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Hammond versus Ford radiation reaction force with the attractive Coulomb field
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Del. Gustavo A. Madero, 07738, Ciudad de México, Ḿexico.
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The classical central field is analyzed within the Hammond theory of radiation reaction force. For the attractive Coulomb field, the trajectories
deduced from Ford and Hammond equations are numerically obtained. Ford and Hammond equations are rewritten by using a recent
correction to the non-relativistic equations for charged point particles which include a radiation reaction force term. Also, for the attractive
Coulomb case, the trajectories are numerically obtained for both corrected equations. A comparison between all these trajectories is made. It
is proved that Hammond equation satisfies the constraint proposed by Dirac of getting an equation of motion which should make the electron
in the hydrogen atom spiralling inwards and ultimately falling into the nucleus. A further analysis of the applicability of such a theory
is described for experiments particularly in Plasma Physics and some comments are made for the generalization of Hammond equation to
General Relativity.
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1. Introduction

The first non-relativistic attempts to find the self-effects of
radiation of the charged particle on its motion were made
in the 19th century by Lorentz [1,2] and few years later
by Planck [3-5] and by Abraham [6,7]. A relativistic pro-
posal was made by Dirac [8] in 1938 such that its non-
relativistic limit coincides with the Abraham-Lorentz equa-
tion. Nevertheless, the Lorentz-Dirac equation [8] pre-
dicts some unphysical results such as the runaway solu-
tions and the preaccelerations. As a consequence, many
different proposals appeared in literature trying to avoid
such inconsistencies [9,10]. The most famous approaches
were made by Eliezer [11], Wheeler and Feynman [12,13],
Caldirola [14], Mo and Papas [15], Landau and Lifshitz [16]
and Yaghjian [17]. However, in the past few years, the
Landau-Lifshitz equation [16] and the Eliezer equation [11]
have been considered as the best equations for describing the
motion of a charged point particle within Classical Electro-
dynamics. This is based on many distinct reasons. First,
the mathematical analysis made by Spohn [18,19] shows that
in a perturbation theory the Landau-Lifshitz equation is ob-
tained if the Lorentz-Dirac equation is restricted to its critical
surface. Therefore, the approximations made obtaining the
Lorentz-Dirac equation are of the same order of magnitude
as those in the deduction of the the Landau-Lifshitz equation.
Moreover, Rohrlich [20-22] supports the Landau-Lifshitz
equation by showing that the physical inconveniences of the
Lorentz-Dirac equation disappear when the Landau-Lifshitz
equation is considered due to the second order differential

character of the equation. Second, a Landau-Lifshitz-like
equation [23] in General Relativity has been proposed sup-
porting the validity of the Landau-Lifshitz equation in Spe-
cial Relativity. Third, considering the point nature of a charge
as a limit, which permits avoiding the black hole behavior
of a point particle [24], a structure must be assigned to the
charge. In this order of ideas, considering a charged particle
with structure, Ford and O’Connell [25-27] by using quantum
arguments and a Langevin equation, deduced an equation of
motion for the non-relativistic case, known as the Ford equa-
tion which can be physically generalized to Special Relativ-
ity giving the Eliezer equation [27]. Fourth, within the Shen
zone [28] where a classical trajectory can be defined for a
charged particle and quantum effects may be neglected, al-
though the Landau-Lifshitz equation and the Eliezer equation
are mathematical different, the solutions for both equations
are similar and the differences cannot be detected [29-31].
Of course, the non-relativistic Landau-Lifshitz equation and
the non-relativistic Eliezer equation (Ford equation) [29] are
equivalent. Fifth, and perhaps the most important argument
to support the Landau-Lifshitz equation has been done by
Krivitski ı̆ et al [32] by showing that the radiation reaction
term represents an average radiation reaction force in Quan-
tum Electrodynamics.

The Landau-Lifshitz and the Eliezer equations predict the
vanishing of the damping force when a constant electric field
is applied to a charged particle [33]; that is, the motion of
the particle corresponds to the Lorentz equation of motion
in such a case. This apparent paradox is explained by other
authors by noticing that the radiation exits at the infinite;
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that is, the energy radiated to infinite is taken from the at-
tached fields (The Scott term or the acceleration energy) and
consequently even if the total radiation reaction term in the
equation of motion vanishes, the radiation to infinite (the ir-
reversible emission of radiation) exists [34-37]. Moreover,
by using similar arguments, DeWitt and Brehme explain this
phenomenon in his generalization to General Relativity of
the damping term [38,39]. This explanation is not accepted
by many authors [40,37] and they have reached the conclu-
sion that the rest mass of the charge is not conserved. More-
over, Sorkin [41] says that this phenomenon raises a paradox
which we will call the constant electric field paradox. Re-
cently, Hammond [42-47] has proposed a new method which
avoids this paradox and practically coincides with the solu-
tions of the Landau-Lifshitz and Eliezer equations in many
cases. Indeed, if we make a comparison of the solutions of
both, Landau-Lifshitz equation and Hammond equation, for
the constant magnetic field and low electromagnetic pulses
we will notice that within the approximations made for the
levels of energy where the damping force is important, the re-
sults are similar. However, Hammond claims that for high in-
tense electromagnetic pulses the differences between the mo-
tions predicted by the Eliezer equation (denoted sometimes as
the relativistic Ford equation), the Landau-Lifshitz equation
and the Hammond equation are important. Such differences
appear within the Shen’s zone [28] where quantum effects are
not important and an equation of motion is meaningful for a
physical description. Moreover, Hammond argues that the
results obtained by using Ford or Landau-Lifshitz equations
do not accomplish a balance of energy [46]. In counterpart,
these last equations are founded in different expressions for
the radiated energy at the infinite; that is: the Larmor formula
does not represent the radiation power at the infinite in these
theories [47,35]. All these points of view make the study of
Hammond proposal more interesting.

On the other hand, if we study the work done by Dirac [8],
we will notice the necessity of considering a plus sign in the
term of the damping force corresponding to the irreversible
emission of radiation in order the total damping term is or-
thogonal to the4−velocity and also that the motion of the
electron in the hydrogen atom should make a spiralling in-
wards and ultimately falling into the nucleus (page 155 after
Eq. (24) and page 157 after Eq. (30) of Dirac’s paper [8]).
The interesting fact consists in noticing that in Hammond the-
ory the damping force contains a contrary sign. Therefore,
an analysis of the central field, in particular for the attractive
Coulomb case, is necessary in order to certify that in such sit-
uation the Hammond equation predicts a falling of the elec-
tron into the nucleus of an hydrogen atom with a rate of de-
cay of energy consistent with the Larmor formula. Although
as mentioned by Hammond [45-47], the damping force is im-
portant for high energy and relativistic situations in particular
for high intensity pulses, we will analyze the Coulomb case
from a non-relativistic point of view since the purpose of the
article just consists of noticing that Hammond equation pre-
dicts the falling of the charge into the center of the central

field. If such a result is proved, the Hammond theory will be
strongly supported as long as the degree of energy loss is ac-
ceptable and comparable to the Larmor formula. It has to be
noted that Hammond already gave a simple example showing
the falling of a charge in a special central field; for example
in Hammond’s paper in 2010 [43], it is stated that “To show
this makes sense, we consider yet another simple problem:
a charged mass rotating in a circle of radiusR, confined by
a circular collar that provides the inward normal force. We
assume it has an initial velocityv0 and initial angular veloc-
ity w. Once again, to orderτo, the analysis is elementary
and we find thatf = mτow

3R andv = v0 − mτow
3Rt.

This yields for example, the change in kinetic energy∆EK

per periodT is ∆EK/T = mτow
2R4 (in Hammond equa-

tion f is accompanied by minus sign). The right hand side is
exactly what the Larmor formula predicts”. However, the in-
ward force proportional to1/r2 has not been analyzed and it
is necessary to prove the falling of the charge into the center
of the central field for such physical important case.

In the analysis of the non-relativistic motion of a charged
particle including the radiation reaction damping force it is
necessary to consider a term due to a relativistic correction
which is larger than the radiation reaction force in a central
field [48]. Therefore, in Sec. 2, the solution of the attractive
Coulomb central field will be briefly shown for the modified
Ford equation [48]. The falling of an electron to the nucleus
will be shown. In Sec. 3, the Hammond theory of radiation
reaction force will be explained and a short description of its
success will be exposed. In Sec. 4, by applying the Ham-
mond model, the attractive Coulomb central field case for a
non relativistic motion will be solved to see if the falling of
the particle is predicted. The term due to a relativistic correc-
tion will be considered. In Sec. 5, in concluding remarks, the
applicability of Hammond proposal is described for experi-
ments particularly in Plasma Physics and its generalization
to General Relativity is analyzed.

2. Corrected Ford Equation for a Central
Field

In the last decade of the 20th century, by using quantum argu-
ments and a Langevin equation, Ford and O’Connell [25-27]
deduced a non-relativistic equation representing the non-
relativistic limit of the Eliezer equation [29]. Without con-
sidering the paradox of the vanishing of the radiation reac-
tion force in the case of a constant electric force, this equa-
tion does not present incovenient physical solutions. In this
model, it has to be remembered that the Larmor formula is
substituted by another expression for the radiation power at
the infinite [27]. Nevertheless, this equation neglects some
terms that come from Special Relativity which are bigger
than the radiation reaction terms. Before analyzing the cor-
rections that have to be made to the Ford equation [48], let us
describe the method that can be used to solve such an equa-
tion in the attractive Coulomb case.
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2.1. Ford equation for an attractive Coulomb electric
field

The Ford equation is written as

m~a = ~F + τo
~̇F, (1)

where the dot “·” represents the derivative with respect to the
time,τo = 2q2/3mc3 is the characteristic time of the charge
q (in cgs units) and~F is the applied force. Let us consider
a negative point charge (−q) which is subject to the electric
Coulomb force~F = q∇φ with the potentialφ = q/r due
to a positive electric chargeq (the attractive case). The Ford
equation can be written as

d

dt

[
m
·
r − τqq

∂φ

∂r

]
=

`2

r3
+ q

∂φ

∂r
, (2)

being ~̀ = m~r × ~v the angular momentum. DefiningU =
−(qφ/m) = K/mr (K < 0 for the attractive case with
K = −kq2; this notation is used to follow Rajeev’s arti-
cle [49]), Ur = ∂U/∂r and~l = ~r × ~v = ~̀/m. We arrive
to

l̇ = −τo

r
Url and Ur = − K

mr2
, (3)

and consequently,

d

dt
(ṙ + τqUr) =

l2

r3
− Ur. (4)

Definingy as

y = l2, (5)

and after some algebra [49], one obtains

d3y

dθ3
+

dy

dθ
+

2K2τq√
y

= 0, (6)

whereθ represents the polar angle and the orbit is given by

1
r(θ)

=
1

Kτq

d
√

y

dθ
. (7)

Taking the natural units for this equations (|K| = τq = 1),
we arrive to

d3y

dθ3
+

dy

dθ
+

2√
y

= 0 and
1

r(θ)
=

d
√

y

dθ
. (8)

This equation can be numerically solved and gives a very
congruent result about the falling of the charge into the cen-
ter of the Coulomb electric field (see Rajeev [49] and Ares de
Pargaet al [48], see Figs. (1) and (2)). It must be noted that
there is no precession in the charge trajectory because the ma-
jor axis of the decaying elliptical orbit does not change within
its orbital plane.

FIGURE 1. In this figure, we showr vs θ by using Ford equation
for a charge in an attractive Coulomb field without considering the
relativistic correction.

FIGURE 2. The charge trajectory by using Ford equation for an
attractive Coulomb field without considering the relativistic cor-
rection.

2.2. Modified Ford equation for the attractive Coulomb
electric field

Without considering the constant electric field paradox
[37,40-42,46] explained in the introduction, as we mentioned
before for many authors [25,26,18-22,35] the Ford equation
represents the best choice to describe the motion of a charged
particle in the non-relativistic case. However, as we will see
below, in the Ford equation, a term (−k2q4/c2mr3) due to
a relativistic correction must be added since its magnitude is

larger than the radiation reaction damping force (τo
~̇F ). Let

us make a summary of why this term must be kept. First,
consider just the Lorentz force for the Coulomb field, the rel-
ativistic equation for ther component in polar coordinates is
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l

r2

d

dθ

(
l

mr2

dr

dθ

)
− l2

mr3
+

k2q4

mc2

1
r3

= −kq2E

mc2

1
r2

, (9)

wherel = mr2dθ/dτ with τ the proper time andE repre-
sents the total energy of the particle. The termk2q4/mc2r3

can be neglected in the non-relativistic case leading to closed

orbits. However, if a radiation reaction term is added (τo
~̇F )

to the Lorentz equation in the non relativistic case, the term
(k2q4/mc2r3) must be kept because it is bigger than the radi-
ation reaction term. Indeed, the modified Ford equation turns
out to be

m~̈r = −kq2

r2
r̂ − k2q4

mc2r3
r̂

+ τq
kq2

c2mr3
ṙr̂ − τq

kq2

c2mr2
θ̇θ̂. (10)

This is because if we compare the radiation reaction force
with the k2q4/mc2r3 term, we notice that the last one is
larger; that is: (takingk = 1 in cgs units)

τqq
2ṙ

r3

q4

c2mr3

=
τqmc2ṙ

q2
=

2ṙ

3c
¿ 1,

or (11)

τqq
2θ̇

r2

q4

c2mr3

=
τqmc2rθ̇

q2
=

2rθ̇

3c
¿ 1.

Therefore, by looking to the central field case in Special Rel-
ativity, Eq. (9), it is obvious that an effective angular momen-
tum due to a relativistic correction has to be incorporated in
the equation of motion in the non-relativistic case [48]. This
means that even if in the Ford equation the terms proportional
to v2/c2 are neglected, not all the others terms which are
proportional to1/c2 have to be neglected. Indeed, in order
to heuristically recover the precession coming from Special
Relativity, an effective force,

~Feff = −kq2

r2
r̂ − k2q4

c2mr3
r̂, (12)

must be considered in the equation of motion as is described
in Eq. (10) and it corresponds to interchangel2 by L2; that
is:

d

dt
[ṙ + τqUr] =

L2

r3
− Ur, (13)

where

L2 = l2 − K2

c2
, (14)

being,

l̇ = −τq

r
Url, and Ur = − K

mr2
. (15)

We arrive to

r̈ + 2τqK
ṙ

r3
=

l2 −K2/c2

r3
+

K

r2
. (16)

Therefore, by putting

y = l2, (17)

we obtain

d3y

dθ3
+

dy

dθ
− 1

c2y

dy

dθ
+

2k2τq√
y

= 0, (18)

with

1
r(θ)

=
1

Kτq

d
√

y

dθ
. (19)

Applying the same numerical method and equal natural units
as in the case of the usual Ford equation, we can see the dif-
ference between the Rajeev result [49] and the result obtained
from the modified Ford equation in Figs. (1), (2), (3) and (4).
An interesting aspect should be highlighted. If we solve the
equation of motion without considering the radiation reac-
tion term but keeping the term (k2q4/mc2r3), a precession
appears in the charge trajectory since the major axis of the
elliptical orbit precesses within its orbital plane. Such pre-
cession causes non-closed orbits similar to rosettes as it is
shown in Figs. (5) and (6). However, when the radiation re-
action term is taken into account, the precession is reduced
as can be seen in Figs. (3) and (4). Nevertheless, a slight
change in the major axis can be observed in the trajectory
(see Fig. (4)).

FIGURE 3. In this figure, we showr vs θ by using Ford equa-
tion for a charge in an attractive Coulomb field by considering the
relativistic correction (the modified Ford equation).
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FIGURE 4. The charge trajectory by using Ford equation for an
attractive Coulomb field by considering the relativistic correction
(the modified Ford equation).

FIGURE 5. In this figure, we showr vs θ by using Lorentz equa-
tion for a charge in an attractive Coulomb field by considering the
relativistic correction.

3. Hammond Relativistic Proposal

In order to avoid the constant electric field paradox [37,40-
42,33] and as Hammond mentioned [46] “to obviate all of
the problems outlined above by assuming energy is conserved
without assuming some of it in wondrously stored in an im-
measurable field”, based on the fact that radiation represents
an irreversible process, Hammond [42-47] proposed that an
equation of motion for a charged particle which includes a
self-force due to its radiation itself cannot be expressed in
an usual form; that is: the method to obtain the self-force is
described as follows: consider an equation of motion with a
radiation reaction forcefµ such that

maµ =
q

c
Fµνvv − fµ, (20)

with

fµ = φ,µ − vµ

c2

dφ

dτ
, (21)

FIGURE 6. The charge trajectory by using Lorentz equation for an
attractive Coulomb field by considering the relativistic correction.
The non-closed orbit effect is shown.

whereφ represents a potential which has to be deduced in
each case. It has to be noted that due to the form offµ,

fµvµ = 0, (22)

Consequently, the radiation reaction force is orthogonal tovµ

and Eq. (20) satisfies the balance of energy. Moreover, in or-
der to make this system compatible with Physics, a constraint
is required; that is

f0 =
γ

c
P, (23)

with P = −τoaµaµ. Equations (20), (21) and (23) represent
a complete system. Of course, this is not a covariant state-
ment but it holds for a particular frame where we measure the
field. This method has been used to solve the magnetic and
electric constant field cases, pulses etc [42-47]. The results
are quite physical and they support the Hammond proposal
as an interesting theory to substitute all the other equations
which try to include the self-effects due to the radiation reac-
tion force of the charge. It has to be noted that the equation
does not possess any physical inconveniences. In the non-
relativistic case, the equation may be written as

m~a = ~Feff − ~f, (24)

where ~Feff represents the external force plus the relativistic
correction that has to be deduced and added for each external
force as in the case of the central force in Eq. (12) and~f the
radiation reaction force. The constraint is

~f · ~v = τoma2 (25)

Therefore, by using Eqs. (24) and (25), a complete descrip-
tion is obtained which permits to propose the value of the
radiation reaction force~f in each case.

Rev. Mex. Fis.64 (2018) 187–196
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4. Non Relativistic Modified Hammond Pro-
posal for the Attractive Coulomb Case

In the central field case, the radiation reaction force can be
proposed as

~f = τoma2 ~v

v2
. (26)

With this expression of the radiation reaction force, we are
assuring the concordance with the Larmor formula, we arrive
to,

m~̈r = −kq2

r2
r̂ − K2

c2mr3
r̂ − τoma2 ~̇r

v2
. (27)

It has to be noticed that the force is antiparallel to the motion
of the charge as Hammond requires. Since we are interested
in describing the motion of the charge and due to the fact that
τo is very small, for obtaining a numerical solution we can
substitute the acceleration in Eq. (26) by

a =
kq2

mr2
. (28)

Then, we have

m~̈r = −kq2

r2
r̂ − K2

c2mr3
r̂ − τo

m

k2q4

r4

~̇r

v2
. (29)

Now, knowing that

~̇r = ṙr̂ + rθ̇θ̂, (30)

we obtain

m~̈r = −kq2

r2
r̂ − k2q4

c2mr3
r̂ − τo

m

k2q4

r4

(
ṙr̂ + rθ̇θ̂

)
(
ṙ2 + r2θ̇2

) . (31)

Therefore,

m
(
r̈ − rθ̇2

)
= −kq2

r2
− k2q4

c2mr3

− τo

m

k2q4

r4

(ṙ)(
ṙ2 + r2θ̇2

) ,

m
(
2ṙ θ̇ + rθ̈

)
= −τo

m

k2q4

r4

(
rθ̇

)
(
ṙ2 + r2θ̇2

) . (32)

These previous equations are very difficult to analytically
solve and a numerical method must be used to make a com-
parison with the modified Ford equation. When the veloc-
ity vanishes, the radiation reaction force diverges and the
equation of motion for this case may present some difficul-
ties. Accordingly, we will just analyze cases where the ve-
locity does not vanish. Figures (7) and (8) describe the so-
lution of the Hammond proposal for the attractive Coulomb
case without considering the precession correction due to the
term (k2q4/mc2r3). Figures (9) and (10) are the solution of
the modified Hammond proposal for the attractive Coulomb
case, Eq. (32).

FIGURE 7. In this figure, we showr vs θ by using the Hammond
proposal for a charge in an attractive Coulomb field without con-
sidering the relativistic correction.

FIGURE 8. The charge trajectory by using the Hammond proposal
for an attractive Coulomb field without considering the relativistic
correction.

5. Comparison Between Equations

The objective of this section consists of showing the differ-
ences between the Ford equation and the Hammond equation
in the case of an attractive Coulomb field by considering the
relativistic correction or not. Let us first consider the Ford
equation and the Hammond equation without the relativis-
tic case. At first glance, in Figs. (1), (2), (7) and (8), it is
not trivial to notice the differences. However, if we make a
superposition of Figs. (1) and (7), we can notice that a dif-
ference exists in Fig. (11). Indeed, a rapid analysis shows
that the Hammond orbit falls into the center of the attractive
Coulomb center slower than the Ford orbit.

On the other hand, looking at Fig. (12), which describes
the orbits predicted by Ford equation and Hammond equation
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FIGURE 9. In this figure, we showr vs θ by using the Hammond
proposal for a charge in an attractive Coulomb field considering the
relativistic correction (the modified Hammond equation).

FIGURE 10. The charge trajectory by using the Hammond proposal
for an attractive Coulomb field and by considering the relativistic
correction (the modified Hammond equation).

by using a superposition and by making a zoom, we can ob-
serve that as in the previous figure, the Hammond orbit falls
into the center slower but it can be noticed that the eccentric-
ity of the Hammond orbit decreases faster than the Ford orbit.
This means that Hammond predicts a falling to the center but
with a bigger tendency to convert into a circle with respect to
the Ford equation.

When we analyze the modified Ford orbit and the modi-
fied Hammond orbit we can look at Figs. (13) and (14). Al-
though in both orbits a precession appears, the differences
are similar to those obtained in the usual equations (not mod-
ified).

Notwithstanding some differences can be detected be-
tween the solutions of the equations the differences are negli-
gible. It has to be remembered that one of the purposes of this
paper was to demonstrate that the Hammond equation satis-
fies the Dirac constraint of obtaining an equation of motion

FIGURE 11. Superposition of Figs. (1) and (7); the blue and red
lines correspond to Ford and Hammond lines, respectively.

FIGURE 12. Superposition and zoom of Figs. (2) and (8); the blue
and red orbits correspond to the Ford and Hammond orbits, respec-
tively.

that should cause the electron in the hydrogen atom to spiral
inward and finally to fall into the nucleus.

Finally, if a comparison between the solutions of the mod-
ified Hammond and the modified Ford equations is made,
the similarities are obvious. Therefore, it can be concluded
that the Hammond proposal is a consistent model which can
be considered as an acceptable theory to describe the ra-
diation reaction force. The differences between the Ham-
mond equation with the Landau-Lifshitz and the Eliezer-
Ford-O’Connell equations are fundamentally two: the elec-
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FIGURE 13. Superposition of Figs. (3) and (9); the blue and red
lines correspond to the modified Ford and modified Hammond
lines, respectively.

FIGURE 14. Superposition and zoom Figs. (4) and (10); the blue
and red orbits correspond to the modified Ford and modified Ham-
mond orbits, respectively.

tric constant paradox in the Hammond proposal does not
appear since the radiation reaction force does not van-
ish [42-47]; for high intensity pulses, the gain of energy by a
charge is larger in the Hammond theory [46].

6. Concluding Remarks

Some concluding remarks will be presented:
i) It was demonstrated that the obtained orbits from

the Hammond equations with or without relativistic correc-

tion fall into the center of the attractive Coulomb field (see
Figs. (8) and (10)). Then, the objective of the present work
was achieved.

ii) In the solution of the modified Hammond equation
a precession is observed in the decaying orbit as in the so-
lution of the modified Ford equation. Although there is a
slight difference between the results obtained from Ford and
Hammond equations since in the case of Hammond the de-
cay is slightly smaller and the eccentricity of the orbits tends
more rapidly to zero, the differences are negligible. More-
over, Quantum mechanics is predominant for energies that
generate orbits and the above study may loss sense [28]. In
fact, we are only analyzing the feasibility of Hammond the-
ory.

iii) In fact, the differences between the equations can
be detected in very special physical conditions. Actually,
Di Piazzaet al [50] described the experiments that have
been performed to explore the classical regime concerning
the interaction of free electrons with intense laser beams.
Hammond has also proposed an experiment [46] which in-
cludes the use of recently reached ultrahigh laser intensities
(1022 Wcm−2 [51]), in order to distinguish the differences
between the predicted results by the Landau-Lifshitz equa-
tion, by the Eliezer-Ford-O’Connell equation and by his own
proposal. In fact in the case of an applied electromagnetic
pulse, unlike the others equations, the solution of the Ham-
mond equation gives a gain of kinetic energy. In the seventies
of the past century, Shen [28] described a zone in a diagram
fields vs energy, where quantum effects are negligible for a
constant magnetic field. For an electric field, following Shen,
the classical radiation theory is an adequate approximation of
the quantum radiation theory when

γτo
e

mc
Eo ¿ 1. (33)

If laser intensityI is around of1022 Wcm−2, the correspond-
ing average electric energy is

Eo =

√
8πI/c

w
' 1.5× 108 statvolt cm−1 (34)

Consequently, the kinetic energy of the electrons must be
such that

γ ¿ 108. (35)

It can be accomplished for relativistic velocities but not for
the ultrarelativistic case. The Hammond experiment must be
constrained to Eq. (35).

iv) Other experiments have been proposed, for instance,
the influence of radiation reaction can be analyzed on multi-
photon Thomson scattering by an electron colliding head-on
with a strong laser beam [52]. Di Pizza et al [52] affirmed
“Radiation Reaction can be experimentally investigated with
currently available laser systems and the underlying widely
discussed theoretical equations become testable for the first
time”. Although this experiment was designed to test the
validity of Landau-Lifshitz equation, it can be improved to
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compare the results with the Hammond equation. The Ham-
mond equation could be analyzed in other experiments as the
ones proposed by Harveyet al [53] (phase factor), by Zid-
hov [54] et al (the radiation reaction damping may restrain
the maximal energy of relativistic electrons in ultraintense-
laser-produced plasmas), by Tamburiniet al [55] (on radia-
tion pressure acceleration of plasma slabs) or by Schlegeet
al [56] (Laser ponderomotive force at superhigh intensities,
overdense plasmas).

v) In Plasma Physics by linearizing the relativistic Vlasov
equation and including the Landau-Lifshitz radiation reac-
tion force, Hakim and Mangeney [57] succeeded in obtain-
ing the dispersion relations which include terms proportional
to τo. A strong damping for high frequencies (τow

2/2) ap-
pears. Such damping effect can be compared with the one
obtained by taking into account the Hammond equation in
the relativistic Vlasov equation.

vi) In General Relativity, a consistent theory where the
work done by the self-force matches the energy radiated away
by the particle implies the existence of a tail term which in-
cludes all the history of the particle [38,23]. A General Rela-
tivity theory of the motion of the charges within the philoso-
phy of Hammond has not been achieved and it represents an
important goal to be attained in order to close the Hammond
proposal. Moreover, a low energy model has been developed
by DeWitt and DeWitt [58] which can be used as a model for
generating a Hammond equation in General Relativity at low
energies.

Acknowledgments

This work was partially supported by C.O.F.A.A and E.D.I.,
I.P.N, and CONACYT.

1. H.A. Lorentz, Arch. Néerl. 25 (1892) 363; reprinted in Col-
lected Papers (Martinus Nijhoff, The Hague, 1936), Vol. II, pp.
64-343.

2. H.A. Lorentz,The Theory of Electrons(B.G. Teubner, Leipzig,
1906); reprinted by (Dover Publications, New York, 1952 and
Cosimo, New York, 2007).

3. M. Planck,Verh. Dtsch. Phys. Ges., Berlin2 (1900) 202.

4. M. Planck,Verh. Dtsch. Phys. Ges., Berlin2 (1900) 237.

5. M. Planck,The Theory of Heat Radiation 2nd. Ed.(Dover Pub-
lications Inc., New York,1956).

6. M. Abraham,Theorie der Elektriziẗat (Teubner, Leipzig, 1905).
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