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1. Introduction

An important and notable feature of solutions to Einstein the-
ory of gravity, such as Schwarzchild spacetime or the cos-
mological Friedmann-Lemaı̂tre-Robertson-Walker solution,
is that they all have apparent singularities. The question was,
what would be their physical implications? It was Raychaud-
huri who tried to investigate these solutions in both cosmo-
logical [1] and gravitational contexts [1]. Later, in 1955, he
proposed his famous equations [3] which are known as Ray-
chaudhuri equations.

These equations appeared to be of great importance in de-
scribing gravitational focusing and spacetime singularities,
which are essentially explained by the so-called Focusing
Theorems. Assuming Einstein equations and using energy
conditions, it is established that time-like and null geodesics,
if they are initially converging, they will focus until reach-
ing zero size in a finite time. One of the most important no-
tions about singularities, as pointed out by Landau and Lif-
shitz [7], is that a singularity would always imply focusing
of geodesics, while focusing itself does not imply a singular-
ity. Therefore in their work, the concept of geodesic focus-
ing (although not explicitly stated the same) was worked out.
However, they did not introduce shear and rotation, which are
inseparable ingredients of Raychaudhuri equations.

Ever since the equations were published, they have been
discussed and analyzed in numerous frameworks of general
relativity, quantum field theory, string theory and relativis-
tic cosmology. One should note that the concept of a sin-
gularity was first defined in seminal works of Penrose and
Hawking [4–6]. Therefore, it was only then that Raychaud-
huri equations received their deserved acclaim.

In addition to general relativity, the Raychaudhuri equa-
tions have also been discussed in the context of alternative
theories of gravity, such asf(R) theories [8]. In this paper
as well, we consider characteristics of time-like flows in an
alternative theory of gravity which as well has cosmological
implications, namely, the Weyl theory of gravity. The paper is
organized as follows: in Sec. 2 we briefly introduce the Ray-
chaudhuri equations and its kinematical parameters; in Sec.

3 we mention the Weyl field equations and obtain the kine-
matical evolution of time-like radial and rotational geodesic
flows, and see how they behave by plotting the congruences
of the integral curves. Finally in Sec. 4, we summarize the
results.

2. Raychaudhuri Equations

As it was mentioned, the Raychaudhuri equations are evolu-
tion equations for expansion, shear and rotation of a time-
like geodesic congruence of integral curves, which is in-
deed pure geometrical and therefore, are independent of ref-
erence frames of Einstein equations. Being parametrized in
terms of the affine parameter of the geodesics,τ , these in
4-dimensional spacetimes are written as follows [9]:

dΘ
dτ

+
1
3
Θ2 + σ2 − ω2 = −Rµνvµvν , (1)

dσµν

dτ
= −2

3
Θσµν − σµλσλ

ν − ωµλωλ
ν +

1
3
hµν

(
σ2 − ω2

)

+Cλνµρv
λvρ +

1
2
hµλhνρR

λρ − 1
3
hµνhλρR

λρ, (2)

dωµν

dτ
= −2

3
Θωµν − 2σλ

[νωµ]λ. (3)

In Eqs. (1) to (3),Θ, σµν and ωµν are respectively the
scalar expansion, the symmetric trace-less shear tensor and
the anti-symmetric rotation tensor. Moreover,σ2 = σµνσµν ,
ω2 = ωµνωµν and Cλνµρ are the Weyl conformal tensor.
In Eq. (1), vµ denotes the tangential vector field on the
geodesics andhµν in Eqs. (2) and (3) are the projection ten-
sor which for time-like curves and is defined by:

hµν = gµν + vµvν . (4)

Generally speaking, the Raychaudhuri equations deal with
the kinematics of flows which are generated by vector fields.
Such flows are indeed congruences of integral curves which
may or may not be geodesics. Actually, in the context of these
equations, we are interested in the evolution of the kinemat-
ical characteristics of the so-called flows, not the origin of
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them. These characteristics which are contained in the Ray-
chaudhuri equations, may constitute one equation like [10]:

∇νvµ = σµν + ωµν +
1
3
hµνΘ, (5)

in which the trace-less symmetric part is defined as:

σµν = ∇(νvµ) −
1
3
hµνΘ. (6)

Also, the scalar trace is and the anti-symmetric part are:

Θ = ∇µvµ, (7)

ωµν = ∇[νvµ]. (8)

Geometrically, these quantities are related to a cross-sectional
area, which encloses a definite number of integral curves and
is orthogonal to them. Moving along the flow lines, this area
may isotropically changes its size or being sheared or twisted,
however, it still holds the same number of flow lines. There
are some analogies with elastic deformations which are dis-
cussed in Ref. [11]. Also, one can find explicit discussions
on these quantities in Refs. [12,13].

Here we should note that the Raychaudhuri’s equations
may be essentially regarded as identities, which become
equations when they are, for example, used in spacetimes de-
fined by Einstein field equations.

Moreover, these equations are of first order and non-
linear. Also, the expansion equation in Eq. (1), is the same as
Riccati equation in a mathematical point of view [14,15]. The
expansion is indeed the rate of change of the cross-sectional
area, which is orthogonal to the geodesic bundle.

In the next section, we will find the mentioned kinemati-
cal characteristics, for curve bundles on a definite spacetime
background.

3. Time-like Geodesic Congruences in Weyl
Gravity

The Weyl theory of gravity has had an interesting background
and had received a great deal of attention from those who be-
lieve that the dark matter/dark energy scenarios, could be
well-treated by altering general theory of relativity. This be-
came more elaborated after arguing that the extraordinary
behavior of the galactic rotation curves, could be extracted
from Weyl gravity as a natural consequence of its vacuum so-
lutions [16–18]. There were subsequently more attempts to
make relations between the theory’s anticipations and obser-
vational evidences [19–21] and as the main course, proposing
gravitational alternatives to dark matter/dark energy [23–25].
Some good information about this 4th order theory of gravity
can be found in Ref. [22]. Another important feature of the
Weyl theory of gravity, is its conformal invariance which, as
it is stated in the literature, could be considered as a tool of
unification with the standard model by creating the desired
mass during the symmetry breaking [26].

The Weyl theory of gravity, is a theory of 4th order with
respect to the metric. Weyl gravity is characterized by the
Bach action:

IB = −α

∫
d4x

√−g C2, (9)

whereC2 = CµνρλCµνρλ is the Weyl invariant andα is a
coupling constant. The action in Eq. (9) in principle, could
be rewritten as:

IB = −α

∫
d4x

√−g

×
(

RµνρλRµνρλ − 2RµνRµν +
1
3
R2

)
(10)

from which, using the total divergency of the Gauss-Bonnet
term

√−g
(
RµνρλRµνρλ − 4RµνRµν + R2

)
, we have:

IB = −α

∫
d4x

√−g

(
RµνRµν − 1

3
R2

)
. (11)

Varying Eq. (11) with respect togµν , one obtains the Bach
tensor as [16]:

Wµν = ∇ρ∇µRνρ +∇ρ∇νRµρ −¤Rµν − gµν∇ρ∇λRρλ

− 2RρνRρ
µ +

1
2
gµνRρλRρλ − 1

3

(
2∇µ∇νR− 2gµν¤R

− 2RRµν +
1
2
gµνR2

)
. (12)

Accordingly, the Weyl field equations read as:

Wµν =
1
4α

Tµν , (13)

whereTµν is the matter/energy tensor. Also the vacuum field
equations (Wµν=0) have been explicitly solved. The solution
constructs a spherically symmetric spacetime defined by the
line element [16]:

ds2 = −B(r)dt2 + B−1(r)dr2 + r2dΩ2, (14)

in which:

B(r) = −β(2− 3βγ)
r

+ (1− 3βγ) + γr − kr2. (15)

This solution has three important constants,β, γ andk, by
which the Schwarzschild-de Sitter metric could be regener-
ated. Alsoγ andk are respectively related to the dark matter
and dark energy constituents of the cosmic fluid. Now let us
inspect how time-like flows evolve in the spacetime defined
in Eq. (14). To do this, we separately consider radial and ro-
tational flows, and obtain the kinematical parameters in the
Raychaudhuri equations.
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3.1. Radial Flows

Some features of pure radial time-like flows has been dis-
cussed in Ref. [27]. Firstly, for the spacetime coordinates on
a parametric integral curve:

xµ = (t(τ), r(τ), θ(τ), φ(τ)) , (16)

we define the velocity 4-vector field:

vµ =
(
ṫ(τ), ṙ(τ), θ̇(τ), φ̇(τ)

)
, (17)

which is supposed to be tangential to any integral curve in
the spacetime and for time-like congruences, one must have

vµvµ = −1. Also ẋµ denotesd/dτ . To have purely ra-
dial flows on the equatorial plane, we takeθ = π/2 and
φ̇ = 0. Therefore, for such flows in the spacetime defined
in Eqs. (14) and (15), the time-like condition is:

gµνvµvν = −1, (18)

and the geodesic equations:

v̇µ + Γµ
νλvνvλ = 0, (19)

are respectively:

rṙ2

β(3βγ − 2)− kr3 + γr2 − 3βγr + r
+

ṫ
(
2β + kr3 − γ

(
3β2 + r2 − 3βr

)− r
)

+ r

r
= 0, (20)

ṙṫ
(
β(3βγ − 2) + 2kr3 − γr2

)

r (β(2− 3βγ) + kr3 − γr2 + r(3βγ − 1))
+ ẗ = 0, (21)

(
β(3βγ − 2) + 2kr3 − γr2

) (
ṫ2

(
β(3βγ − 2)− kr3 + γr2 − 3βγr + r

)2 − r2ṙ2
)

2r3 (β(2− 3βγ) + kr3 − γr2 + r(3βγ − 1))
+ r̈ = 0. (22)

Integrating Eq. (21) we obtain:
ṫ =

r

−3β2γ + 2β + kr3 − γr2 + 3βγr − r
, (23)

using which in Eq. (20), gives

ṙ = ±
√
−3β2γ + 2β + kr3 + 3βγr − γr2

r
. (24)

Taking the positive part, the tangential vector field in Eq. (17) for pure radial flows becomes:

vµ =

(
r

−3β2γ + 2β + kr3 − γr2 + 3βγr − r
,

√
−3β2γ + 2β + kr3 + 3βγr − γr2

r
, 0, 0

)
. (25)

The flows, which are formed by this vector field, are expanding by the following factor which is obtained by use of Eq. (7):

Θ =
6kr3 − 5γr2 + 3β(−3βγ + 4γr + 2)

2r3/2
√

kr3 − γr2 + β(−3βγ + 3γr + 2)
. (26)

The vector field in Eq. (25) is orthogonal to the hypersurface of the field crests. Therefore, it is of zero rotation [11]. However,
the shear tensor is non-zero. From Eqs. (4), (6) and (26), we have:

σtt =

(
9β2γ + γr2 − 6β(γr + 1)

)√
−3β2γ + kr3 − γr2 + β(3γr + 2)

3r5/2
, (27a)

σtr = σrt = − 9β2γ + γr2 − 6β(γr + 1)
3r (β(2− 3βγ) + kr3 − γr2 + r(3βγ − 1))

, (27b)

σrr =
√

r
(
9β2γ + γr2 − 6β(γr + 1)

)

3
√
−3β2γ + kr3 − γr2 + β(3γr + 2) (β(3βγ − 2)− kr3 + γr2 − 3βγr + r)2

, (27c)

σθθ = σφφ = −
√

r
(
9β2γ + γr2 − 6β(γr + 1)

)

6
√
−3β2γ + kr3 − γr2 + β(3γr + 2)

. (27d)
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FIGURE 1. The purely radial flows in a Weyl field withγ = 0.

To obtain a pictorial viewpoint of how radial flows will be-
have in a Weyl field, we should find an expression forr(τ).
Using Eq. (23), the geodesic equation in Eq. (22) gives:

r̈−
(
ṙ2−1

) (
β(3βγ−2)+2kr3−γr2

)

2r (β(2−3βγ)+kr3−γr2+r(3βγ−1))
=0. (28)

Unfortunately, this is a non-linear second order equation.
Even the first order equation in Eq. (24) could not be explic-
itly solved. Therefore, we consider a simpler case ofγ = 0
which is in accordance to the de Sitter solution. In this case,
Eq. (24) results in:

r(τ) = ±
e−
√

k(c+τ)
(
e3
√

k(c+τ) − 2βk
)2/3

22/3k2/3
, (29)

with:

c =
1
3

ln
(
2
√

k3r0
3 (2β + kr0

3) + k2r0
3 + βk

)
√

k
,

wherer0 is the point of closest approach. The radial flows
are shown in Fig. 1. One can note how the expansion will
make cross-sectional area to change its size.

3.1.1. Focusing

If spacetime singularities are concerned, Eq. (1) for the ex-
pansion receives the most central attention. As it was shown
above (and also in Fig. 1), the expansion changes the cross-
sectional area along the geodesic bundle. It is noted that, if
the expansion approaches the negative infinity, the congru-
ences will converge, whereas they diverge if the expansion
goes to positive infinity. The convergence, is what we regard
as the focusing of the geodesic bundles toward the singulari-
ties. However, to clarify whether any convergence occurs for

a peculiar flow, one should examine the expansion equation.
It has been put in the literature that, convergence occurs if:

Rµνvµvν + σ2 − ω2 ≥ 0, (30)

or equivalently,
dΘ
dτ

+
1
3
Θ2 ≤ 0. (31)

Therefore, one can observe that shear acts in favor of conver-
gence, while rotation opposes it. However, for zero rotations
the condition in Eq. (30) reduces to [10]:

Rµνvµvν ≥ 0. (32)

Now, for the zero-rotational flow defined by the vector field
in Eq. (25), the condition in Eq. (32) gives:

γ

r
− 3k ≥ 0. (33)

This provides us a maximum forr according to which, one
must haver ≤ (γ/3k). We should note that the metric po-
tential in Eq. (15), includes a Newtonian1/r term, which is
dominant at small distances. Increasingr, it would be the
termγr as the dominant one. Such distances are about galac-
tic scales. For a typical galaxy of radiusr ∼ 10 kpc,γ is of
order10−26 m−1 and at cosmological distances, the coeffi-
cientk in the termkr2 is of the greatest importance, which
for a universe of constant curvature, may be regarded as the
cosmological parameter of order10−43 m−2 [28,29]. There-
fore, if galactic scales are of interest, Eq. (33) implies that for
r . 3.3×1016 m we may expect the convergence of the flow.

3.2. Rotational Flows

Pure rotational flows in the equatorial plane, could be ob-
tained by lettingθ = π/2 andr = const., according to the
vector field in Eq. (17). Hence, the time-like condition in
Eq. (18) and the geodesic Eqs. (19) are respectively:

ṫ2(β(2− 3βγ) + kr3 − γr2

+ r(3βγ − 1)) + r3φ̇2 + r = 0, (34)

ẗ = 0, (35)

ṫ2
(
β(3βγ − 2) + 2kr3 − γr2

)
+ 2r3φ̇2 = 0, (36)

φ̈ = 0. (37)

Equation (35) implieṡt = 1. Applying this to Eq. (34) gives:

φ̇ = ±
√

3β2γ − 2β − kr3 + γr2 − 3βγr

r3/2
. (38)

Therefore, the tangential vector field can be written as:

vµ=

(
1, 0, 0,

√
3β2γ − 2β − kr3 + γr2 − 3βγr

r3/2

)
. (39)
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Together with Eq. (7), one can see thatΘ = 0, implying that
the flows which are formed by Eq. (39), are free of expansion.
Therefore, we can not expect any focusing for this rotational
flow, since the cross-sectional area does not change. Also the
non-zero components of the shear tensor would be:

σrφ = σφr

=
−9β2γ − γr2 + 6β(γr + 1)

4
√

r
√

3β2γ − kr3 + γr2 − β(3γr + 2)
. (40)

Moreover, using Eq. (8), one can obtain the rotation of the
flow, which is characterized by the following non-zero com-
ponents of the anti-symmetric part of the Raychaudhuri kine-
matical parameters:

ωtr = −ωrt = kr − −3β2γ + 2β + γr2

2r2
, (41a)

ωrφ = −ωφr

=
−3β2γ + 4kr3 − 3γr2 + β(6γr + 2)

4
√

r
√

3β2γ − kr3 + γr2 − β(3γr + 2)
. (41b)

The constant radial distance can be obtained from Eqs. (36)
and (38). We have:

r =
3β
√

γ ±√6
√

β√
γ

. (42)

According to this, the pure rotational flow can be obtained
which has been depicted in Fig. 2. One can note that the
cross-sectional area will suffer a twist while holding the same
number of integral curves. However, for each curve, the ra-
dial

FIGURE 2. The purely rotational flows in a Weyl field.

distance is a constant and the shear gradually will make the
congruence bundle to become compressed.

3.3. Radial-Directional Flow

Now let us consider a geodesic flow, for which both radial
and angular components of the tangent vector field of the con-
gruence are supposed to be affine variables. We are still on
the equatorial plane, so the time-like condition (18) and the
geodesic Eqs. (19) read as:

ṫ2
(

kr3 − γr2 + β(−3βγ + 3γr + 2)
r

− 1
)

+
rṙ2

β(3βγ − 2)− kr3 + γr2 − 3βγr + r
+ r2φ̇2 = −1, (43)

r̈ +
1

2r3 (β(2− 3βγ) + kr3 − γr2 + r(3βγ − 1))

[ (
β(3βγ − 2)− kr3 + γr2 − 3βγr + r

)2

×
(
ṫ2

(
β(3βγ − 2) + 2kr3 − γr2

)
+ 2r3φ̇2

)
+ r2ṙ2

(
β(2− 3βγ)− 2kr3 + γr2

) ]
= 0,

2ṙφ̇

r
+ φ̈ = 0. (44)

The temporal part of the geodesic equations and consequentlyṫ, are the same as those Eqs. (21) and (23). Also direct
integration ofφ equation in (44) gives:

φ̇ =
(

1
r

)2

. (45)

Using Eqs. (23) and (45) in Eq. (43) to obtainṙ, the tangential vector field for the geodesic congruence becomes:

vµ =
(

r

−3β2γ + 2β + kr3 − γr2 + 3βγr − r
,

√
1
r

[β(3βγ − 2)− kr3 + γr2 − 3βγr + r]

√
r

β(3βγ − 2)− kr3 + γr2 − 3βγr + r
− 1

r2
− 1, 0,

1
r2

)
. (46)
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According to Eq. (46), one can obtain the kinematical characteristics of a Radial-Directional flow in a Weyl field. The expansion
is:

Θ =
1

2r7/2A

[
β(2− 3βγ) + 6kr5 + 4r3(3βγ + k)− 5γr4 − 3r2(β(3βγ − 2) + γ) + r(6βγ − 2)

]
, (47)

where:

A =
√

β(3βγ − 2)− kr3 + γr2 − 3βγr + r

√
r

β(3βγ − 2)− kr3 + γr2 − 3βγr + r
− 1

r2
− 1.

Moreover, the non-zero components of the shear tensor become:

σtt =
1

6r9/2A

[
− 4β2(2− 3βγ)2 + 2k2r6 + 2kr3

(
β(3βγ − 2) + γr4 − 6βγr3 + r2

(
9β2γ − 6β − γ

)− 2r
)

− 2γ2r6 + 18βγ2r5 + 4βγr4(4− 15βγ) + γr3
(
90β3γ − 60β2 + 6βγ + 1

)

− 2βr2
(
27β3γ2 − 36β2γ + 3β

(
5γ2 + 4

)− 7γ
)

+ βr
(
54β2γ2 − 51βγ + 10

) ]
,

σtr = σrt =
β(2− 3βγ) + 4r3(3βγ + k)− 2γr4 − 3r2

(
6β2γ − 4β + γ

)
+ r(6βγ − 2)

6r3 (β(2− 3βγ) + kr3 − γr2 + r(3βγ − 1))
,

σtφ = σφt = − 1
6r7/2A

[
β(2− 3βγ) + 6kr5 + 4r3(3βγ + k)− 5γr4 − 3r2(β(3βγ − 2) + γ) + r(6βγ − 2)

]
,

σrr =
1

6r9/2 (β(3βγ − 2)− kr3 + γr2 − 3βγr + r)2 A
×

[
− β2(2− 3βγ)2 + r6

(
γ(γ − 12β)− 4k2 + 2k(3βγ − 5)

)− γ(k − 2)r7

+ r5
(−9β2γ(k − 2) + 3β

(−3γ2 + 2k − 4
)

+ γ(7k + 10)
)

+ r4
(
30β2γ2 − 38βγ − 3γ2 + k(6− 18βγ) + 8

)

− 5r3
(
9β3γ2 + γ − 3β2γ(k + 4) + β

(−3γ2 + 2k + 4
))

+ r2
(
27β4γ2 − 36β3γ − 6β2

(
5γ2 − 2

)
+ 20βγ − 2

)
+ 3βr

(
9β2γ2 − 9βγ + 2

) ]
,

σrφ = σφr =
β(2− 3βγ) + r3(−6βγ + 4k + 6) + γr4 + r2

(
9β2γ − 6β − 3γ

)
+ r(6βγ − 2)

6r3 (β(2− 3βγ) + kr3 − γr2 + r(3βγ − 1))
,

σθθ =
1

6r3/2A

[
5β(2− 3βγ) + 2r3(3βγ + k)− γr4 − 3r2

(
3β2γ − 2β + γ

)
+ 4r(3βγ − 1)

]
,

σφφ =
1

6r7/2A
×

[
β(3βγ − 2)− 3kr7 − r5(3βγ + 7k)− r3(9βγ + 4k + 1) + 3r2

(
β(2− 3βγ) + kr5 + r3(3βγ + k)

− γr4 − r2
(
3β2γ − 2β + γ

)
+ r(3βγ − 1)

)
+ 2γr6 + 5γr4 + r2

(
3β2γ − 2β + 3γ

)
+ r(2− 6βγ)

]
. (48a)

Surprisingly, the rotation tensor vanishes;ωµν = 0. There-
fore, if one is interested in focusing, it is sufficient to examine
Eq. (32). For Eq. (46) this gives the condition:

3βγ − (
r2 + 1

)
r(3kr − γ) + 3kr2 − 2γr ≥ 0. (49)

Once again, dealing with a typical galaxy, the dimension-less
termβγ would be of order10−12. Counting on our previous
values forγ andk, then the only non-zero solution forr is:

r = 3.33333× 1016m. (50)

Note also that, this is in agreement with the convergence con-
dition for the purely radial flows, which was discussed above.

3.3.1. Capture Zone

One might even obtain the region in which there would be a
possible capturing of the flow, by use of an effective potential.

To proceed with this method, let us use the time-like condi-
tion in Eq. (43), exploiting the total energy definitionE =
g00 ṫ and also Eq. (45). Rearrangement yields:

ṙ2 = E2 − Veff(r)
2
, (51)

where:

Veff(r)

=

√
(r2+1) (β(3βγ−2)−kr3+γr2−3βγr+r)

r3
. (52)

This potential has been plotted in Fig. 3. However, in order to
capture a time-like flow, it is pretty useful to take care about
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FIGURE 3. The effective potential for a test particle moving on a
radial-directional time-like geodesic in a Weyl field. Plotting has
been done forγ = 10−26 m−1, β = 1014 m andk = 10−43 m−2.

the potential maximums. Such maximums may represent un-
stable circular orbits. Hence, if the energy of a particle
is supposed to be the same as the potential maximum, it
will be inevitably captured and the corresponding time-like
geodesics will ultimately terminated where the potential orig-
inates from. The potential in Eq. (52) has a maximum around
r ≈ 3 × 1016m, where the derivatives ofVeff(r) vanish.

So, for this maximum and higher energies, one can expect
geodesic focusing.

4. Summary

In this paper, we dealt with the characteristics of time-like
geodesic flows in a Weyl field and we supposed that such
field is formed in vacuum spacetime obtained from vacuum
Weyl field equations. We distinctly considered radial and ro-
tational flows, and obtained their corresponding expansion,
shear and vorticity (i.e. the rotation tensor). We noted that
for radial flows, only expansion and shear do contribute in the
characterization and as it is obvious in Fig. 1, the expansion
is isotropic, however, the shear makes the formation of the
curve bundle an-isotropic. Moreover, for the particular rota-
tional flows considered here, we found that although it is not
usual, however, the expansion vanishes. Therefore, we are
left with a simple shear tensor and, of course, a non-vanishing
vorticity. This may provide us a circular flow, which is grad-
ually getting compact. For further considerations, one may
concern with null-like geodesics in Weyl fields. Also, it is
possible to take both rotation and radial motions in same
flows. In cosmological contexts, this may help us to discover
how real cosmic flows will behave in Weyl conformal gravity.
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