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Recovery of transit times and frequencies of multiple
pulses via the short-time Fourier transform
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In this work, we present a study to determine the transit times and frequencies of pulses by using the Short-Time Fourier Transform (STFT).
We consider the case of an acoustic signal composed of five Gaussian pulses that have a high overlapping in time but oscillate at different
frequencies. We proceeded in three steps. First, we illustrate how the STFT calculated through a sliding window produces a spectrogram
where transit time is on one axis and frequency on the other. Second, we derive an exact analytical solution of the STFT to develop an
intuitive vision of the mathematical technique. Finally, in a third step, we present an experiment to demonstrate that the STFT is a useful
technique to characterize a complex acoustical signal.
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1. Introduction

In physics exist many pulsed signals which have a brief os-
cillation in time and carry a finite amount of energy. The
analysis and characterization of these transient oscillations
are essential for the fundamental and applied science [1]. The
propagation of pulses is a complex phenomenon, especially if
the signals are traveling through dispersive media where each
frequency propagates with different phase velocity. In these
systems, the pulse waveform undergoes a distortion related
to the various reshaping delays as well as to the broadening
and absorption.

In traditional textbooks, the transit time (τ ) of a pulse is
defined as the time to travel between two points [2]. How-
ever, when multiple pulses travel simultaneously, they in-
terfere and produce a complicate waveform where becomes
challenging to determine the transit times. One area of re-
search where pulses are actively investigated is the transmis-
sion through waveguides. In these structures exist a discrete
number of allowed frequencies. If only a mode is excited, it
is relatively easy to detect the transit time by measuring be-
tween peaks. This strategy was explored experimentally by
Wanget al. many years ago is the case of an elastic waveg-
uide [3]. They reported the characterization of the transit time
of a single pulse traveling in a thin fluid layer embedded be-
tween two elastic solids. However, some years later, Thomas
et al. [4]. demonstrated that if multiple pulses are excited in
a thicker Solid-Liquid-Solid (SLS) waveguide, the interfer-
ence between them causes an undesirable deformation that
makes difficult to identify the transit time by comparing the
waveforms.

Recently, we have revisited this problem investigating the
transit times of high-order modes on SLS waveguides by us-
ing the Short-Time Fourier Transform (STFT) [5]. During
this study, some of us that did not know the STFT technique
were surprised by all the information that could be extracted
of a pulse that at a first view looks only like a noisy signal [5].
In this work, we present a way to understand how the STFT
allows determining the transit times of multiple pulses trav-
eling simultaneously.

The STFT is a mathematical tool derived from the Fourier
Transform. In the traditional background of Mathematical
Methods in Physics, the analysis of transient signals is not a
usual theme [6]. Some books have recently been devoted to
the STFT and other related techniques as the wavelets, Ga-
bor or Wigner-Ville. These methods are widely used by the
engineering community in areas such as the digital analysis,
spectral analysis, speech recognition, and radars [7, 8]. Usu-
ally in these books are studied changes of a continues sig-
nal [7–11]. In contrast, here we introduce the study of the
STFT considering the case of transient signals.

The main idea of the STFT is to produce a spectrogram
where the transit time is on one axis and the frequency on the
other [9]. In 1998, W. C. Lang and K. Forinash published
a work on spectrograms where in their abstract presented an
valuable observation: [12] “While this technique is commonly
used in the engineering community for signal analysis, the
physics community has, in our opinion, remained relatively
unaware of this development. Indeed, some find the very no-
tion of frequency as a function of time troublesome.” After 20
years, the situation is different. Nowadays exist a broad ap-
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plicability of spectrograms to analyze signals that change in
time. For example, in areas such as gravitational waves [13],
radio astronomy [14,15], nuclear dynamics [16,17], or sens-
ing of cancerous cells [18].

Nonetheless, while these techniques are widely used in
various areas of physics research, they are not so widely
taught. In the context of the literature of physics, we have
found only a few papers presenting an introductory analysis
of the use of spectrograms [12,19]. In this work, we propose
a theoretical treatment of the STFT where it is possible to
obtain an analytical formula for the case of a Gaussian func-
tion. We demonstrate that this technique allows the charac-
terization of a complex signal composed by the superposition
of five pulses strongly overlapping in time. To test in the
laboratory our analysis, we present an experiment where the
transit time and frequency of each one of the components of
a complex signal can be identified in a spectrogram.

The rest of the paper is organized as follows. In Sec. 2,
we propose a succinct introduction to the STFT. In Sec. 3, we
present a theoretical analysis for Gaussian pulses. In Sec. 4,
is shown an experiment that demonstrates the utility of spec-
trograms. Finally, in Sec. 5 we have the conclusions.

2. What is the Short-Time Fourier Trans-
form?

An example that illustrates the importance of the analy-
sis of transient signals is the detection of the Gravitational
Waves that recently proved the existence of a Binary Black
Hole [14]. In Fig. 1(a) we present a transient signals(t) that
is similar to the waveform received at the Laser Interferom-
eter Gravitational-Wave Observatory (LIGO) [14, 15]. It is
observed that in the interval∆τa there are fewer oscillations
than in the interval∆τb, which means that the frequencies
in these ranges are different. How can these frequencies be
measured?

The analysis of frequencies based on the Fourier Trans-
form defined by the relation

s(ω) =
1√
2π

+∞∫

−∞
s(t)eiωtdt (1)

is beyond reproach. However, it is not appropriate to charac-
terize the transient signals(t). The Fourier Transform is de-
signed to detect the frequency components of the signals(t)
for an infinite temporal domain but does not allow to identify
the local frequencies. Additionally, the Fourier Transform

FIGURE 1. In panel (a) is presented a chirped signals(t). Panel (b) illustrates a window functionh(t− τ) centered atτa [τb] using a dashed
[dotted] line. In panel (c) we present the signals(t) viewed through the temporal windowh(t− τa) [h(t− τb)] using a dashed [dotted] line.
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cannot to determine the time-of-flight. As consequence, it is
convenient to introduce a variation of the Fourier Transform
to analyze transient signals.

The basic idea of the STFT is to slice the signal through
a temporal window and then to determine the frequencies
contained in each segment. For this reason, we introduce a
window that glides performing time-localized Fourier Trans-
forms. To illustrate how the spectrum changes over time, we
introduce a functionh(t− τ) that defines a temporal window
centered around the timeτ and zero-valued elsewhere. It is
convenient to introduce the normalization of this equation as

1 =

+∞∫

−∞
h(t− τ)dτ. (2)

In Fig. 1(b) we present two examples of the window func-
tion h(t − τ). Using a dashed [dotted] line, we present the
window functionsh(t − τa) [h(t − τb)] centered atτa [tb].
In Fig. 1(c) are presented two transient signals that represent
the functions(t) viewed through each window. The role of
the window function is to isolate a temporal segment where it
is possible to identify the local frequencies. To obtain a time-
frequency spectrogram, we multiply the Eqs. (1) and (2) to
obtain

s(ω) =
1√
2π

+∞∫

−∞
dτS(ω, τ), (3)

where is defined the STFT as the function

S(ω, τ) =

+∞∫

−∞
h(t− τ)s(t)eiωtdt. (4)

This integral can be understood as follows. The func-
tion h(t − τ) is a sliding window centered atτ which glides
along the time to define local Fourier Transforms. In this
manner, the STFT decomposes a time domain signal into a
two-dimensional representation, where the frequency content
of the transient signal is revealed inside the temporal window.
Usually this integral is solved numerically, in some cases us-
ing sophisticated numerical algorithms [11]. To have an in-
tuitive insight of the STFT, in the next section we present an
analytical solution for a Gaussian pulse.

3. Theory

We consider an acoustic pulse in the form

pi(x, t) = exp
{
− 1

2σ2
i

[(x− xi)− ct]2
}

× cos[ki(x− xi)− ωit]. (5)

The subscripti allows identifying the pulse and its com-
ponents. The pulse is a solution of the acoustical wave equa-
tion, and it is composed of two functions, a Gaussian and

FIGURE 2. In panels (a) and (b) are presented the time-dependent
amplitude of the pulsep1(x, t) detected at the positionsx = 0
andx = d, respectively. The transit timeτ is measured between
peaks. Panel (c) shows the spectrogram defined by the function
|P1(d, f, τ)|2.

other sinusoidal. The width of the Gaussian component is de-
fined byσi andxi is a spatial displacement. The wave vector
(ki) and the angular frequency (ωi) are related byki = ωi/c,
wherec = 343 m/s is the speed of sound.

3.1. A single pulse

In Figs. 2(a) and 2(b) we present the acoustic pulse for the
time-dependent amplitude at the spatial pointsx = 0 and
x = d, respectively. The parameters for the casei = 1 are
σ1 = 0.1 m, x1 = 0 andf1 = 2 kHz. We observe that for
a single pulse, it is possible to determine the transit timeτ as
the interval between peaks. Alternatively, the transit time can
be found using the relation

Pi(x, f, τ) =

∞∫

−∞
pi(x, t)h(t− τ)ei2πftdt. (6)

The choice of the functionh(t − τ) is an important de-
cision because this window affects the spectral estimation of
frequencies. There are different choices of windows func-
tions as the triangular, Hann, Hamming or Gaussian. [20,21]
In this work, we choose a Gaussian window in the form

h(t− τ) =
1

τh

√
2π

exp
[
− 1

2τ2
h

(t− τ)2
]

, (7)

whereτh defines a temporal width. The integral defined by
Eq. (6) can be solved analytically and the procedure is de-
scribed in Appendix A. The solution of the integral is

Pi(x, f, τ) =
1

2βiτh
exp

{
+ iki(x− xi)− δi

2

+
1

2β2
i

[γi + i2π(f − fi)]2
}
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+
1

2βiτh
exp

{
− iki(x− xi)− δi

2

+
1

2β2
i

[γi + i2π(f + fi)]2
}

. (8)

The functionsβ2
i , γi andδi are defined in Appendix A.

In Fig. 3(c) we show the absolute value|P1(d, f, τ)|2 con-
sideringτh = 4x10−4 s. The spectrogram in the plane(f, τ)
determine the transit times and frequencies at the position
x = d.

3.2. Multiple pulses

In this section we analyze a transient signal composed of the
superposition of five pulses in the form

pt(x, t) =
i=6∑

i=2

pi(x, t). (9)

In Figs. 3(a) and 3(b) we show the pulsept(x, t) at the
pointsx = 0 andx = d, respectively. The parameters of
are as follows. The pulse widths areσ2 = σ3 = σ4 =
σ5 = σ6 = 0.1372 m. The phase factors arex2 = 0,
x3 = −0.01715 m, x4 = +0.01715 m, x5 = −0.01715
m andx6 = +0.01715 m. The frequencies aref2 = 2 kHz,
f3 = 6 kHz, f4 = 9 kHz, f5 = 12 kHz andf6 = 16 kHz.
We have chosen these parameters to have pulses with a strong
superposition in time. The pulsept(x, t) has an interference
pattern that looks like a noisy signal. It is evident that be-
comes impossible an identification of transit times compar-
ing waveforms. However, for this kind of transient signals
the STFT is a very useful tool. For this case, the spectrogram
can be obtained analytically using

Pt(x, f, τ) =
i=6∑

i=2

Pi(x, f, τ), (10)

In Fig. 3(c) we shown the function|Pt(d, f, τ)|2 where
we have a spectrogram where it is possible to identify the
frequencies and transit times of each pulse.

4. Experiment

The acoustic transmitting and receiving experimental setup
is presented in Fig. 4. We used a Tektronix AFG3021B

function generator to produce a customized time-dependent
voltage signalv(t) using a software provided by the manu-
facturer. The signalv(t) is sent simultaneously to the oscil-
loscope (d) and the speaker (b). The speaker emits an acous-
tic pulsep(t). A Shure-SM57 unidirectional dynamic mi-
crophone placed at a distanced = 0.40 m from the speaker
receives an acoustical signalp′(t). The microphone produces
an electrical signal that is sent to a Tektronik TDS2012 oscil-
loscope (d) that digitize the signal and send the information
to a personal computer (e).

The transient voltage signal is defined as follows

v(t) =
j=5∑

j=1

exp

[
− 1

2σ′2j
(x′j − ct)2

]
cos(k′jxj − ω′jt) (11)

The parameters are as follows,σ′1 = σ′2 = σ′3 = σ′4 =
σ′5 = 0.343 m. We also definex1 = 0, x2 = −0.0175 m,
x3 = +0.0175 m, x4 = −0.0175 m andx5 = +0.0175 m.
The frequencies aref1 = 2 kHz, f2 = 4 kHz, f3 = 6 kHz,
f4 = 8 kHz andf5 = 10 kHz. The wave vectors are defined
by the relationkj = ωj/c.

FIGURE 3. In panels (a) and (b) are presented the time-dependent
amplitude of the pulsept(x, t) detected at the positionsx = 0 and
x = d, respectively. Panel (c) shows the spectrogram defined by
the function|Pt(d, f, τ)|2.

FIGURE 4. Schematic of the experimental setup. A function generator (a) sends simultaneously a voltagev(t) to the the osciloscope (d) and
the speaker (b) which generates a time-dependent sound pulsep(t). The acoustic signalp′(t) is received by the microphone (c) which sends
a signal to the osciloscope (d) that digitize and sends the information to the personal computer (e)
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FIGURE 5. In panel (a) is presented the transient voltage signal
v(t) received by the speaker. In panel (b) is presented the time-
dependent amplitudep′(t). Panel (c) shows the experimental STFT
of thep′(t) signal.

Figure 5(a) presents the voltage pulsev(t) that is sub-
mitted from the signal generator (a) into the speaker (b). In
Fig. 5(b) we present the acoustical signalp′(t) measured by
the microphone (d). We observe that it exist a complicate in-
terference pattern that is result of the speaker signal but also
exist an additional noisy contribution from the environment.
In panel 5(c) we present the short time-Fourier transform of
the signalp′(t) which is obtained by using the Origin soft-
ware. We observe that the STFT is able to identify the transit
time and frequencies of the five pulses components.

5. Conclusions

In this work, we demonstrate that the transit times and fre-
quencies of a transient signal with a complex waveform can
be recovered by using the STFT. The characterization is made
using a spectrogram where the transit time is on one axis and
the frequency on the other. This method of analysis has been
applied to study Gaussian pulses with a sinusoidal compo-
nent. For the case of a single pulse, we have found closed for-
mulas for the STFT that allow understanding how this tech-
nique works. In the case of a pulsed signal formed by the
superposition of multiple pulses, we have demonstrated the-
oretically and experimentally that it is possible to identify the
transit times and frequencies for each pulse component.

The analysis of transient signals permits the study of
many physical phenomena that can not be understood using
the traditional Fourier theory. In our mathematical methods
for physics, most of the work is devoted to the stationary case
and the case of transient signals is rarely considered. How-
ever, as the measurement techniques have been improved,
nowadays are explored a vast number of ultrafast phenom-
ena. These signals are very important in various branches of
physics, as for example the interaction of waves with nano-
structures, nonequilibrium process , transient process in net-
works, seismological vibrations or the finding of black holes.

Appendix

A.

The integral of Eq. (6) can be written in the form

Pi(x, ω, τ) =
1

2
√

2πτh

∞∫

−∞

(
eα+

+ eα−
)

dt (A.1)

where

α± = − 1
2σ2

i

[(x− xi)− ct]2 ± i [ki(x− xi)− ωit]

− 1
2τ2

h

(t− τ)2 + iωt (A.2)

Taking the squares in the first and second terms in the
right side we obtain

α± = −1
2

{
βit− 1

βi
[γi + i(ω ∓ ωi)]

}2

± iki(x− xi)− δ

2
+

1
2β2

i

[γi + i(ω ∓ ωi)]
2 (A.3)

where we define the following functions:

β2
i =

c2

σ2
i

+
1
τ2
h

, (A.4)

γi =
(x− xi)c

σ2
i

+
τ

τ2
h

, (A.5)

and

δi =
(x− xi)2

σ2
i

+
τ2

τ2
h

(A.6)

We can write

Pi(x, ω, τ) =
1

2
√

2πτh

exp
{

+ iki(x− xi)− δ

2

+
1

2β2
i

[γi + i(ω − ωi)]2
} +∞∫

−∞
e−[u−]2dt

+
1

2
√

2πτh

exp
{
− iki(x− xi)− δ

2

+
1

2β2
i

[γi + i(ω + ωi)]2
} +∞∫

−∞
e−[u+]2dt (A.7)

where

u∓ =
1√
2

{
βit− 1

βi
[γi + i(ω ∓ ωi)]

}
(A.8)

we identify
∞∫

−∞
e−[u∓i ]2dt =

√
2π

βi
(A.9)

Rev. Mex. Fis.64 (2018) 296-301



RECOVERY OF TRANSIT TIMES AND FREQUENCIES OF MULTIPLE PULSES VIA THE SHORT-TIME FOURIER TRANSFORM 301

1. S. Nolte and F. Schrempel,Ultrashort Pulse Laser Technol-
ogy:Laser Sources and Applications(Springer, New York,
2017).

2. L. Brillouin, Wave Propagation and Group Velocity(Academic,
New York, 1960).

3. W.C. Wang, P. Staecker, and R.C.M. Li,Applied Physics Let-
ters16 (1970) 291.

4. G. Thomas, G. Komoriya, and J.P. Parekh,Journal of Applied
Physics47 (1976) 3864.

5. C.I. Ham-Rodriguez, J. Manzanares-Martinez, D. Moctezuma-
Enriquez, and B. Manzanares- Martinez,Applied Physics Let-
ters109(2016) 061904.

6. G.B. Arfken and H.J. Weber,Mathematical Methods for Physi-
cists(Academic Press, New York, 2005).

7. K.M.M. Prabhu,Window Functions and Their Applications in
Signal Processings(CRC Press, New York, 2013).

8. M.H. Farouk,Application of Wavelets in Speech Processing
(Springer, New York, 2013).

9. A. Cohen,Numerical Analysis of Wavelet Methods(Elsevier,
Amsterdam, 2003).

10. L. Cohen,Time-Frequency analysis(Prentice Hall, New York,
1995).

11. B. Boashash,Time Frequency Signal Analysis and Processing
(Elsevier, Amsterdam, 2003).

12. W.C. Lang and K. Forinash,American Journal of Physics66
(1998) 794.

13. K.S. Tai, S.T. McWilliams, and F. Pretorius,Phys. Rev. D90
(2014) 103001.

14. B.P. Abbott,et al. Phys. Rev. Lett.116(2016) 061102.

15. H. Mathur, K. Brown, and A. Lowenstein,American Journal of
Physics85 (2017) 676.

16. D.A. Telnov, J. Heslar, and S.-I. Chu,Phys. Rev. A90 (2014)
063412.

17. H. Yuan, R. Zeier, N. Pomplun, S.J. Glaser, and N. Khaneja,
Phys. Rev. A92 (2015) 053414.

18. D. Daset al., Phys. Rev. E92 (2015) 062702.

19. K. Meykens, B. V. Rompaey, and H. Janssen, American Journal
of Physics 67, 400 (1999).

20. F.J. Harris,Proceedings of the IEEE66 (1978) 51.

21. A. Nuttall, IEEE Transactions on Acoustics, Speech, and Signal
Processing29 (1981) 84.

Rev. Mex. Fis.64 (2018) 296-301


