartite states [38, 39]. There is a
geometric interpretation of the LQU that suggests a relation
with symmetric discord: the LQU is the minimum Hellinger
distance between the stateρ before and after a local root-of-
unity unitary operator has been applied [38].

To minimize the skew information, the local observable
KA can be parametrized using the Pauli matrices and the
identity operator:

KA = α~n · ~σA + βIA, (13)

whereα, β are complex scalars,~n is a unitary vector and
~σA = (σx, σy, σz) are the Pauli matrices. Thus, the skew in-

formation is:

I(ρ,KA ⊗ IB) = α2I(ρ, ~n · ~σA ⊗ IB). (14)

The advantage of this approach lies in the existence of a
closed form to calculate the LQU for bipartite systems where
A is a qubit andB a qudit of dimensiond (ρ is a state defined
on an Hilbert spaceC2 ⊗ Cd):

UA(ρ) = min
~n
I(ρ, ~n · ~σA ⊗ IB)

= 1−max
~n

tr{ρ1/2 (~n · ~σA ⊗ IB)

× ρ1/2 (~n · ~σA ⊗ IB)}
= 1−max

~n

∑

ij

(WAB)ijninj , (15)

where the matrix elements of(WAB)ij are:

(WAB)ij = tr
{

ρ1/2 (σiA ⊗ IB) ρ1/2 (σjA ⊗ IB)
}

. (16)

Equation (15) involves the maximization of a quadratic
form which results in:

UA(ρ) = 1− λmax {WAB} , (17)

whereλmax {WAB} is the maximum eigenvalue of the ma-
trix (WAB)ij . The closed form (Eq. (16) and Eq. (17)) to
calculate LQU between two subsystems where one is a qubit
and the other is a qudit is suitable to characterize quantum
correlations in qubits networks like the FMO protein.

5. Results

We calculated quantum resources in pure and mixed states
of the FMO protein. Pure states are constituted by the
eigenstates{|M〉} of the FMO Hamiltonian; with respect to
mixed states, improper mixtures come from subsystems of
the eigenstates and statistical mixtures are the thermal equi-
librium state and its subsystems.

To demonstrate the advantageous features of the LQU ap-
proach we will follow this method: (1) to define families of
partitions in the system, (2) to determinate the quantum states
and (3) calculate the LQU between subsystems. We choose
three three ways to divide the seven chromophores network;
each partition defines a family of quantum correlations.

When the system is described by a eigenstate|M〉 the
three families of quantum correlations{f1, f2, f3} were cal-
culated using the density matrices{ρf1

M , ρf2
M , ρf3

M} and if the
state is in thermal equilibrium the density matrices corre-
sponding to the three families of quantum correlations are
{ρf1

t , ρf2
t , ρf3

t }. The spectral decomposition of the density
matrices is:

ρfl
g =

∑
p

ϕfl
g,p|ϕfl

g,p〉〈ϕfl
g,p|, (18)

where theg index specifies if the family of quantum corre-
lations is calculated in a eigenstate (g = M ) or in thermal
equilibrium (g = t).

To calculate LQU between subsystems we need to obtain
the(WAB)g,fl

ij matrices, this is accomplished by inserting Eq.
(18) in Eq. (16):

(WAB)g,fl

ij =
∑
pq

√
ϕfl

g,p

√
ϕfl

g,q〈ϕfl
g,p|σiAl

⊗ IBl
|ϕfl

g,q〉

× 〈ϕfl
g,q|σjAl

⊗ IBl
|ϕfl

g,p〉 (19)

Eq. (19) is the general formula that we will use to calculate
the three families of quantum correlations in the eigenstates
and in thermal equilibrium state.
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FIGURE 1. LQU between between one chromophore{Cr} and the
remaining 6 chromophores{Cs, Ct, Cu, ...} for the 7 eigenstates
{|M〉} of the FMO Hamiltonian. (a)r = 1, 2, 3, 4, (b) r = 5, 6, 7.

5.1. Familyf1

The first family f1 corresponds to the LQU between one
chromophore{Cr} = SubsystemA1 and the remaining
6 chromophores{Cs, Ct, Cu...} = SubsystemB1 (with
s, t, u, ... 6= r). Correlations from familyf1 display a global
perspective on the chromophores individual participation and
had not been calculated before. The quantum correlations of
family f1 involve the whole network so the density matri-
cesρf1

M andρf1
t correspond toρM andρt from Eq. (5) and

Eq. (7).
In Fig. 1, two histograms show the LQU between

Subsystem A1 andSubsystem B1 for the seven eigen-
states{|M〉} of the FMO Hamiltonian. The information of
chromophoresC1, C2, C3, andC4 is in Fig. 1a) and the in-
formation of chromophoresC5, C6, andC7 is in Fig. 1(b).
Fig. 1(a), we see that the eigenstates that contribute the most
to the correlation ofC1 andC2 with the rest of the chro-

FIGURE 2. LQU between between one chromophore{Cr} and
the remaining 6 chromophores{Cs, Ct, Cu, ...} for the thermal
equilibrium state as a function of temperature. (a)r = 3, 4, (b)
r = 1, 2, 5, 6, 7.

mophores network are 3 and 6; and the eigenstates that con-
tribute the most to the correlation ofC3 andC4 with the rest
of the chromophores network are 1 and 2. In Fig. 1b) we
see that the eigenstates that participate the most to the LQU
of C5 andC7 with the rest of the chromophores network are
2, 4, 5, and 7; and the eigenstates 5 and 7 have the highest
values of LQU for the correlations betweenC6 and the rest
of the chromophores network.

The next step is to extend the quantum correlations anal-
ysis of pure states, represented by the eigenstates, to the state
in thermal equilibrium. In Fig. 2 we show the LQU between
individual chromophoresSubsystem A1 and the remain-
ing 6 chromophoresSubsystem B1 as a function of tem-
perature for the state in thermal equilibrium. In Fig. 2a) we
show the LQU of chromophoresC3 andC4 with the rest of
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530 M. CHÁVEZ-HUERTA AND F. ROJAS

FIGURE 3. The main panel shows LQU between between
one chromophore{Cr} and the remaining 6 chromophores
{Cs, Ct, Cu, ...} as a function of coherence, withr = 3, 4. The
inset shows coherence of the seven chromophores network as a
function of temperature for the thermal equilibrium state.

the chromophores network. At low temperatures, chro-
mophoresC3 andC4 are the most quantum correlated with
the rest of the network. This can be explained if we recall that
the eigenstates with the greatest contribution to the LQU be-
tweenC3 (or C4) and the rest of the network are the ground
state and the first excited state. In Fig. 2b) we show the
LQU of chromophoresC1, C2, C5, C6, andC7 with the rest
of the chromophores network. Regarding the associations of
Fig. 2b), the values of LQU are marginal in amplitude and
the curves show a local maximum around 100 K. Besides the
difference in values of LQU, we separated the associations of
family f1 in two sets because in Fig. 2a) the LQU is a strictly
decreasing function while in Fig. 2b) the LQU first decreases,
then increases and finally decreases again as the temperature
rises. The LQU of the associations in Fig. 2b) takes low val-
ues at low energies because the eigenstates 1 and 2 do not
have an important participation; as the temperature increases
so does the LQU because eigenstates 3, 4, and 5 start to par-
ticipate. At high temperatures, quantum correlations vanish
in Gibbs states because all the eigenstates are equally prob-
able, i.e., the mixedness is maximum and the non-classical
correlations are lost.

To investigate the relation between two different quantum
resources we calculated the quantum coherence of the system
and compared it with LQU. In the inset of Fig. 3 we plot
the quantum coherenceCl1 of the seven chromophores as a
function of temperature for the thermal equilibrium state. As
expected, coherence vanishes as the temperature rises. In the
main panel of Fig. 3 we use temperatureT as parameter to
obtain curves of LQU versus coherence:(Cl1(T ), LQU(T )).

The comparison facilitated by the parametric curves allows to
see that the LQU of chromophoreC3 andC4 is a monotoni-
cally increasing function of the coherence. We do not present
the corresponding parametric curves for chromophoresC1,
C2, C5, C6, or C7 because they do not have an important
global participation.

5.2. Familyf2

The second familyf2 accounts for the LQU between
chromophore{Cr} = SubsystemA2 and chromophore
{Cs} = SubsystemB2 (with r 6= s). Familyf2 will serve
two purposes: to provide information about the specific as-
sociations of chromophores that sustain the quantum correla-
tions defined by familyf1 and to make a comparison with an
entanglement quantifier of two qubits.

We determine the quantum correlations defined by fam-
ily f2 in subsystems of two chromophores. We calculated the
partial trace to the state of the whole systemρg over 5 sub-
systems to obtain the quantum states of two chromophores:
tr5s(ρg) = ρf2

g , where theg index specifies if the family of
quantum correlations is calculated in a eigenstate (g = M )
or in thermal equilibrium (g = t).

First, we examine the associations determined by family
f2 in the lowest eigenstates of the FMO Hamiltonian but in
Fig. 4 we only present results from the ground state. For the
lowest eigenstates the highest correlation is between chro-
mophoresC3 andC4. In decreasing order, correlations that
also stand out when the system is in the first excited state are:
{C7, C3}, {C5, C3}, {C7, C4}, {C7, C5}, and{C5, C4}.

After studying correlations in the eigenstates, we used the
thermal state to establish reliability of the LQU approach by
comparing it with concurrence (a valid quantifier of entangle-
ment in the two qubit subspace). We calculate concurrence
and LQU in all the combinations of pairs of chromophores
but only show the pairs with the highest values.

FIGURE 4. LQU between chromophores{Cr} and{Cs} for the
ground state.
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FIGURE 5.a) LQU and b) concurrence as a function of temper-
ature for chromophore pairs{C3, C4}, {C4, C5}, {C4, C7} and
{C3, C2}.

Figure 5a) exhibits LQU curves for the pairs{C3, C4},
{C4, C5}, {C4, C7}, and{C1, C2}; while Fig. 5b) presents
the corresponding concurrence curves. In Fig. 5, there is a
qualitative and quantitative similarity between LQU and con-
currence curves. At low temperatures the LQU between the
pair {C3, C4} is an order of magnitude greater than for any
other pair. The reason for this is the high value of LQU for
both the ground state and the first excited in this pair. This
behavior was also present between the subsystems with the
highest values of quantum correlations of familyf1.

The rest of the pairs, with weaker contributions to the
quantum correlations, also show a qualitative similarity be-
tween LQU and concurrence curves. These results confirm
that the LQU approach is a reliable method for measuring
quantum correlations in subsystems of the FMO complex.

A direct result for any pair of chromophores{Cr, Cs}
with quantum stateρf2

g is that thel1 norm of coherence
Cl1(ρ

f2
g ) is equal to the concurrenceC(ρf2

g ). To see this,
first consider that an̂X matrix reads:

X̂ =




Q11 0 0 Q14

0 Q22 Q23 0
0 Q32 Q33 0

Q41 0 0 Q44


 . (20)

There is a direct form of calculating concurrence in̂X
density matrices of two qubits [50]. The concurrenceC(X̂)
is:

C(X̂) = 2max
{

0, |Q14| −
√

Q22Q33, |Q23|

−
√

Q11Q44

}
. (21)

This is useful because the quantum state of two chro-
mophores{Cr, Cs} is aX̂ matrix:

ρf2
g =




∑
m 6=r,s λg

mm 0 0 0
0 λg

rr λg
rs 0

0 λg
sr λg

ss 0
0 0 0 0


 , (22)

where the elementsλg
mn are defined in Eq. (6) and Eq. (7).

In the specific case of two site excitons, the elements
{Q14, Q41, Q44} are zero, therefore for any pair of chro-
mophores{Cr, Cs} with quantum stateρf2

g the concurrence
is simply:

C(ρf2
g ) = 2|λg

rs|. (23)

With the matrix in Eq. (22) we can also express the co-
herence for the state of two chromophores{Cr, Cs}:

Cl1(ρ
f2
g ) = 2|λg

rs|, (24)

which is equal to the concurrence, as can be seen in Eq. (23).

5.3. Familyf3

Now that we have evidence that LQU is a valid quantifier
of quantum correlations in subsystems of the FMO com-
plex we search triads of chromophores whose association
results in stronger correlations than those found in bipar-
tite systems. To do so, we calculated LQU between one
chromophore{Cr} = SubsystemA3 and pairs of chro-
mophores{Cs, Ct} = SubsystemB3 (with s, t 6= r).
We considered all possible combinations but only present re-
sults of selected triads with the following behavior: LQU
betweenSubsystemA3 andSubsystemB3 is stronger
than LQU between{Cr} and any individual chromophore
({Cs} or {Ct}) from SubsystemB3. The search and se-
lection of strongly correlated triads of chromophores was
accomplished by virtue of the robustness of the LQU ap-
proach. In the FMO complex, quantum correlations between
SubsystemA3 andSubsystemB3 had not been calcu-
lated before.
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FIGURE 6. LQU between chromophores{Cr} and{Cs, Ct} for
the ground state.

We calculated the partial trace to the state of the whole
systemρg over 4 subsystems to obtain the quantum states of
three chromophores:tr4s(ρg) = ρf3

g , where theg index spec-
ifies if the family of quantum correlations is calculated in a
eigenstate (g = M ) or in thermal equilibrium (g = t).

We continue with the analysis in sets of three chro-
mophores considering the eigenstates with lower energy but
in Fig. 6 we only present an histogram with results from the
ground state. Results show that for both the ground state the
sets with the highest values of LQU are chromophoreC4 with
the pair{C3, C7}, chromophoreC3 with the pair{C2, C4},
and chromophoreC4 with the pair{C3, C5}.

After considering the eigenstates we will broaden the
analysis to the thermal state. In Fig. 7, we present
the selected triads where the LQU between one chro-
mophore SubsystemA3 and a pair of chromophores
SubsystemB3 is function of temperature a) and coher-
ence b). Figure 7 shows the sets of chromophores with
the highest values of LQU ({C4, C3, C7}, {C3, C2, C4}, and
{C4, C3, C5}). Quantum correlations of the sets in Fig. 7a)
are strictly decreasing functions of the temperature. At low
temperatures, the LQU of the triads in Fig. 7 is an order of
magnitude greater than for the other triads. Again, the reason
behind this is the high value of LQU for both the ground state
and the first excited in these associations. This behavior was
also present in the most quantum correlated associations of
chromophores in familiesf1 andf2.

With respect to the parametric curves of LQU versus co-
herence, results show that the triads of chromophores with
the highest values of LQU,{C4, C3, C7}, {C3, C2, C4}, and
{C4, C3, C5}, display a functional relation with their coher-
ence. A monotonically increasing function was also present
in the strongest associations of chromophores in familiesf1

andf2.

FIGURE 7. LQU between chromophores{Cr} and{Cs, Ct} for
the thermal state as function of a) temperature and b) coherence.

5.4. Quantum correlated subsets of chromophores in
the physical framework of the FMO system in ther-
mal equilibrium

The FMO protein mediates excitation energy transfer be-
tween the chlorosomes and the reaction center. Chro-
mophores 3 and 4 are the linker pigments between the FMO
complex and the RC. We use the thermodynamic equilibrium
state in Eq. (7) to calculate the functional dependence of the
populations on the temperature, cf. Fig. 8. At low temper-
atures and when thermal equilibrium state has been reached,
the highest probability is finding the system in the localized
excited state|3〉 followed by |4〉. As the temperature rises,
the seven sites are equally probable to be excited.

We evaluate the relation between most correlated sets of
chromophores and population of site 3, the most probable of
the linker pigments to be excited when thermal equilibrium
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FIGURE 8. The main panel shows the populations of the seven sites
as function of the temperature. The inset shows the LQU between
C3 and the rest of the network as a function of the population of
site 3.

FIGURE 9. The main panel shows the specific heat at constant vol-
ume as function of the temperature. The inset shows the energy
fluctuation of the system〈H2〉− 〈H〉2 as a function of the temper-
ature.

state has been reached. In the inset of Fig. 8 we show a
parametric plot of the LQU between site 3 and the rest of the
network versus population of site 3,i.e., (ρ33(T ), LQU(T )).
These results show a positive correlation between charge at
the site that delivers energy to the reaction center and non-
classicity, measured by LQU, as a function of the tempera-
ture. The relation between linker sites of the transfer network

and specific quantum correlations will also be present when
analyzing efficient energy transfer pathways.

As an intermediate step, before searching for a relation
between non-classicity and a measurable macroscopic mag-
nitude, we evaluate the fluctuation of the energy〈(∆H)2〉 =
〈H2〉 − 〈H〉2 in the frame of the canonical ensemble. In
the inset of Fig. 9, we plot the functional dependence of
statistical variance〈(∆H)2〉 on the absolute temperature to
show that an indicator of uncertainty associated to the mea-
surement of energy increases with temperature. On account
of the increasing temperature and the system losing quantum
coherence, the mixedness augments, so the contribution to
the variance mostly comes from classical uncertainty.

With this result we can now evaluate the relation between
the variance, that accounts for both classical and quantum
uncertainty, and the LQU, a quantifier of the quantum contri-
bution to the uncertainty. In the inset of Fig. 10, we show
a parametric curve of the fluctuation of the energy versus
the LQU of chromophoreC3 with the rest of the network,
i.e.,

(
LQU (T ) , 〈(∆H)2〉 (T )

)
. We see that as temperature

rises, there is an inverse correlation between total uncertainty
associated to the measurement of energy and the minimum
quantum contribution of the uncertainty. In the inset of Fig.
10, we also show an exponential fit for the energy fluctuation
as a function of the LQU:〈(∆H)2〉 = a exp

(−bLQU1/2
)
+

c. The optimal parameters area = 327.2 , b = 2.0 and
c = −71.4 . This fit shows the type of functional relation
sustained between uncertainty from both quantum and clas-
sical sources and the minimum quantum ignorance.

FIGURE 10. The main panel shows the specific heat at constant
volume as function of the LQU associated to the most correlated
subsets of chromophores,i.e. C3 with the rest of the network,C3

with C4, andC3 with {C2, C4}. The inset shows the energy fluctu-
ation of the system〈H2〉−〈H〉2 as a function of the LQU between
C3 and the rest of the network.
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To evaluate the relation between non-classicity and a
measurable macroscopic magnitude we begin by analyzing
the functional dependence of the specific heat at constant vol-
ume on the temperatureCv = 〈(∆H)2〉/kT 2 (Fig. 9). We
choose specific heat measurements because they constitute
an essential technique for characterizing fundamental excita-
tions involved in phase transitions.

The system presents a Schottky-like anomaly in the spe-
cific heat data as a function of temperature. The Schottky

anomaly manifests itself as a maximum in the specific heat
when the energy gap∆1 = ε1 − ε0 of a two-level system is
fixed [51].

A multilevel system might presents multiple peaks in the
specific heat that correspond both to the discrete energy gaps
∆n = εn−ε0 that become available as temperature increases
and to the degeneracy of each energy level [51].

In a model for a multilevel system in thermal equilibrium
with no degeneracies, the specific heatCv is:

Cv=
((∆1(∆1 −∆2) + ∆2(∆2 −∆1)) exp(−(∆2 + ∆1)/KT )

(KT )2(1 + exp(−∆1/KT ) + exp(−∆2/KT ))
+

exp(−∆1/KT )(∆2
1)+exp(−∆2/KT )(∆2

2)
(KT )2 (1 + exp(−∆1/KT )+ exp(−∆2/KT ))

, (25)

where∆1 = ε1 − ε0 and∆2 = ε2 − ε0 [51]. In the FMO
Hamiltonian there are no degeneracies so the double peak
structure that shows up in the specific heat of Fig. 9 is as-
sociated to the energy gaps∆1 and∆2 becoming accesible.

To investigate the relation between non-classicity and a
measurable macroscopic magnitude, in Fig. 10 we present
a parametric plot of specific heat versus the LQU of the
strongest associations:(LQU (T ) , Cv (T )). In Fig. 10, we
can clearly see that the double peak structure of the heat ca-
pacity is conserved.

The peak in specific heat at the right, associated to the
prevalence of the energy levelsε0 andε1, shows that as tem-
perature rises from 0 to∼ 50 K the LQU is constant, present
the highest values, and the specific heat sharply increases
from 0 to 0.3. The eigenstate analysis shows that by accesing
to the lowest energy levelsε0 and ε1, the system presents
specific non-classical features with the highest values. There-
fore, at low temperatures, the fast increment in the capacity of
the system to absorb heat energy is related to the prevalence
of specific non-classical correlations. As the temperature in-
creases and LQU decreases from 0.6 to∼ 0.3 the specific
heat remains constant. The peak in specific heat at the left,
associated to the availibility of the energy gap∆2 = ε2− ε0,
shows that when the values of LQU are marginal in ampli-
tude (LQU < 0.1) the heat capacity decreases from its max-
imum value around 0.5 to 0. Therefore, by accesing to higher
energy levels, the second peak in the specific heat is not as-
sociated to high values of quantum features. The analysis of
the parametric plot in Fig. 10. shows that the availability of
energy levels determined by increasing temperature dictates
the relation between specific heat (a measurable macroscopic
magnitude) and LQU (a quantifier of the non-classicity na-
ture of the FMO network).

6. Conclusions

This article presents a systematic LQU based method in-
tended to examine the structure of quantum correlations in
pigment-protein complexes. To do so LQU, concurrence, and
coherence were computed in subsystems of pure and mixed
states of the FMO complex from green sulfur bacteria.

The LQU method consists in selecting families of partitions
in the system, determination of the quantum state and calcu-
lation of LQU between subsystems. Partitions are selected
to define two subsystems where one is a qubit and the other
is a qudit (in the FMO complex the qubit corresponds to a
single site and the qudit can be any number of sites). Deter-
mination of the quantum states is achieved by calculating the
corresponding partial trace to the density matrix of the whole
system. Calculation of LQU is accomplished by selecting the
maximum eigenvalue of a3 × 3 matrix. The LQU method
input is a quantum state of site excitons therefore it can be
readily implemented in dynamical models.

To show the versatility of the LQU method, we cal-
culated quantum correlations between subsystems that had
never been considered before,i.e., LQU between individ-
ual chromophores and the remaining 6 chromophores (family
f1). Correlations from familyf1 present a global perspective
of the chromophores individual participation. Results of fam-
ily f1 show that chromophoresC3 andC4 are the most quan-
tum correlated with the rest of the network. In subsequent
partitions, the robustness of the LQU allows us to find the
specific associations of chromophores that sustain quantum
correlations of chromophoresC3 andC4.

To validate the LQU as a discord-like quantifier we com-
pared it with a valid entanglement quantifier of two qubits
(concurrence). The LQU-concurrence comparison was made
using the thermal equilibrium state for all the combinations
of two chromophores (familyf2). According to results of
family f2, quantum correlations of chromophoresC3 andC4

with the rest of the network mainly arise from the following
pairs of chromophores:{C3, C4}, {C4, C5}, {C4, C7}, and
{C2, C3}.

LQU between chromophoresC3 andC4 is an order of
magnitude higher than for any other pair but, as the relation
between pairs suggests, by adding a specific third site the
association strengthens even more. Associations suggested
by family f2 are confirmed by results of familyf3 which
show that the most quantum correlated triads are:C3 with
{C2, C4} , C4 with {C3, C5}, andC4 with {C3, C7}.
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Three additional results were found: (1) By comparing
the LQU approach with entanglement based techniques in
pairs of chromophores we proved that the former is a valid
discord-like quantifier of quantum correlations. (2) When
we calculated quantum correlations using the eigenstates we
found that some subsystems have high values of LQU in the
ground and first excited state. When considering the state of
these subsystems in thermal equilibrium we found that they
have remarkably high LQU at low temperatures. This relation
is present in the three families. (3) A monotonically increas-
ing function between two quantum resources, coherence and
quantum correlations, is present in the most correlated asso-
ciations of familiesf1 andf3. In all associations of familyf2

coherence equals concurrence.
One of the most interesting problems in quantum biology

is finding out if quantum correlations in light harvesting com-
plexes play a functional role enhancing energy transport effi-
ciency. Investigations addressing this issue did not find any
conclusive results [35, 36] or were subject to criticism [37].
In our work, we quantified quantum resources in a system
that remains in the same state as time elapses: the system is
either in a stationary state or in thermal equilibrium. We did
not work with a dynamic model so we cannot directly relate
our results with excitation transport efficiency. Nevertheless,
there is a previously reported relation between the most quan-
tum correlated subsets of the chromophores network and the
two energy transport pathways in the FMO protein [32–34].

In the FMO complex, the excitation coherently moves
through two alternative energy transfer pathways depending
on the site that is initially excited [15–17]. When chro-
mophoreC1 is the initial excited pigment, the excitation
propagates through pathwayA: C1 → C2 → C3 → C4

and when the initial excited pigment is chromophoreC6,
the excitation is transferred through pathwayB: C6 →
C5, C7 → C4 → C3. We found that in thermal equilibrium
the strongest non-classical associations of chromophores are
C3 with {C2, C4} , C4 with {C3, C5}, andC4 with {C3, C7}.
The quantum correlation ofC3 with {C2, C4} involves chro-
mophores from pathwayA: C3 connectsC2 of the initial
stage withC4 of the final stage. The quantum correlationsC4

with {C3, C5} andC4 with {C3, C7} involve chromophores
from pathwayB: C4 connectsC5/C7 of the initial stage with
C3 of the final stage. According to our results, once thermal
equilibrium is established, the subsets of chromophores with
the strongest quantum correlations are the final stage of the
two energy transport pathways in the FMO complex. This
analysis shows a possible connection between highly corre-
lated subsets of chromophores and energy transfer pathways.

The relation between strong quantum correlations and en-
ergy transport pathways is consistent with previous research
of multipartite entanglement in the FMO protein [32–34].
In our work, we show that the LQU is a promising metric
and provides a framework to establish the posible relation of
quantum energy transmission with the non-classical correla-
tions in the FMO complex.

The non-classicity of the system, represented by the LQU
of the most quantum correlated subsets of chromophores, can
be used to analyze physical properties such as populations,
energy fluctuations, and specific heat. As the temperature
rises, the number of accesible states is increased and the dou-
ble peak structure that shows up in the specific heat reflects
the availability of the energy gaps∆1 and∆2. The first peak,
where the statesε0 andε1 prevail, shows a correspondence
between a sharp increase in heat capacity and constant LQU.
The second peak, where the statesε0, ε1, andε2 are avail-
able, the quantum signatures of the system are marginal and
heat capacity begins to diminish. Thus, the accessibility of
energy levels, mapped by the specific heat, defines the rela-
tion between a measurable macroscopic magnitude and non-
classical resources.

The benefits of the LQU approach over other techniques
are: (1) being LQU a discord-like quantifier it is more gen-
eral than the entanglement based techniques, (2) LQU is easy
to compute because the inherent minimization process asso-
ciated with discord reduces to finding the maximum eigen-
value of a3× 3 matrix, (3) LQU permits characterization of
correlations that had not been studied before (familyf1 and
f3), (4) the LQU method discloses the strongest associations
in qubits networks and (5) the LQU technique can be readily
implemented in dynamical systems. The principal limitation
of the LQU approach is that it is a bipartite quantifier so it
cannot offer a global measure of quantum correlations.

We introduced a quantum information method based on
local quantum uncertainty to comprehensively characterize
non-classical correlations in subsystems of the FMO com-
plex. Identification of the most quantum correlated subsys-
tems reveals a detailed map of the exceptionally efficient
structure of the FMO complex. The study of biological net-
works has potential applications in engineering and quantum
information technology.
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