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The Pennes bioheat transfer equation is the most used model to calculate the temperature induced in a tumor when physical therapies
like electrochemical treatment, electrochemotherapy and/or radiofrequency are applied. In this work, a modification of the Pennes bioheat

equation to study the temperature distribution induced by any electrode array in an anisotropic tissue containing several nodules (primary

or metastatic) with arbitrary shape is proposed. For this, the Green functions approach is generalized to include boundaries among two or
more media. The analytical solution we obtain in a very compact way, under quite general assumptions, allows calculating the temperature

distributions in the tumor volumes and their surfaces, in terms of heat sources, initial temperature and calorific sources at the boundary of

tumors.
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1. Introduction Pennes bioheat equation has been previously used to
model temperature distribution in non-homogenous tissues
Therapies like electrochemical treatment (EChT) [1], elec{11,19,20], in which heat sources (one or several electrodes)
trochemotherapy (ECT) [2] and radiofrequency ablation (RF)are inserted. Guptat al. [21] make a numerical study on
[3] have emerged as safe and effective treatments for solitleat transfer in tissues for different coordinate systems and
tumors with minimum damage to the organism. During ap-under different boundary conditions (first kind, second kind
plication of these therapies, tissue heating arises due to coand third kind). They conclude that during thermal therapy,
duction lossesi ., resistive heating from ion movement) [4]. probe shape, boundary conditions and internal heat source
Thermal spread in biological tissue may be measured usinghould not be the same and must be changed from one organ
an infrared thermograph device [5]. Images of surface temto the other in the human body.
perature and false-positive and false-negative constitute limi-

tations of the infrared thermography method [6,7]. Therefore;s i jenendent of the generalized coordinate system consid-

several researchers have addressed their efforts to know hQWa 4 4t the thermal ablation position. Additionally, Pennes

the temperature is distributed in a tissue.(the umor) [8-  hheat equation has been used to describe the heat transfer
10]. Furthermore, mathematical modeling is used [8'11'13]f0r targeted brain hypothermia, which is a result of the de-

These studies e_wdence that thermall quelmg is more CO”Ereasing arterial blood temperature [23].
plex than electrical ones because diffusion process depends o )
on time. Heat transfer has an important role in biological sys- W& aré not aware on applications of the bioheat equa-

tems of living beings [11,14,15]. The Pennes bioheat equat_ion for two media (tumor and the surrounding healthy tis-

tion is crucial for the majority of the bioheat transfer simula- SU€) With different biological, electrical (electrical conductiv-
tions [16]. It has been used when the internal heat generatidy @nd electrical permittivity), mechanical and thermal prop-
of tissue is produced by its metabolism [17]. Additionally, €Tii€S, as reported in [24,25]. Besides, the thermal treatment
Pennes bioheat equation permits to describe the energy coff several tumor nodul.es in t!ssue/organlsm simultaneously
servation equation for biological heat transfer on the basis off@S Not been reported in the literature.

the classical Fourier’s law of heat conduction [5]. Analytic  In this study, a modification of the linear bioheat equation
modeling of temperature distribution is based on solving thas proposed to calculate the temperature in a multi-centric
linear bioheat transfer equation for tissue, which is the gentumor and the surrounding healthy tissue, considering them
eral heat equation for conduction, with added terms for heaas linear, heterogeneous and anisotropic media of arbitrary
sources [8-10,18]. shapes. Besides, in this generalized equation the thermal,

Kumaret al. [22] report that treatment of cancerous cell
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electrical, mechanical and biological properties of each biAlthough the heat sources are in the tumors, Joule heating
ological tissue are considered. terms are different on each tissue. The paraméter, )
is the metabolic heat in the tumors and their surrounding
healthy tissues. These metabolic heats are different because
2. Theory the metabolic processes that happen in these tissues are dif-
ferent [24]. The term—pywypc (T — Ty) represents a heat
source due to blood circulation [12][} is the temperature
of the arterial bloodwy, p, andc, are the perfusion, density

Heat transfer among the tumors occupying the regions - 4ine specific heat of blood, respectively, p,, ¢, andT,,

Vi(i = 1,2,...,N) with sgrfaces boundanes S.’ (= are considered constant in each tissue. Whdbe referred
1,2,..., N) and the surrounding healthy tissue (region to be . : (i)
denoted by,) can be modeled by the bioheat transfer e ua—t0 regionsV;, we will use denotatiof™"(i = 1,..., ).

0 y q The electric potentia® can be calculated assuming bio-

tion [10] governing the temperature distributidn= T'(+, t) logical tissues as lineaie., itis j = o - & (Ohm's law)

in Kelvin, which is given by where is the electric conductivity tensor. Moreover, com-

2.1. Model assumptions

0 - .. bining quasi-static approximations & V- j+0p/0t ~ V-j
peg T =V (k- VI)+j - E andE = —V®), under Ohm'’s law, we obtain
— pwicy (T —Typ) + Q(7, 1), (1) V- L?_1V¢J =0. )

wheret is the time, for eaclt € V := UY ,V;. A schematic

representation ofp, S; andV; is shown in Fig. 1. The pa- g, Rigorously, Egs. (1) and (2) are coupled linear equa-
rameters (in general, different in each medlw(_i)_g/rrﬁ) and  ions because the electric conductivity depends on the tem-
¢ (J/kg K) are the mass density and the specific heat of €acBerature [10] but in this paper this dependence is disregarded.
tissue, respectively. In general, thermal conductivit’//m  For a recent account of the problem for different electrode
K) is a real symmetric tensor of second ordgf, ¢) (A/m?)  configurations we refer the reader to [10,18,26].
andE (', t)(V/m) are the fields of current density and electric  In this study, Eq. (1) is addressed to EChT, although it
field intensity, respectively; - E is the Joule heating term. can be indistinctly used for EChT, ECT or RF. In this case,
j E is due to the electrodes inserted completely in the tumor
[27,28].
Let us denote the initial distribution @f in all media by

The Joule heat is calculated by meang of = V& - & -

T(F,0) = Ty (7). 3)

/”‘r j/ s. It is important to assesfy(r) in Eq. (3) because
Vi To(o)(r‘) #+ Tél)(F) (: = 1,2,...,N), generally due to in-
flammatory and others processes that occur in unperturbed
x tumors [24]. In the first approximation, it can be considered
‘W that To(¥) = T, = 36.5 °C, which is the body tempera-
V V2 ture. Indeed, in preclinical [28] and clinical [27] studies, it
has been reported that the regions away from the tumors are
not damaged by EChT action, when the electrodes are com-
pletely inserted into the tumor. Besides, neitigmor the
S blood vessels are affected during or after EChT application.
e Matching boundary conditions on the surfacgsthat
separates the tumors of the surrounding healthy tissue are

Vi

7 e Si(i:1,2,...,N):

{ T (7, 1) = TO (7, 1),

P (ki - VTO) 4+ 7y (ki - VTO) = —¢ “)

FIGURE 1. Schematic representation of work regiokj is the
region that occupy the surrounding healthy tissue and contain sev-

eral tumors of different sizeB;(i = 1,..., N), whereV; is the wherefi; and7iy are both normal unit vectors to the surface
i-th tumor volume andV is the amount of tumors. Parameters i o

S; (i = 1,2,...,N) and S.. represent surface boundaries and S; but directed to medi&; andV;, respectively (Fig. 1). The

surface very far from the tumors, respectively. Besidsis the ~ Parameter is the surface energy density generated by the
normal unit vector to the surfacs; directed to medid/; and .. metabolic processes that may be related with the exchange of

(coincides withV; and ) is the normal unit vector directed to  nutrients, substances, energy, information between the tumor
mediumVs. and the surrounding healthy tissue [24].

Rev. Mex. 5. 65(2019) 284—-290



286 E. J. ROCA ORIA, L. E. BERGUES CABRALES, AND J. BORY REYES

Finally, the temperature distribution at points away from2.2. Green Functions
the tumors satisfies the following condition
As Eq. (4) (matching boundary conditions) and Eq. (6) are
r—oo: TO(F 1) = T, (5)  not homogeneous, let us introduce the Green functions of the
roblem for the tumors and the surrounding healthy tissue

Considering the above-mentioned assumptions and th
9 b (7t 7, ) (1=0,1,...,N). Indeed, we have

change of variable¥'(7,t) — T, — T'(7,t), EQ. (1) can be

rewritten 9 o
9 o pcafGl:V-(k -VGI)—)\Gl
peg T =V (ki-VTO) = XT + f(7,t),  (6) t
t + 67— 7)d(E 1),
with
7 eVi(l=0,1...,N) (11)
)\ = PpWpCyp, (7)
S - - . The independent terd(7 — 7,)8(£ — #) in Eq. (11) cor-
£7.0) = §(5) - B0 + Q) ® f it e et

responds to the effect of a unit source located at the gpint
To deal withTéO) (7) = TO(O) (7) =Ty, (i =1,2,...,N), and at the time instarit, upon the poinFaF the time instant
t. Note that there appedf + 1 Green functions, one for each
parameter; € V;({=0,1...,N).
T(7,0) =0. 9 Usually, the Green function is employed in the solution
_ method of the Dirichlet boundary problem and Neumann
Note that Eq. (4) is not altered and Eq. (5) adopts the,,nqary problem (normal derivative specified on the bound-
form ary). In the present model, Dirichlet and Neumann condi-
r— o0 : T (F,t) — 0. (10) tions are substituted by matching boundary conditions. So,
the usual approach must be changed: the initial condition and
| matching boundary condition for Eq. (11) are

we note that Eq. (3) is reduced to

Gi(rt, ) =0, t<t, (12)

GO (7, s, 1) = GO (F, 457, 1),
LN - - | (13)
o - (ko VGO (7 t;7,t)) + s - (ki - VG (7 t;7, ) = 0,

forl=0,1...,N.
The condition at infinity is not changed:

Considering the vector identity (see Eqg. (9) in [29])
r—o0: G\ (F 7, 1) — 0. (14)

If 7(7,t) satisfies the same problem @¢r,¢) except for
¢ and f instead ofq and f, respectively, thell’(7,t) := V- (o) = V-1 + oV -1, (18)
T'(7, —t) satisfies the adjoint equation of Eq. (6)
pc%T:v-(ki-vT)fAT+f, (15) L L
. ithy =k - VT andy = k - VT, itis obtained
and the same boundary conditionsTiecr, t) (see Eq. (4))
but with g instead ofy. Also, assuming Eq. (10) holds in the

sense

T 50 V.- (Tk-VT -Tk-VT)=VT-(k-VT)
r— 00 : { ~ ’ (16)
T — 0, - - -
. . o +TV-(k-VT)-TV - (k- -VT), (19)
we can proceed in the following way: multiplying Eq. (6)
by T, as well as Eq. (15) b§" and subtracting the obtained
equations, we get . - -
o - - o becaus&/T - (k -VT) = VT (k -VT) because: is a real
peg(IT) =TV (k- VT) symmetrical tensor.
_TV - (Z VT + fT — fT.f, (17) Applying the divergence theorem to Eqg. (19), we deduce

that
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and the formula

/ dVY - (Tk -VT - Tk -VT) 4n
i’ 1(5.0) = [ dt [ ave.inn e
= L — - 0 i/
zj{ds-(Tk VT —Tk -VT)
5 + / dV pcG (7, ', 7, 0)T (7, 0)
+ / dS-(Tk -VT —Tk -VT), (20) v
Soo '+
whereS,, is a surface very far from the tumors (Fig. 1) and + / dtdeéj (7, t'; 7, t)q (7, t). (26)
dS = 7 - dS. The integral extended 8., vanishes, suppos- 0 S
ing condition (16). Indeed,
The reciprocity principle (25) means that the influence in
r— 00 : {T ~ 175 VT ~ QT ~ % (7;,t") of a unit source, placed ifr;, t'), is the same as that
r ot r (7}, —t") of the same source &;, —t").
L oma L The Eqg. (26) evidences th@tin all media can be calcu-
=Tn-VIdS=_—0. lated from the superposition of the following contributions:

The integral extended t6 — UY |5, may be calculated heat sourceg of Eq. (8) (first term), initial temperature (sec-
v ond term) and calorific sourcesat the boundary of tumors

by using boun.dary conditions faF (Eq. (4)) andr” (see line (third term). The interpretation of the first term agrees with
after Eq. (15)): the physical meaning of Green function: the response of a
L e - N unit impulse must be multiplied by the intensifyand then
]{dS- (Tk-VT =Tk -VT) = — Z]{ superposed to all points of the media from the instant of time
o 1=1"5 in which the source is turned on (compare with Eq. (7.4.9)
Y W= T ©) for a single medium [30]). The physical sense of the last two
X {T (”l ki VTV g - ko - VT ) terms of Eq. (26) is similar. Note that anisotropy and inho-
mogeneity of the media appear only in each Green function.
_ 7 <ﬁl . Zl VT 4+ 7, - ZO . VT(O)) The proof of Eq. (25) is completed by takifq,t) =
G (7, t; 7, ") andT (7, t) = G, (7, —t;7;, —t"), in EQ. (22).
- ~ The surface integral is zero because- ¢ = 0. Choosing
= fgds(T‘J - Tq). (1)  =0andty > ¢,t2 > ¢, Egs. (12) and (24) are sufficient
) o ) ) ] to guarantee that the left member of Eq. (22) is zero too. Fi-
The minus sign in the integrals is explained becausgqly, py the fundamental property of the Dirac delta function

Maxwell normal is opposite to that of Gauss. we have
Integrating Eqg. (17) and using Egs. (20) and (21) yields
t [ avi@ee- = 1)
[aveertzi = [a fascra-1a) 7
v " and Eq. (25) follows, which is clear from Eq. (22).

‘2 - . Equation (26) follows using Eq. (24), Eq. (25), the funda-
+ /dt/dV(Tf =Tf), (22)  mental property of delta function and substitutifitff”, t) =
i G,(F,—t;7,—t'), t; = 0 andty = t' + n(n > 0) into
Eqg. (22).
The second term of Eq. (26) is zero because of Eq. (9).
As aresult, Eqg. (26) can be rewritten as

wheret; > 0 andt, > 0 and arbitrarily selected.
Note that, according to the definition @, ¢) and com-
paring Eq. (15) with Eqg. (11) we get the definition@f

G;(7, b7, 1) = G (7, —t; 75, —t"). (23) N P
- N T(7;,t) = dt [ dV,Gy(F,t'571,t) f (7, ¢
Therefore, initial condition (12) implies that (75,t) lz%/ / Gl 8571, 8) f (71 )
=0 v,
Gi(Ft;7,t") =0, t>t" (24) o
Two direct consequences follow from Eq. (22): the reci- + Z / dt%dSlGl(Fj,t/;ﬁ,t)q(ﬁ,t), (27)
procity principle 1=0 5
Gy, —t's 75, —t") = G (7,137, 1), (25 foreveryp > 0andj =0,1,...,N.
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We sett, = t' + n(n > 0) to guarantee that the upper because the tensor is also positive. Hence, the eigenvalues
limit of ¢ does not contribute in the second term of the sec{\,) of L are real and positive [31],
ond integral in Eq. (22), which is clear from Eq. (24). Itis
convenient to choosg = 0 such that’ could be selected by
the Dirac delta function in the integral of the left member of
Eq. (22). Note that the eigenfunctions df coincide with those of
The desired solutio” in terms of Green functions is L + A but the eigenvalues are displaced)y
given by Eq. (27), which depends on contributions of
caloric sources inside the media (Eq. (8)) and on the bound-

ary (Eq. (4)). , ,
From Eq. (31), it follows also that there is an orthonor-
2.3. Calculation of the Green functions by means of mal and complete systens,() of H entirely composed of
eigenfunctions eigenfunctions of., which means [32]

Lép = Anhn = Ap > 0.

From Eqg. (27), the required solution is given in terms of
the complementary conditions of the formulated problem, if
Green functions are known. An usual method to calculate
these functions consists in expanding them in terms of eigen- This permits the calculation of the Green function, given

functions of the operataf := —V - (k - V) defined in the by
Hilbert spaceH L?(V) of square- integrable functions in
V = UL, V; with scalar producty, ¢) := [;, dVipp, where
1 is the complex conjugate function (;tf
Assuming the following boundary conditions:

Zgnt P ) on (i), gn(én, G). (36)

rl,t 7, t)

Substituting Eq. (36) in Eg. (11) and using the definition

FeS(i=1,2...,N): of eigenfunction, yields
() = (), Ogn . ,
< a1 An + A)gn n:5 — 7)ot —1),
{ (ki - w<>>+no Goovgon @8 2 pegt Ot Nga 60 =871 = MO 1)

r— +00 : ga(z) ~
the domain of.. will be
D(L):={y € H/Lp € H}, (30)
such thatpy satisfies Eqgs. (28) and (29)

7 eVil=0,1,...,N). (37)

From Eg. (36) and Eqg. (37) results

9gn
P 4 (A + )

ot In = (n, 6(71 —M)O(t' — 1))

= 5(t' — 1) (7). (38)

The analysis relative to Eq. (21) shows that the domains
of the operator. and its adjoint, denoted b¥*, coincide
and thatl is self-adjoint

D(L*)=D(L), L*=1L. (31)

Supposec be constant in each medium, then the spatial
part of Eq. (38) can be separated

gn(t's7,1) = $n(P)Gn(t';1). (39)

Besides, L is positive (denoted by, > 0) because

Eq. (18) implies to obtain an ordinary differential equation

3o = —¢v-(k -V -
oL i : ) - pc%—i-()\n—&-)\)gn:é(t/—t). (40)
=Vo¢-(k-Vo)—V-(ok Vo). (32)

ot
The solution of Eq. (40) is given b
The scalar product arises from integration of Eq. (32). a- (40)is g y
This brings about that the second term in the right hand side
of Eq. (32) be zero, by an analogous calculation to Eq. (21),
resulting that

1 ,
Gn(t'3t) = gn(t' —t) = —eME=Dni — ). (41)
pc

where
6 #0= (6, L¢) = /de (k- Vo) i
An: pc )
— [avvé-(k-Vé)>0. . L >0, (33) L (1 t<t
V/ R N @2
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Substituting Eq. (41) into Eg. (39) and using the men-ism permits to suggest strategies to treat each nodule individ-
tioned result in Eq. (36), we obtain the expression of theually, depending on its stiffness, histogenic characteristics,

desired Green function, given by shape and electrical properties. The dielectric properties of
A1) biological tissues have been published by several researchers
G(r,t' 7 t) = Z e%h(t’ — 1) (71) P (7) [4,38]. Neverthelessk may be experimentally known from
n pe tridimensional anisotropy matrix of biological tissue (tumor
(1=0,1,...,N). (43) and/or the surrounding healthy tissue) using diffusion tensor

imaging technique, as reported in [39]. Values of components
From Eq. (43), Green functions are zero for t/, ac-  of this matrix depend on tumor histological variety and type
cording to the definition of. in Eq. (42), in agreement with ~ of the healthy tissue that surrounds the tumor.
the causality requirement (Eq. (12)) for Green function. For  The spatial distributions of the temperature, electric field
t < t/, Green function decreases exponentially if the time in-strength and electric current density may be calculated in a
creases, as it typically happens in the conduction processesealistic tumor model using finite element methods, taking
Note that the structure of Eq. (43) shows that anisotropyinto account the work of Korshoej al. [40]. Nevertheless,
and inhomogeneity of media appear only in eigenfunctions. it is suggested for EChT the integrated analysis of the electric
Substituting Eq. (43) into Eq. (26), one obtains potential, temperature, electric field strength, electric current
density, pH and tissue damage spatial distributions generated

by any geometry of electrode in the tumor and its surround-
T(, b, t) = %(F)/ ing healthy tissue, as reported in [13,37]. It is important to
" 0 note that the antitumor mechanism more accepted in EChT
£ is the induction of toxic products from electrochemical reac-
« / v, (7L tions [27,28,36].
; pe In addition to the above mentioned, the solution (44) can

. be implemented in a numerical algorithm for the simulations.

I deq_Sn(F)Q(r’t) e An ' =t) gy (44) A furthfer study can be. carried out. to simulate aII'physic.:aI_
pc gquantities above mentioned and tissue damage in realistic

anisotropic media with arbitrary shapes, electrode arrays with

3. Remarks on generalized Pennes equation different geometry and arbitrary shape of the electrode. As
the solution (44) is obtained for constant initial condition, it

The formal solution (44) is compact and obtained undemwould be interesting to know how the solution (44) changes
quite general suppositions (linearity ape constant in each when spatially dependent initial condition is used, as reported
medium anisotropic and heterogeneous). It permits to known [5].
how the temperature is distributed in the tumor and in the sur-
rounding healthy tissue when a single tumor appears in the
host. Furthermore, this equation can be used to estimate t#e  Conclusions
temperature in a tissue, organ and/or an organism that con-
tains several tumor nodules (primary and/or metastatic) withn conclusion, a general method is developed to calcu-
arbitrary shapes and different histogenic characteristics, uate temperature distributions in two coupled linear and
precedented in the literature. This later gives solution to th@nisotropic media (solid tumor and the surrounding healthy
suggestion reported in [22]. Additionally, thermal influencestissue). This approach can be easily generalized to multi-
of both media and their boundaries are included separately ipentric tumors in a tissue or to several tumors (primary or
the solution (44), and the contribution of each eigenfunctionmetastasis) in the organism by changing the summation in-
decreases exponentially in time with its relaxation tifge', dices. For this propose, the method of Green functions is
which depends on the medium properties (Eq. (42)). extended to include matching boundary conditions.

It is interesting to note that the solution (44) allows us to
know the temperature distribution in the tumor volume and
in its surface separately. Increase/decrease of the temperdcknowledgments
ture gradient between the tumor volume and its surface could
be induced. This can be possible by controlling the temperaAuthors thank anonymous referees, Editor in Chief and Yenia
ture generated by any geometry of electrode array reported imfante Fbmeta for their valuable comments and technical
the literature [13,33-37] and the blood perfusion in the tumorassistances. E. R. Oria and L.E.B. Cabrales are supported
These aspects agree with the ideas ofdlal. [23]. by grant 9116 from Centro Nacional de Electromagnetismo

On the other hand, the solution (44) is valid for electrodesAplicado, Universidad de Oriente, Cuba. J.B. Reyes is sup-
of any shape [36]. Furthermore, this mathematical formalported by SIP-program under number SIP-20180225.
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