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Dynamics of neutrino wave packet in the Tachyon-like Dirac equation
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In this study, the tachyon-like Dirac equation, formulated by Chodos to describe superluminal neutrino, is solved. The analytical solutions
are Gaussian wave packets obtained using the envelope method. It is shown that the superluminal neutrino behaves like a pseudo-tachyon,
namely a particle with subluminal velocity and pure imaginary mass that fulfills the energy-momentum relation typical of classical tachyons.
The obtained results are used to prove that the trembling motion of the particle position around the median, known as Zitterbewegung, also
takes place for the superluminal neutrino, even if the oscillation velocity is always lower than the speed of light. Finally, the pseudo-tachyon
wave packet is used to calculate the probability of oscillation between mass states, obtaining a formula analogous to the one obtained for
the ordinary neutrino. This suggests that in the experiments concerning neutrino oscillation is not possible to distinguish tachyonic neutrinos
from ordinary ones.
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1. Introduction

Recently, the results obtained from the experiments dedicated
to the measurement of neutrino masses and the relative oscil-
lation phenomena [1-9], often interpretable assuming a su-
perluminal behavior of the particle, have led many physicists
to enhance their efforts towards the formulation of new theo-
ries beyond the Standard Model [10-13]. In this framework,
the pioneering works by Surdashan, Feinberg, and Recami
[14-17] on the physics of tachyons were taken into consid-
eration with the aim of formulating a field theory consistent
with the theory of relativity extended to superluminal mo-
tions. One of these theories is that of Chodos [18], whose
governing equation is obtained from the Tanaka Lagrangian
[19]. This Lagrangian reads:

Lt = iψ̄tγ
5γµ∂µψt − µtψ̄tψt, (1)

and holds for half-integer spin tachyons. In Eq. (1),ψ̄t =
ψ†t γ

0, γ5 = iγ0γ1γ2γ3(γ5)2 = 1 is the tachyonic mass and
hbar = c = 1. The subscriptt refers to tachyon and will
be used in all quantities introduced below. It remains clear
that ψt and ψ̄t are treated as independent variables. More-
over, the Dirac matrixγ5 is related to the fifth current, and
its presence in the Lagrangian (1) proves the chiral nature of
the particles it describes. The Lagrangian (1) is Hermitian
and fulfills the classical tachyonic energy-momentum rela-
tion E2 = p2c2 − µ2c4. By inserting this Lagrangian in the
Euler-Lagrange equation [20], the Chodos equation is recov-
ered:

[iγγ∂µ − µt]ψt = 0, (2)

Eq. (2) is a tachyon-like Dirac equation, one of the most used
to study half-integer spin superluminal particle. Jentschura
proved that this equation isCP andT invariant, but the asso-
ciated Hamiltonian operator is not Hermitian and loses parity

symmetry [21]. However, the Hamiltonian fulfills the sym-
metry properties of a pseudo-Hermitian operator.

In this study, the Chodos equation is solved, in terms of
Gaussian wave packets with positive and negative frequen-
cies, for a tachyon propagating along thez direction. In
this way, we obtain the equations of the envelope functions;
once solved, show that the group velocity is always sublu-
minal. Therefore, the tachyonic neutrino described by rel-
ativistic quantum mechanics is a pseudo-tachyon, namely a
particle that fulfills the energy-momentum relation typical of
an imaginary mass, but which propagates at subluminal ve-
locity, being the group velocity equal to that of the quantum
particle [22]. This result was obtained also by Salesi using
a different tachyon-like Dirac- equation and following a dif-
ferent approach [23]. Therefore, it is necessary to distinguish
the meaning between the group velocity, which finds its natu-
ral place in the quantum study of the tachyonic neutrino, and
the classical velocity of the particle, which, in principle, is
not upper bound. The theory developed in this work, how-
ever, shows that the two velocities are related to each other
and that the tachyon velocity is an upper bound. This is an
indirect proof that tachyonic neutrinos, in the picture of rela-
tivistic quantum mechanics, are unstable particles that decay
following mechanisms, already investigated in other works,
to return in the subluminal realm.

As occurs for a relativistic particle with half-integer spin
in the Dirac equation, the Zitterbewegung phenomenon [24],
represented by the rapid oscillation of the position of the par-
ticle concerning the median of the Gaussian packet, also takes
place for the tachyonic neutrino. This effect is because al-
though the wave packets with positive and negative frequen-
cies are orthogonal, once inserted in the integral〈ψ−|z|ψ+〉,
which represents the average position of the particle alongz
direction, show a non-vanishing overlap which leads to the
typical interference of the Zitterbewegung. It is also proved
that, unlike what happens for a relativistic Dirac particle, the
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oscillation velocity of Zitterbewegung is always lower than
the speed of light.

The wave packet approach is used to calculate the proba-
bility of neutrino oscillation [25]. In this study, we apply the
obtained Gaussian packet to calculate the oscillation proba-
bility of tachyonic neutrino. This needs the assumption that
even in the tachyonic regime, the neutrino may oscillate be-
tween possible mass states. We will show that the formula
of probability oscillation is analogous to that expected for the
ordinary neutrino. This is a confirmation that the (pseudo)-
tachyonic neutrino cannot be distinguished from the ordinary
one in the experiments concerning oscillation.

2. Tachyonic Wave Packets

Let us consider a superluminal neutrino propagating alongz
direction. For classical physics, the particle velocityut can
take any value higher than the speed of light. Before proceed-
ing, we clarify that the massµt and the tachyonic Lorentz
factor γt = [(1 − u2

t /c2)]−1/2 are pure imaginary, being
γt = −i|γt|. Therefore, the productµtγt is always real, as
well as the momentump and the energyE [26]. The mass-
energyµtc

2 is instead pure imaginary. The Chodos equation
for this model reads:

[i~γ5γ0∂t − i~cγ5γ3∂z − µtc
2]ψt = 0. (3)

Using the gamma Dirac matrices, the operatorsγ5γ0 and
γ5γ3 are:

γ5γ0 =




0 0 1̄ 0
0 0 0 1̄
1 0 0 0
0 1 0 0


 ,

γ5γ3 =




1̄ 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1̄


 , (4)

where 1̄ means−1. The bispinorψt has two components,
ψ+ andψ−, each of which is associated with the positive and
negative frequencies (energies):





ψ+ =
(

u+
1

u+
2

)
exp{i(kz − ω+t)}

ψ− =
(

u−1
u−2

)
exp{−i(kz − ω+t)}

(5)

where k = p/~ and ω+ = E+/~, while p is the z-
components of four-momentum. Introducing the bispinorψt

in the Eq. (3) we get a system of four linear differential equa-
tions:




i~c∂z − µtc
2 0 −i~∂t 0

0 −i~c∂z − µtc
2 0 −i~∂t

i~∂t 0 −i~c∂z − µtc
2 0

0 i~∂t 0 i~c∂z − µtc
2







u+
1

u+
2

u−1
u−2


 e±i(kz−ω+t) = 0.

We note that the matrix on the left-side of the equation is
anti-Hermitian. As it is known, anti-Hermitian operators are
the infinitesimal generators of unitary transformations and in
quantum mechanics are associated with imaginary eigenval-
ues [27]. The system can be easily solved giving us all the
spinor components:




u+
1 =− E/(pc + µtc

2); u+
2 =− E/(pc− µtc

2);

u−1 =− E/(pc− µtc
2); u−2 =− E/(pc + µtc

2)
. (6)

Considering thatE = γtµtc
2 andp = γtµtc, Eqs. (6) can be

written as functions of the dimensionless factorγt:




u+
1 =|γt|/(|γt|+ 1); u+

2 =− |γt|/(|γt| − 1);

u−1 =|γt|/(|γt| − 1); u−2 =|γt|/(|γt|+ 1)
. (7)

We see that the two-component spinors are real and orthogo-
nal. The obtained solutions must be normalized by applying
the usual normalization procedure:

∫
ψ†ψ=1 ⇒ N=

√
2(|γt|2 + 1)/(|γt|2 − 1),

whereN is the normalization factor. Therefore, the plane
waves solutions of the Chodos equation can be summarized
as:

ψ± =

√
2(|γt|2 + 1)
(|γ|2 − 1)

( |γt|
(|γt|±1)

∓ γt

(|γt|∓1)

)

× exp{±i(kz − ω+t)}. (8)

The trend of the real spinor componentsu+
1 andu+

2 is shown
in Fig. 1.

As can be seen, the two components converge to zero as
ut → c, while asut →

√
2c that tend to separate and diverge

towards infinity with different slopes.
For the models we are developing, we want the solutions

to be Gaussian wave packets. Therefore, we need to find
an envelope function that multiplied by the tachyonic plane
wave that provides the expected wave packet. This function
is a smooth curve outlining the extremes in the amplitude of
the rapidly varying single wavefunction that spreads in space
and time. Its profile must be that type of a Gaussian func-
tion. To do this, we have to set a given value of the classical
velocity of the tachyonic neutrino, denoted byu0, to which
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FIGURE 1. Spinor componentsu+
1 (blue line) andu+

2 (orange line)
vs tachyonic Lorentz factor.

correspond the wave vectork0 and the angular frequencyω0.
These values represent the center of the Gaussian packet. The
Gaussian spinor can be written as:

ψ±G =

√
2(|γt|2 + 1)
(|γ|2 − 1)

f±(t, z)

( |γt|
(|γt|±1)

∓ γt

(|γt|∓1)

)

× exp{±i(k0z − ω+
0 t)}, (9)

wheref±(t, z) are the envelop functions for positive and neg-
ative frequencies. Introducing function (9) in the Eq. (2) we
get the two differential equations that, once solved, provide
the explicit form of the envelope functions:





(
∂
∂t − c

u+
1

u−1

∣∣∣∣
γ0

∂
∂z + Λ+

0

i~u+
1

∣∣∣∣
γ0

)
f+(t, z) = 0

(
∂
∂t + c

u−2
u+

2

∣∣∣∣
γ0

∂
∂z + Λ−0

i~u+
2

∣∣∣∣
γ0

)
f−(t, z) = 0

, (10)

whereγ0 is the module of the tachyonic Lorentz factor cor-
responding to the velocityu0 andΛ±0 = 2µtc

2u±1 |γ0 . The
numerical coefficient of the second term in Eqs. (10) is the
propagation velocity, which coincides with the group veloc-
ity of the wave packet. Using Eq. (7) we obtain the explicit
form of these velocities:

c
u+

1

u−1

∣∣∣∣
γ0

=− c
u−2
u+

2

∣∣∣∣
γ0

=
(

γ0 − 1
γ0 + 1

)
c≤c ∀ u0 > c, (11)

Eq. (11) proves that the neutrino described by Chodos equa-
tion behaves like a pseudo-tachyon, namely a particle propa-
gating with subluminal velocityv = c(γ0 − 1)/(γ0 + 1) but
fulfilling the energy-momentum relation of a tachyon. This
result, which may seem surprising and unexpected, was also
obtained by Salesi following a different approach [23]. It
must be clear that the velocityv in Eq. (11) is of quantum
mechanics nature and is obtained through the operatori~c∂z,
which is conserved under the action of Lorentz transforma-
tions. Equation (11) gives the relation between the pseudo-
tachyon velocity and the classical velocityu0.

To solve Eqs. (10) it is sufficient to impose that the enve-
lope functionsf± are Gaussian. As a basic function, we can
take the following Gaussian envelope, widely used in quan-
tum optics [28-29]:

f±(t, z) =

[
1√

2π(σ + iAt)

]1/2

× exp
{
− (z ∓ v0t)2

2σ(σ + iAt)

}
. (12)

Where v0 is the pseudo-tachyon velocity given by
Eq. (11),σ is the wave packet dispersion coefficient alongz
direction, andA is a numerical constant that must be found.
Introducing function (12) in the first equation of (10), and
calculating its value in the point(z, t) = (0, 0), we get an al-
gebraical equation from which constant A is easily obtained:

A+ = −ω0θ0 where

θ0 = Λ+
0 /(~ω0u− 1−|γ0), (13)

Eq. (13) holds for positive frequencies. Repeating the same
procedure for the second equation of (10) we obtain the value
of the constantA for the negative frequencies:

A− = ω0θ0 where

θ0 = Λ+
0 /(~ω0u− 1−|γ0). (14)

Therefore, the Gaussian envelope function for positive
and negative frequencies is:

f±(t, z) =

[
1√

2π(σ ∓ iω0θ0t)

]1/2

× exp
{
− (z ∓ v0t)2

2σ(σ ∓ iω0θ0t)

}
. (15)

The termω0θ0 is the tachyonic correction to the disper-
sion of the wave packet. Figure 2 shows the real and imagi-
nary components of the wave packet:

Let us analyze in detail this term replacing toω0 andθ0

their explicit forms:

ω0θ0 =
E − 0
~

2|µt|c2

~ω0

u+
1

u−1

∣∣∣∣
γ0

= 3ωPlank

(
γ0 − 1
γ0 + 1

)
, (16)

whereωPlank is the angular frequency given by|µt|c2/~. For
the factor(γ0 − 1)/(γ0 + 1), which is simply the relativistic
factor β = v/c of the pseudo-tachyon, the following limits
hold:

lim
u0→c

(
γ0 − 1
γ0 + 1

)
= 1; lim

u0→
√

2c

(
γ0 − 1
γ0 + 1

)
= 0 :

lim
u−0→∞

(
γ0 − 1
γ0 + 1

)
= −1. (17)
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FIGURE 2. Real (blue area) and imaginary (red area) components
Of pseudo-tachyon wave packet (in arbitrary units).

Since the pseudo-tachyon has a subluminal velocity, the
factor (γ0 − 1)/(γ0 + 1) must range between [0,1]. This
means that the classical velocity of the neutrino is upper
bound tou0 =

√
2c. This is a further confirmation of how

quantum physics can lead to completely different results from
those obtained applying classical physics, even in the tachyon
field. We conclude this section noting that asu0 increases,
the tachyonic dispersion of the wave packet progressively de-
creases up to a minimum value of zero, corresponding to the
classical velocity

√
2c. This behavior is similar to that of

a wave packet associated with an ordinary relativistic parti-
cle, where the dispersion correction factor is proportional to
1/γ3 [29].

3. Zitterbewegung of Pseudo-tachyon Neu-
trino

A fermion that obeys the Dirac equation presents a rapid os-
cillation of the position along the direction of propagation,
known as Zitterbewegung [24]. This happens for the inter-
ference between states with positive and negative energy and
occurs with a frequency of2ωPlank. Assuming that the motion
takes place in thez direction, the equation of the position of
the ordinary particle around the median is:

z(t) =
pc2

E
t +

1
2
i
~c
E

[
v(0)− pc

E

]

× [exp{−2iωt} − 1]. (18)

The first term of Eq. (18) is the particle position along
the direction of propagation, while the second one is the os-
cillation due to the partial overlap of the positive and nega-
tive frequency wave packets. We want to investigate whether
this behavior also takes place for the pseudo-tachyon wave
packet. To do this, we follow the same approach used by
Park to study the Zitterbewegung of a relativistic electron

wave packet [29]. In this regard, we consider the wave func-
tion ψ(t, z) given by the linear combination of the two wave
packets given by Eq. (9):

ψ(t, z) = c− 1ψ+
G + c2ψ

−
G c1, c− 2 ∈ R. (19)

The mean value of particle position is given by〈ψ|z|ψ〉.
The real coefficientsc1 andc2 are such as to ensure that the
functionψ(t, z) is normalized:

{c1, c2 ∈ R : 〈ψ|ψ〉 = 1}.

Although the wave packetsψ+
G andψ−G are orthogonal,

the integral〈ψ|z|ψ〉 is non-vanishing. The solution of this
integral that for the relativistic electron has been already ob-
tained by Park [29], is:

〈z〉 = vot(c− 12 − c2
2) +

[
1 +

1
4σ2

(
~

2γ2
0 |µt|c

)2
]−1

×
(

~
2γ2

0 |µt|c
)(

σ2

σ2 + (ω0θ0t)1/4

)

× exp
{
− (v0t)2

2[σ2 + (ω0θ0t)2]

}
sin

[
2ω0t

− (ω0θ0t)2

σ2 + (ω0θ0t)2
(γ2

0 − 1)ω0t +
ϕ

2

]
2c1c2,

whereϕ = arctan(ω0θ0t) andv0 = c(γ0 − 1)/(γ0 + 1).
The first term in the right-side is the median position of the
particle modulated by the coefficient(c2

1 − c2
2), which can

be positive or negative. Therefore, the median position does
not coincide with the center of the wave packet. The product
between the first and the second factor in the right-size repre-
sents the maximum oscillation amplitude, while the product
between the third factor and the exponential represents the
oscillation damping term. Since it has been shown that the
termω0θ0 ranges within[0, 2ωPlank], the damping

∑
is max-

imum whenu0 =
√

2c:

∑ ∣∣
u0=

√
2c

=
(

σ2

σ2 + (2ωPlank)2

)1/4

× exp
{
− (v0t)2

2[σ2 + (2ωPlank)2

}
. (20)

We note also that whenut → c, i.e. γ → ∞, the max-
imum oscillation amplitudeI goes quickly to zero, while it
increases progressively asut →

√
2c up to the upper limit

given by:

I
∣∣
u0=

√
2c

=
λPlank

2

(
1 +

λ2
Plank

16σ2

)−1

, (21)

whereλPlank is the reduced Plank wavelength of pseudo-
tachyon neutrino. Finally, we observe that whenut →

√
2c
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the coefficientω0θ0 vanish and〈z〉 becomes:

〈z〉|u0=
√

2c=v0t(c2
1−c2

2)+2

[
1+

1
4σ2

(
~

2|µt|c
)2

]−1

×
(

~
2|µt|c

)
exp

{
− (v0t)2

2σ2

}
sin[2ω0t]2c1c2.

The oscillation frequency around the median position is
the argument ofsin function; Taylor expanding this function
aroundt → 0 and truncating the sum in the first term we get:

ωZB
∼= ω0

(
2− (ω0θ0t)2

σ2
(γ0−1)

)
. (22)

Using Eqs. (21) and (22) we obtain the Zitterbewegung
velocity,

vZB = I|u−0=
√

2cωZB = c

[
1− (2ωPlankt)2

σ2

×
(

γ0 − 1
γ0 − 1

)
(γ2

0 − 1)
]
. (23)

From Eq. (23) we see that, in the range[c,
√

2c], the ve-
locity vZB is always lower than the speed of light.

4. Oscillation of Pseudo-tachyon Neutrino

Recently, Cabanet al. have shown that the hypothesis of
tachyonic neutrino leads to the same oscillation phenomenon
of ordinary neutrino [30]. This result can be used to vali-
date the theory presented in Sec. 2. To do this we use the
wave packet approach [25], considering that we have to write
down the functionψ±G for each mass eigenstate. By limiting
the attention to only the positive frequency and assuming that
there are only three mass eigenstates, the evolved state of the
pseudo-tachyon neutrino produced in the initial statevα is:

|v(t, z)〉 =
3∑

i=1

U∗
αiψ

+
Gi|vi(t, z)〉, (24)

whereUαi is the leptonic mixing matrix that we suppose
holds also for tachyonic particles. The oscillation probability
from a state of imaginary massµi to a state with massµβ is:

P (vα → vβ) =
∣∣〈vβ

∣∣|v(t, z)〉〉∣∣2

=
∣∣∣∣
〈

vβ

∣∣∣∣
3∑

i=3

U∗
αiψ

+
Gi|vi(t, z)〉

〉∣∣∣∣
2

. (25)

To solve this integral one must know the phase difference
between the IN and OUT states:

∆Φ = ∆E · t−∆p · z. (26)

Considering that we are in an ultra-relativistic regime
(whereut → c and (γ0 − 1)/(γ0 + 1) ∼= 1) and that we

are dealing with a wave packet, the following approximations
hold:

∆E ¿ E and ∆P ∼= σp = ~/σ.

Therefore,∆E can be Taylor expanded obtaining:

∆E ∼= ∂E

∂p
σp +

∂E

∂µ2
∆µ2 = vσp − c4

2E
∆µ2, (27)

wherev is the pseudo-tachyon velocity obtained in Sec. 2,
andE is the tachyonic energy-momentum relation. Suppos-
ing that the errorσp affecting the momentum is of the order
of p0, then the wave packet dispersionσ can be reworked as
follows:

∆p ∼= σp =
~
σ
⇒ σ =

~
p0

=
~

|µt|u0

=
~

|µt|c
γ0 − 1
γ0 + 1

= λPlank
γ0 − 1
γ0 + 1

.

Substituting this result in Eq. (27) we get:

∆E ∼= ~c
λPlank

(
γ0 − 1
γ0 + 1

)2

− ∆µ2c4

2E
, (28)

and substituting Eq. (28) in Eq. (26) we obtain the explicit
form of ∆Φ:

∆Φ = −
[
L−

(
γ0−1
γ0+1

)
ct

](
γ0−1
γ0+1

)

× ~
λPlank

−∆µ2c4

2E
t. (29)

For the oscillation to take place there must be interference
between the mass states and this is possible only if the term
L − (γ0 − 1)/(γ0 − 1) is of the order of dispersionσ. But
this means that the first term of Eq. (29) is¿ 1 and can be
neglected. Therefore:

∆Φ ∼= −∆µ2c4

2E
t. (30)

Considering thatt ∼= L/c (since we are in the ultra-
relativistic limit) we arrive at the final result:

∆Φ ∼= −∆µ2c4

2E

L

c
= −∆µ22

2p
L. (31)

Therefore, the oscillation probability for a tachyonic neu-
trino in the Chodos equation is:

P (vα → vβ) =
∣∣∣∣

3∑

i=3

Uαi exp
{

i
∆µ22

2p
L

}
U∗

αi

∣∣∣∣
2

, (32)

Eq. (32) is analogous, except for the sign of the square mass,
to the oscillation probability expected for ordinary neutrino
[31]. Therefore, in the state of the art of current experiments
concerning the phenomenon of oscillation, is not possible to
distinguish the bradyonic or tachyon nature of the neutrino.
This confirms the result obtained by Cabanet al. [30] and
proves the correctness of the theory developed on the Chodos
equation.
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5. Discussion

In this study, the Chodos equation for the tachyonic neutrino
has been solved, obtaining Gaussian wave packets, with posi-
tive and negative frequencies, analogous to those obtained by
solving the ordinary Dirac equation [32]. The equations ob-
tained for the envelope functions, which guarantee the Gaus-
sian shape of the wave packet, show that the group veloc-
ity is always subluminal. Since the group velocity coincides
with that of neutrino propagation, one concludes that a par-
ticle with a half-integer spin with a classical velocity greater
than the speed of light, in the framework of quantum me-
chanics behaves like a subluminal fermion with imaginary
mass. Furthermore, the theory shows that the results retain
their physical meaning if the classical analog of the tachy-
onic velocity is upper bound by

√
2c. This suggests that such

particles are theoretically possible but are unstable and do not
decrease their energy by increasing their velocity, as the clas-
sical tachyon theory would predict [26]. This hypothesis has
been deeply investigated by Jentschura [33], who proposed
possible mechanisms of decay.

The first validation test of the obtained solutions is repre-
sented by the study of the Zitterbewegung effect. The theory
shows that this effect also occurs for the Chodos. It highlights
the typical oscillation of the position of the particle around
the median. However, the oscillation velocity always remains
lower than the speed of light, unlike what was predicted for
the electron by the Dirac equation, where this velocity results
equal to the speed of light [34].

The second validation test of the theory is represented by
the calculation of the oscillation probability of tachyonic neu-
trino, assuming that the modules of the imaginary masses are
identical to those of the three ordinary neutrinos and that the
leptonic mixing matrix is the same as the current model. Fol-
lowing the wave packet approach, it is obtained a probability
formula having the same form of that used for ordinary neu-
trino, confirming the same result achieved by other authors
[30] using a different approach, which provides for the im-
possibility of distinguishing tachyonic and ordinary neutrinos
in the oscillation phenomena.

This work proves that the equation proposed by Chodos
for the description of a superluminal neutrino is consistent
with what is expected from a theory that has its foundation
in the Dirac equation. Many physical-mathematical aspects
of the Dirac equation also recur for that of Chodos [21], and
its application to real problems reproduce results obtained by
following other approaches [30]. The most evident result,
however, is that which proves that in the Chodos equation,
the neutrino behaves like a subluminal particle that obeys the
energy-momentum relationship typical of classical tachyons.
This could be one of the reasons why, to date, there is no
experimental evidence that proves with certainty the possi-
ble tachyonic nature of neutrinos and that the efforts to detect
them must be oriented towards the precision measurement of
the value of their square masses. Only negative values of this
quantity can confirm whether or not the neutrinos can have
imaginary mass states.
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