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This paper presents an application of a Fractional-Order Time Delay Neural Networks to chaos synchronization. The two main method-
ologies, on which the approach is based, are fractional-order time-delay recurrent neural networks and the fractional-order inverse optimal
control for nonlinear systems. The problem of trajectory tracking is studied, based on the fractional-order Lyapunov-Krasovskii and Lur’e
theory, that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a reference func-
tion is obtained. The method is illustrated for the synchronization, the analytic results we present a trajectory tracking simulation of a
fractional-order time-delay dynamical network and the Fractional Order Chua’s circuits.
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1. Introduction

This paper analyzes the Trajectory Tracking for a Fractional
Order Nonlinear System for a Fractional Order Time-Delay
Neural Network, which is forced to follow a Fractional Or-
der Reference signal generated by a nonlinear chaotic sys-
tem. The control law that guarantees trajectory tracking is
obtained by using the Fractional Order Lyapunov-Krasovskii
and Lur’e methodology Chaotic behavior, as a characteristic
of a dynamical system, could be desirable or undesired, de-
pending on the current application. In mixing substances pro-
cess, a chaotic behavior might improve the efficiency of the
system, while in the process which involves vibrations, chaos
could produce critical structural failures. As a consequence,
it is important to be able to manipulate the chaotic nature of
the system, driving a stable system to be chaotic or otherwise
stabilize a chaotic system. In many applications, it is also
important to change the chaotic nature of a system without
losing the chaotic behavior. Controlling and synchronizing
chaotic dynamical systems has recently attracted a great deal
of attention within the engineering society, in which differ-
ent techniques have been proposed. For instance, linear state
space feedback, Lyapunov-Krasovskii function methods [1],
adaptive control [2]. Using the inverse optimal control ap-
proach, a control law [3], which allows reproducing chaos on

a Dynamical Neural Network, was discussed in [4]. We fur-
ther extend these results to the Fractional Order Time-Delay
Neural Networks case for nonlinear system trajectory track-
ing. The proposed new scheme is composed of a Fractional
Order delayed dynamical neural identifier, which builds an
on-line model for the unknown delayed neural network, and
control law.

There are several ways of defining the derivative and
fractional integral, for example, the derivative of Grunwald-
Letnikov given by Eq. (1)

aDα
t f(t) = lim

¤→0

1
¤α

×
[(t−α)/¤]∑

j=0

(−1)j

(
α
j

)
f(t− j¤). (1)

Where¤ is a flooring-operator while the RL definition is
given by:

aDα
t f(t) =

1
Γ(n− α)

dn

dtn

t∫

a

f(τ)
(t− τ)α−n+1

dτ. (2)

For (n− 1 < α < n) andΓ(x) is the well-known Euler’s
Gamma function.
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Similarly, the notation used in ordinary differential equa-
tions, we will use the following notation, Eq. (3), when
we are referring to the fractional-order differential equations
where,αk ∈ ¤+.

Which is:

g(t, x, a, Dα1
t x, aDα2

t x, . . .) = 0. (3)

The Caputo’s definition can be written as

aDα2
t f(t) =

1
Γ(α− n)

t∫

a

f (n)(τ)
(t− τ)α−n+1

dτ. (4)

For (n− 1 < α < n).
Trajectory tracking, synchronization, and control of lin-

ear and nonlinear systems are a very important problem in
science and control engineering. In this paper, we will ex-
tend these concepts to force the nonlinear system (Fractional
Order Delayed Plant) to follow any linear and nonlinear Frac-
tional reference signals generated by fractional order differ-
ential equations.

This obtained result, modeling by differential equations
of fractional order, is new, unlike other results obtained by
the authors, modeled by ordinary differential edifications.

The effectiveness of the methodologies, from our point
of view, are equal, the difference is that we have observed
that the response of the controller is in smaller magnitude in
the systems of fractional order than in the systems of ordi-
nary differential equations, and also, in the systems of frac-
tional order have some slack by varying the order of the frac-
tional system, which causes the response of the system to be
smoother, which does not happen with ordinary non-linear
systems.

The applicability of the approach is illustrated by one
example: chaos synchronization. In the following, we first
briefly describe the dynamic of the fractional order Time-
Delay Neural Network to be used.

2. Mathematical models

The differential equation will be modeled by the neural net-
work [5]:

aDα
t xp = A(x) + W ∗Γzx(t− τ) + Ωu

x, u ∈ Rn, A, W,∈ Rn×n (5)

whereτ is the fixed known time delay,x is the state,u is the
input, A = −λI, with λ being a positive constant,W is the
state-feedback matrix, andσ(∗) = tan h(∗) is a Lipschitz
function [6] such thatσ(x) = 0 only atx = 0, with Lipschitz
constantLσ. It is clear thatx = 0 is an equilibrium point of
this system, whenu = 0.

The system, to be tracked by the neural network, is de-
fined as:

aDα
t xr = f(xr) + g(xr)ur,

xr, ur ∈ Rn, f(∗) ∈ Rn, g(∗) ∈ Rn×n (6)

whereaDα
t αxr, is the state,ur is the input,f(∗) andg(∗)

are smooth nonlinear functions of appropriate dimensions.
As is clear, this is very general, and the model (6) can be

complex such as chaotic nonlinear system.

3. Trajectory tracking

The objective is to develop a control law such that the delayed
neural network (5) tracks the trajectory of the dynamical sys-
tem (6). We dene the tracking error ase = x − xr, whose
derivative for time is:

aDα
t e = aDα

t x− aDα
t xr. (7)

Substituting (5) and (6) in (7), we obtain

aDα
t e = Ax + Wσ[x(t− τ)] + u− f(xr)− g(xr)ur

aDα
t e = Ae + Wσ[x(t− τ)] + u− f(xr)

− g(xr)ur + Axr (8)

Adding and subtracting to (8) the termsWσ[xr(t − τ)]
andα(t), we have

aDα
t e = Ae + W (σ[x(t− τ)]− σ[xr(t− τ)]) + (u− α(t))

+ [Axr + Wσ[xr(t− τ)] + α(t)]

− f(xr)− g(xr)ur. (9)

Whereα(∗) is a function to be determined. For system (5)
to follow model (6), the following solvability assumption is
needed, as discussed in [7]:

Assumption 1. There exist functionsρ(t) andα(t), such
that

aDα
t ρ = Aρ(t) + Wσ[x(t− τ)] + α(t);

ρ(t) = xr(t). (10)

It follows from (10) and (6) that

[Axr + Wσ[xr(t− τ)] + α(t)] = aDα
t xr = f(xr) + g(xr)ur

α(t) = f(xr) + g(xr)ur −Axr −Wσ[xr(t− τ)]. (11)

So that (9) becomes

aDα
t e = Ae + W (σ[x(t− τ)]

− σ[xr(t− τ)] + (u− α(t))

Let’s defineũ = (u− α(t))

aDα
t e = Ae + W (σ[x(t− τ)]− σ[xr(t− τ)]) + ũ. (12)

It is clear thate = 0, is an equilibrium point of (12), when
ũ = 0. In this way, the tracking problem can be restated as a
global asymptotic stabilization problem for the system (12).

Rev. Mex. F́ıs. 66 (1) 98–104
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4. Tracking error stabilization and control de-
sign

To establish the convergence of (12) toe = 0, which en-
sures the desired tracking, .rst, we propose the following
Krasovskii [8] and Lur’e functional [9]. This is essential for
the design of a globally and asymptotically stabilizing control
law. We select

V (e) =
n∑

i=1

ei∫

0

φ(τ, xr)dτ

+

t−τ∫

t

φT
σ (s)WT Wφσ(s)ds. (13)

The time derivative of (13), along the trajectories of (12)

aDα
t V = φ(τ, xr)T ė + φT

σ (t)WT Wφσ(t)

− φT
σ (t− τ)WT Wφσ(t− τ) (14)

aDα
t V = φ(e, xr)T Ae + φ(e, xr)T W (σ[x(t− τ)]

− σ[xr(t− τ)]) + φ(e, xr)T ũ + φT
σ (t)WT Wφσ(t)

− φT
σ (t− τ)WT Wφσ(t− τ) (15)

We selectφT
σ (t− τ) = (σ[x(t− τ)]− σ[xr(t− τ)])

aDα
t V = −λφ(e, xr)T e + φ(e, xr)T WφT

σ (t− τ)

+ φ(e, xr)T ũ + φT
σ (t− τ)WT Wφσ(t− τ)

− φT
σ (t− τ)WT Wφσ(t− τ) (16)

Next, let consider the following inequality, proved
in [10]:

XT Y + Y T X ≤ XT ΛX + Y T Λ−1Y (17)

which holds for all matricesX,Y ∈ Rn×k, andΛ ∈ Rn×n

with Λ = ΛT > 0. Applying (17) withΛ = I to the term
φ(e, xr)T WφT

σ (t− τ), we get

aDα
t V ≤ −λφ(e, xr)T e +

1
2
φ(e, xr)T φ(e, xr)

+
1
2
φT

σ (t− τ)WT Wφσ(t− τ) + φ(e, xr)T ũ

+ φT
σ (t)WT Wφσ(t)

− φT
σ (t− τ)WT Wφσ(t− τ). (18)

By simplifying (18), we obtain

aDα
t V ≤ −λφ(e, xr)T e +

1
2
φ(e, xr)T φ(e, xr)

− 1
2
φT

σ (t− τ)WT Wφσ(t− τ)

+ φ(e, xr)T ũ + φT
σ (t)WT Wφσ(t). (19)

Sinceφ(e, xr) is a sector function fore, there exist pos-
itive constantsk1 andk2 such thatk1 ‖ e ‖22≤ φ(e, xr)T ≤
k2 ‖ e ‖22 [11]. Also, sinceφ(e, xr) is Lipschitz fore, there
exist a positive constantLσ such thatφ(e, xr)T φ(e, xr) ≤
L2

σ ‖ e ‖22. Henceforth (19) can be rewritten and then we
have that

aDα
t V (e) ≤ −

[
λk1 − 1

2
L2

σ

]
‖ e ‖22

− 1
2
φT

σ (t− τ)WT Wφ(t− τ)

+ φ(e, xr)T ũ + φT
σ (t)WT Wφ(t). (20)

By simplifying (20), we have

aDα
t V (e) ≤ −

[
λk1 − 1

2
L2

σ

]
‖ e ‖22

+ φ(e, xr)T ũ + φT
σ (t)WT Wφ(t). (21)

Sinceφσ is Lipschitz with Lipschitz constantLσ [12],
then

‖ φσ(t) ‖ =‖ σ(x(t))− σ(xr(t)) ‖≤ L2
σ ‖ x(t)− xr(t) ‖

= L2
σ ‖ e(t) ‖22 . (22)

Applying toφT
σ (t)WT Wφσ(t)

φT
σ (t)WT Wφσ(t) ≤‖ φT

σ (t)WT Wφσ(t) ‖
≤ L2

σ ‖ W ‖22‖ e(t) ‖22 . (23)

With L2
σ the Lipschitz constant of (23)σ(∗). To the right

hand, third term of (17), we obtain:

aDα
t V (e) ≤ −

[
λk1 − 1

2
L2

σ

]
‖ e ‖22

+ L2
σ ‖ W ‖22‖ e(t) ‖22 +φ(e, xr)T ũ. (24)

Now, we suggest to use the following control law:

ũ = −(2 + 2 ∗ L2
σ ‖ W ‖22)φ(e, xr)T

= −β(R(e))−1(LgV )T . (25)

Whereβ is a positive constant and(R(e))−1 is a function
of e. At this point, substituting (25) into (24), we obtain

aDα
t V (e) ≤ −[

λ + L2
σ + L2

σ ‖ W ‖22
] ‖ e ‖22 . (26)

ThenaDα
t V (e) < 0 for all e 6= 0. This means that the

proposed control law (27) can globally and asymptotically
stabilize the error system, therefore ensuring the tracking of
(5) by (6).

Finally, the control action driving the recurrent neural net-
works is given by:

u = −(2 + 2 ∗ L2
σ ‖ W ‖22)φ(e, xr)T + f(xr)

+ g(xr)ur −Axr −Wσ[xr(t− τ)] (27)

We summarize the above developed analysis in the fol-
lowing Theorem.

Theorem 1. The control law (27) ensures that the Time-
Delay Neural Network (5) tracks the reference system (6).

Rev. Mex. F́ıs. 66 (1) 98–104
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FIGURE 1. α = 1 Simulation result for the Non-Linear System and
the Reference Signal synchronization between the delayed neural
network and the Chua.s circuits. The Non-linear system is coupled
to the slave system with the first state variable and delay (τ = 15
Sec): Three-dimensional view on the double scroll attractor gener-
ated for a) Non-Linear System (master system) and b) Reference
Signal (slave system).

FIGURE 2. Time evolution for Delayed Neural Network and
Chua’s circuits with initial condition (0.7; 0; 0) and the error signal
(x1(t)− y1(t)) for time.

5. Simulations

To illustrate the applicability of the discussed results, we
selected, the following delayed neural network:aDα

t xp =
A(x) + Wσ[x(t− τ)] + u, where

A =



−1 0 0
0 −1 0
0 0 −1


 , W =




0.3 0.8 0
0.4 0.3 0
0 0 1


 ,

σ(x(t− τ)) =




tanh(x1(t− τ))
tanh(x2(t− τ))
tanh(x3(t− τ))


 ,

τ = 15 sec. (28)

The reference signal, which the neural network has to fol-
low is the chaotic circuit of Chua [13], described by the dif-
ferential equation of fractional order:

aDα
t xr = 15.6yr − 15.6xr − 15.6

{
− 1.143xr

+
(−1.143 + 0.714)

2

[
|xr + 1| − |xr − 1|

]}
(29)

aDα
t yr = xr − yr − zr

aDα
t zr = −28yr (30)

FIGURE 3. Time evolution for Delayed Neural Network and
Chua’s circuits with initial condition (0.7; 0; 0) and the error signal
(x2(t)− y2(t)) concerning time.

Rev. Mex. F́ıs. 66 (1) 98–104
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FIGURE 4. Time evolution for Delayed Neural Network and
Chua’s circuits with initial condition (0.7; 0; 0) and the error signal
(x3(t)− y3(t)) concerning time.

FIGURE 5. α = 0.00001 Simulation result for master-slave syn-
chronization between the fractional-order delayed neural network
and the Chua’s circuits. The master system is coupled to the slave
system with the first state variable and delay (τ = 15 Sec): Three-
dimensional view on the double scroll attractor generated for a)
master system and b) slave system.

FIGURE 6. Time evolution for the Fractional Order Delayed Neu-
ral Network and Chua’s circuits with initial condition (0.7; 0; 0)
and the error signal(x1(t)− y1(t)) concerning time.

FIGURE 7. Time evolution for the Fractional Order Delayed Neu-
ral Network and Chua’s circuits with initial condition (0.7; 0; 0)
and the error signal(x2(t)− y2(t)) concerning time.

Rev. Mex. F́ıs. 66 (1) 98–104
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FIGURE 8. Time evolution for the Fractional Order Delayed Neu-
ral Network and Chua’s circuits with initial condition (0.7; 0; 0)
and the error signal(x3(t)− y3(t)) concerning time.

The following simulations were performed applying Mat-
Lab / Simulink, using the fourth order Runge Kutta method.

The experiment is performed as follows. Both systems,
the delayed neural network, and the Chua’s circuits, evolve
independently untilτ = 15 seconds: at that time, the pro-
posed control law (23) is incepted.

For 15 seconds, the non-linear system is in open loop
(Without Control), later, passing that time delay, the control
is applied, and the trajectory tracking objective is performed,
as can be seen in Fig. 2, 3, and 4, and the tracking errors tend
to zero after the controller goes into operation.

The experiment is performed as follows. Both systems,
the fractional-order delayed neural network and the Chua.s
circuits evolve independently untilτ = 15 seconds: at that
time, the proposed control law (23) is incepted. Simulation
results are presented in Fig. 6, 7, 8, for state 1, state 2 and
state 3, respectively. As can be seen, tracking is successfully
achieved.

6. Conclusions

We have presented the controller design for trajectory track-
ing determined by a Fractional Order Time-Delay dynamical
network. This framework is based on dynamic Fractional Or-
der delayed neural networks, and the methodology is based
on Fractional Order Lyapunov-Krasovskii and Lur’e theory.
The proposed Inverse Optimal Control Law is applied to a
dynamical fractional order delayed neural network and the
Chua’s circuits, respectively, being able to also stabilize in
asymptotic form the tracking error between two systems. The
results of the simulation show clearly the desired tracking.

In future work, it can be mentioned that the results will
be extended to model non-linear systems, whose mathemati-
cal model is not completely known, and in that sense, it can
be decided that the laws of control and laws of learning are
robust.

It is important to mention that, we will are work on sim-
ulation in real time to control a humanoid, and these results
are very promising, since they would help people who have
lost some lower limb, and to control humanoids, which could
help in tasks that are dangerous for humans.
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