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Genus transition by order shift in a dynamical system
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It is well known that the genus of a strange attractor changes if the control parameters of the dynamical system are modified. It is shown that
the genus of strange attractors may also depend on the order of the system and that such changes generate different strange attractors. In this
work, low-dimensional topological tools are applied in order to know the genus of a strange attractor.
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1. Introduction

From the topological point of view, strange attractors are
classified by theirgenus. Tsankov and Gilmore show a topo-
logical tool in [1, 2] that simplifies the calculus of thegenus
for strange attractors. This tool is called thecanonical form
for strange attractors. In integer-order dynamical systems,
the topological behavior depends on the control parameters
of the system. In [3] it is shown how the genus of the Lorenz
attractor can be changed by modification of control parame-
ters.

The theory of integration and differentiation of non-
integer order, also calledfractional calculus, is over 300
years old, but in recent years the number of applications has
grown. Fractional calculus allows to consider the integra-
tion and derivation of any order, not necessarily integer. This
mathematical topic is used in dynamical systems [4], con-
trol engineering [5, 6], signal processing [7], statistics [8],
among several areas. One of the main reasons that integer-
order models were used for a long time, was the absence of
solution methods for fractional-order differential equations.
Thanks to groundbreaking algorithms such as Caputo, Liou-
ville, Grünwald, Riemann, Letnikov, and enhanced computa-
tional resources, it is nowadays feasible to solve fractional-
order systems. As a research area it is in continuous devel-
opment and has several applications, even though, new algo-
rithms are developed to cope with possible downsides of the
classical ones, such as [9]. The main advantage of the frac-
tional derivative is the property of memory effect and hered-
ity; these properties provide better information than the inte-
ger order derivative. From the applied point of view, frac-
tional order systems behavior is closer to real phenomena
found in nature/real world. Physically, the fractional oper-
ator takes into account the past and future (memory) of the
dynamical system [10,11].

The change of order does not only affect the chaotic prop-
erties of the system, but the topology of the attractor. In [12]
it is shown how the surface of a multiscroll Chen attractor

changes as well as its genus. In this work, it is shown that by
means of order change in the Li and proto-Lorenz attractors,
the genus of both systems change, and these changes generate
two new strange attractors.

This work is organized as follows: In Sec. 2, the concepts
of genus, canonical forms and fractional-order dynamical
systems are introduced. In Sec. 3, the integer-order strange
attractors of the proto-Lorenz and Li systems are shown. In
Sec. 4, the results of order modification for the previous sys-
tems are shown. Finally, the conclusion and future work are
stated in Sec. 5.

2. Background

This section introduces the theoretical basis on which this
work is based.

2.1. Genus, Poincaŕe surface, first-return map, folding
and tearing

Topology is the study of the properties that remain invariant
under continuous deformation, one of these properties is the
genus. The genusg is a topological invariantand it is de-
fined as the number of holes on a surface [13]. A topological
invariant is defined as a quantityγ that remains unchanged
under smooth deformations; if there exist a homeomorphism
or diffeomorphism it means thatX andY are topologically
equivalentif γ(X) = γ(Y ) [14]. For example, the surface of
the sphere hasg = 0 and the surface of the torusg = 1; for
g ≥ 2 the surface is the torus withg-holes.

The Poincaŕe surface and the first-return map are two
topological tools that can be used to check whether a strange
attractor undergoes changes in its surface; particularly in its
genus [3]. For a strange attractor withg = 1 the topological
process displayed at the first-return map is known as fold-
ing, and forg ≥ 3 the topological process displayed at the
first-return map is known as tearing. For more information
see [3].
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2.2. Canonical forms of strange attractors

As mentioned before, topologically, the strange attractors are
classified by their genus. The holes that are generated on
the surface of strange attractors are determined by the fixed
points of the system [1, 2, 15]. Thecanonical formis the
topological tool that helps to know the genus of the strange
attractor. This useful tool is defined as the projection of the
strange attractor onto a two-dimensional (x − y plane) pla-
nar surface withg-interior holes [1, 2]. There are two types
of canonical forms that represent the surfaces of a variety of
strange attractors. The first is thechainAn (n ≥ 1) with n
holes-scrolls andn − 1 separating holes with four singulari-
ties each. The genus of this canonical form isg = 2n − 1,
wheren is the number of holes-scroll. The second is thecy-
cle Cn (n ≥ 2) with n holes-scrolls and one hole with2n
singularities. The genus of this canonical form isg = n + 1,

FIGURE 1. A1 depicts 1-scroll attractors withg = 1, where there is
a hole without singularities.E depicts attractors withg = 3, where
the attractor has 2-scrolls and one hole with four singularities.

FIGURE 2. C4 depicts attractors withg = 5, where the attractor
has 4-scrolls and one hole with eigth singularities.

wheren is the number of holes-scroll [1,2]. Specifically, the
A2 is equal toC2 [1, 2], thenE = A2 = C2. Figure 1 shows
the canonical formA1 andE, as well as Fig. 2 shows the
canonical formC4.

2.3. Fractional-order dynamical systems

The fundamental operator of fractional calculus isaDα
t ,

wherea and t are the bounds of the operation andα ∈ R.
The operator is defined as [16]:

aDα
t =





dα

dtα , α > 0
1, α = 0∫ t

a
(dτ)α α < 0

Forα = r wherer is integer, the operation0Dα
t f(t) gives

the same results as classical differentiation and integration
of integer-order operators. The most used approaches to de-
fine the fractional operator are the Grünwald-Letnikov (G-L),
Riemann-Liouville (R-L), and Caputo. These definitions are
described as follows [16]:

• Grünwald-Letnikov

aDα
t f(t) = lim

h→0

1
hα

t−a
h∑

j=0

(−1)j

(
α

j

)
f(t− jh). (1)

• Riemann-Liouville

aD−α
t f(t) =

1
Γ(−α)

t∫

a

f(τ)
(t− τ)α+1

dτ. (2)

aDα
t f(t) =

1
Γ(n− α)

dn

dtn

t∫

a

f(τ)
(t− τ)α−n+1

dτ. (3)

• Caputo

aDα
t f(t) =

1
Γ(n− α)

t∫

a

f (n)(τ)
(t− τ)α−n+1

dτ. (4)

In this work, the G-L approximation will be used for the nu-
merical simulation of the systems.

An integer-order dynamical system can be generally de-
fined by a set of first-ordinary differential equations of the
form [17]:

drxi

dtr
= Fi(x) r = 1; i = 1, . . . , n, (5)

where x = (x1, x2, . . . xn) are the state variablesand
(c1, c2, . . . ck) are the control parameters of the system. From
a topological point of view, a dynamical system consists of a
topological spaceΣ also calledsurface, a timet ∈ R and an
evolution operatorΦ : Σ × R → Σ [18]. In these types of
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systems, the topology ofΣ depends on the control parame-
ters [17].

A fractional-order dynamical system is an extension of
the definition of integer-order dynamical system. It is de-
fined as a set of non-integer order differential equations and
is described as follows [19]:

0D
α
t xi = Fi(x; c), 0 < α ≤ 2; i = 1, . . . , n. (6)

Similarly, this system consists of a surfaceβ, a timet ∈ R
and an evolutionψ : β × R → β. In these types of sys-
tems, the topology ofβ depends on the order of the system,
as shown in [12].

In fractional-order dynamical systems, the concept of
“system order” is not stated as in the integer-order dynamical-
systems case. In integer-order dynamical systems, the or-
der of the system is equal to the number of states or set of
first-order ordinary differential equations of the system. In
fractional-order dynamical systems, the order of the system
is equal to the sum of the orders of the differential equa-
tions that conform the system. This means, if we have a
dynamical system of order 3 which is composed of three
first-ordinary differential equations, this can be modified to
a system where the differential equations are fractional order
derivatives, hence, the order of the system is2 + α, where
0 < α ≤ 2 [20] if the three differential equations are of
fractional-order, the total order isα1 +α2 +α3. In fractional
systems the derivative can adopt any arbitrary real value or-
der. A system with constant order,i.e. α1 = α2 = . . . αi

is known as a commensurate order. Whilst a system with di-
verse orders within,i.e. α1 6= α2 6= . . . αi is known as an
incommensurate order system [21].

The algorithm to solve equation (6) uses theshort mem-
ory principle and is based in the G-L definition (1), the nu-
merical scheme has the following form [16],

(k−Lm/h)D
α
tkf(t) ≈ h−α

k∑

j=0

(−1)j

(
α

j

)
f(t− jh), (7)

whereLm is thememory length, tk = (k = 1, 2, . . . ), h is
the time step of calculation and(−1)j

(
α
j

)
are binomial coeffi-

cientsc(α)
j (j = 0, 1, . . . ). For their calculation the following

expression is used [16]:

c
(α)
j =

(
1− 1 + α

j

)
c
(α)
j−1. (8)

The general numerical solution of the fractional differential
equation is as follows:

aDα
t x(t) = f(x(t), t), (9)

the solution to wich can be expressed as [16]

x(tk) = f(x(tk), tk)hα −
k∑

j=v

c
(α)
j x(tk − j). (10)

According to the literature [10, 16], the G-L approach is
equivalent to the R-L and Caputo approaches. The time do-
main methods to simulate fractional-order systems, require
higher computational cost, but are more accurate. The G-L
approach has the property of short memory which reduces the
computational cost. Nevertheless, this approach has the same
reliability and accuracy [10] to simulate fractional-order sys-
tem as time domain methods.

3. The integer-order attractors

The Li attractor and the proto-Lorenz attractor are presented
with their canonical forms.

3.1. The Li attractor

The Li attractor is given by [23]:

ẋ = a(y − x) + dxz,

ẏ = kx + fy − xz,

ż = cz + xy − ex2, (11)

FIGURE 3. Simulation result ontox − z plane of the system (11)
with a = 40, c = 11/6, d = 0.16, e = 0.65, k = 55, f = 20; and
initial conditions(x0, y0, z0) = (1.5, 1.5, 1.5).

FIGURE 4. Poincaŕe section spliced with Li’s attractor trajectories.
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FIGURE 5. Explanatory diagram of the Li attractor.

where the parameters of the system are:a = 40, c = 11/6,
d = 0.16, e = 0.65, k = 55, f = 20.

Topologically, Letellier and Gilmore in [15] define this
attractor as a solid sphere pierced by two intersecting scrolls
at symmetry axis, and they conclude that the genus of the at-
tractor is 3. Therefore, its canonical form isE. The Fig. 3
shows the integer-order Li attractor of the Eq. (11) with the
projection onto thex− z plane. Figure 4 shows the Poincaré
section with blue color and Li’s attractor trajectories with
gray color, which are spliced to show the three holes (three
scrolls), the holes are pointed out by black arrows. The Fig. 5
shows an explanatory diagram where C1 and C2 are the holes
that are generated in the Li attractor and the intersection of C1
and C2 generate the third hole C3.

3.2. The integer-order proto-Lorenz attractor

The proto-Lorenz attractor with 4-scrolls is given by [22]:

ṡ =
1

2(s2 + w2)
f(x),

ẇ =
1

2(s2 + w2)
f(w),

ż = 2s3w − 2sw3 − bz, (12)

wheref(x) = [−as3 + (2a + c − z)s2w + (a − 2)sw2 −
(c− z)w3] andf(w) = [(c− z)s3 + (a− 2)s2w + (−2a−
c + z)sw2 − aw3]. The control parameters are:(a, b, c) =
(10, 8/3, 28). The Fig. 6 shows the 4-scrolls strange attractor
in R3 of the system (12) and the Fig. 7 shows the projection
ontox− y plane of the system (12).

The Fig. 7 clearly shows that the attractor has 4 scrolls,
according to [1, 2], the canonical form that depicts this at-
tractor is theC4. The Fig. 2 shows this canonical form, the
attractor has 4-scrolls and one hole with eight (2n) singulari-
ties. Using the expressiong = n + 1, we have thatg = 5.

FIGURE 6. 4-scroll strange attractor inR3 of the system (12),
with (a, b, c) = (10, 8/3, 28) and initial conditions(s0, w0, z0) =
(1, 2, 6).

FIGURE 7. Projection ontox − y plane for the 4-scroll strange
attractor generated by system (12), with (a, b, c) = (10, 8/3, 28)
and initial conditions(s0, w0, z0) = (1, 2, 6).

4. Results

In this section the genus change for the previously stated at-
tractors is presented. This change surfaces as the order of the
system is modified. In these results, the parameters of the
systems remain constant through all cases.

4.1. Fractional-order Li attractor

According to Eq. (6) the fractional-order Li system is defined
as follows:

Dα1
t x = a(y − x) + dxz

Dα2
t y = kx + fy − xz

Dα3
t z = cz + xy − ex2, (13)

where the parameters and initial conditions are the same as
those of the integer-order system. The order of the system
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FIGURE 8. Simulation result projection ontox−z plane with order
(α1, α2, α3) = (1, 0.9, 1).

FIGURE 9. Poincaŕe section of the new 1-scroll attractor spliced
with the trajectories of the system (13).

α is the only parameter that changes, with incommensurate
order(α1, α2, α3) = (1, 0.9, 1). In Fig. 6, the new 1-scroll
strange attractor generated by system13 is shown, Fig. 9
shows the Poincaré section in blue color and trajectories of
the system (13) in gray color, which are spliced in order to
show the 1-hole generated within the new attractor; the hole
is indicated with a black arrow. Figure 10 depicts an explana-
tory diagram where C1 and C2 holes come together making a
single hole which connects to the C3 hole, generating a single
hole or scroll.

It is clearly observed that the number of scrolls changes
respect to system (11). This attractor has 1-scroll and belongs
to the canonical formA1, using the expressiong = 2n − 1
the resulting genus isg = 1.

FIGURE 10. Explanatory diagram of the system (13).

4.2. Fractional-order proto-Lorenz attractor

According to the Eq. (6) the fractional-order proto-Lorenz
system is defined as follows:

Dα1
t s =

1
2(s2 + w2)

f(x),

Dα2
t w =

1
2(s2 + w2)

f(w),

Dα3
t z = 2s3w − 2sw3 − bz, (14)

wheref(x) = [−as3 + (2a + c − z)s2w + (a − 2)sw2 −
(c− z)w3] andf(w) = [(c− z)s3 + (a− 2)s2w + (−2a−
c + z)sw2 − aw3]. The control parameters and the initial
conditions are the same as for the system (12). With order
(α1, α2, α3) = (1.15, 0.7, 1.15), the system (14) generates a
new 2-scroll strange attractor, as shown in Fig. 11.

FIGURE 11. Simulation result of system (14) in R3 with
α1 = 1.15, α2 = 0.7, andα3 = 1.15.
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It is clearly observed that the number of scrolls changes
with respect to system (12). This attractor has 2-scroll tra-
jectory, as mentioned beforeA2 = C2, using the expressions
g = 2n − 1 andg = n + 1 the result isg = 3 therefore, its
canonical form isE.

Please notice that in the results for the fractional-order Li
and Proto-Lorenz attractors, the only modified value is the
order of the system. Parameters and initial values remain the
same.

5. Conclusions

A change in the order of a fractional dynamical system may
modify its topology and it may even generate new strange
attractors. In this work we show two cases of such behavior.

As a future work it is proposed to analyze the fixed points
of the systems to know the process of genus modification of
the attracor.

As stated, smooth changes in the order of the system have
strong implications for the dynamical behavior and the struc-
ture of the system, hence, the change of genus occurs in the
“new” system.

Previous works analyze characteristics of the system un-
der order variation, but these works do not address the topo-
logical aspect [16]. The present results widen the set of possi-
ble tools to analyze fractional-order systems under soft order
variation and its implications.

Possible applications of these results may be on the anal-
ysis of bifurcations for fractional order dynamical systems
under smooth order change.

The downfalls that might affect some analyses may be
the simulations of the dynamical systems, however, as we are
using topological tools, these pitfalls can be avoided.
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16. I. Petŕǎs, Fractional-Order Nonlinear Systems: Model-
ing, Analysis and Simulation,(Nonlinear Physical Science,
Springer, 2011) pp. 7.https://doi.org/10.1007/
978-3-642-18101-6

17. R. Gilmore and M. Lefranc,The Topology of Chaos: Alice
in Stretch and Squeezeland,(Wiley-Interscience, 2002) pp. 97.
https://doi.org/10.1002/9783527617319

18. H. Broer and F. Takens,Dynamical Systems and Chaos,(Vol.
172, Springer, 2011) pp. 133.https://doi.org/10.
1007/978-1-4419-6870-8

19. V. E. Tarasov,Fractional Dynamics: Applications of Frac-
tional Calculus to Dynamics of Particles, Fields and Media
(Nonlinear Physical Science, Springer, 2010) pp. 293.https:
//doi.org/10.1007/978-3-642-14003-7
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