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In this article, the exact-special solutions of the nonlinear dispersion Drinfel’d-Sokolov (shortlyD(m, n)) system are analyzed. We use the
ansatz approach and the He’s variational principle for the mentioned equation. The general formulae for the compactons, solitary patterns,
solitons and periodic solutions are acquired. These types of solutions are useful and attractive for clarifying some types of nonlinear physical
phenomena. These two methods will be used to carry out the integration.
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1. Introduction

Nonlinear partial differential equations (NPDE) have been
analyzed by different type of mathematical approach, among
which include the Darboux transformation, the inverse scat-
tering method, the Hirota method, the Backlund transfor-
mation, the tanh method, the sine-cosine method, the exp-
function method, the variational iteration method, the ho-
mogenous balance method and among others [1-41].

In this article, theD(m,n) system [1] are considered:

ut + (νm)x = 0,

νt + a(νn)xxx + buxν + cuνx = 0. (1)

For m = 2 and n = 1, the system (1) is called “The
normal Drinfel’d-Sokolov system”

ut + (ν2)x = 0,

νt + aνxxx + buxν + cuνx = 0, (2)

wherea, b, c are unchanged. The system (2) is considered
as an example of a system of nonlinear equations possessing
Lax pairs of a special form [13]. Wang obtained its Hamil-
tonian, recursion, symplectric and cosymplectric operators
and roots of its symmetries and scaling symmetry of the sys-
tem (2) [14].

For n = 1 the system (1) changes to “The generalized
Drinfel’d-Sokolov system” as:

ut + (νm)x = 0,

νt + aνxxx + buxν + cuνx = 0. (3)

Wazwaz obtained some exact traveling wave solutions of
theD(m,n) system with compact and noncompact structures
by applying the tanh method and the sine-cosine method [15].

We firstly apply the ansatz method [16-20] to obtain the
exact special solutions to theD(m,n) system. Then, we use
the He’s variational approach [21] to obtain unknown travel-
ing wave solution to the subsidiaries of theD(m,n) system.
We give a comparison between the obtained solutions and
those exist in the literature.

2. Ansatz method

We start by considering the solution of the equation

(
dw

dz

)2

= a0 − b0w
2, (4)

wherea0 6= 0 and b0 6= 0 are constants. Whenb0 > 0,
Eq. (4) admits two solutions as:

w1 = ±
√

a0

b0
sin[

√
b0(z + A)],

w2 = ±
√

a0

b0
cos[

√
b0(z + A)], (5)

whereA is an arbitrary unchanged. Ifb0 < 0, recognizing
that cosh2 z + sinh2 z = 1 we know that Eq. (4) has two
solutions of the form as:

w1 = ±
√

a0

b0
sinh[

√
b0(z + A)],

w2 = ±i

√
a0

b0
cosh[

√
b0(z + A)], i2 = −1. (6)
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Secondly, we make a consideration of the solutions of the
equation of the form

(
dw

dz

)2

= w2(c0 + d0w
2) (7)

wherec0 6= 0 andd0 6= 0 are constants. Ifc0 < 0, Eq. (7)
confesses two solutions

w5 = ±
√

c0

d0
sec[

√−c0(z)],

w6 = ±
√

a0

b0
csc[

√−c0(z)]. (8)

If c0 > 0 in Eq. (7), then the equation offers two solutions of
the form

w7 = ±
√

c0

d0
sech[

√−c0(z)],

w6 = ±i

√
a0

b0
csch[

√−c0(z)]. (9)

2.1. Nonlinear DispersionD(m,n) System

We assume that the traveling wave solution has the form
u(x, t) = u(ξ) with wave variableξ = k(x−λt), (k, λ 6= 0).
Then, we get the following ordinary differential equation:

−kλu′ + k(νm)′ = 0, (10)

−kλν′ + ak3(νn)′′′ + bku′ν + ckuν′ = 0. (11)

We get

u =
1
λ

νm + c1, (12)

by (11), wherec1 is arbitrary constant. Substituting (12) into
(11) we obtain

− λν′ + ak2(νn)m + b
(m

λ
νm−1ν′

)
ν

+ c

(
1
λ

νm + c1

)
ν′ = 0. (13)

By integrating Eq. (13), we get

(cc1 − λ)ν + ak2(νn)′′ +
bm + c

λ(m + 1)
νm+1 = c2. (14)

wherec2 is integration constant.
Case 1. Whenc = −bm = λ/c1, the nonlinear ODE (14)
becomes

ak2(νn)′′ − c2 = 0. (15)

Therefore, we get the rational solution of Eq. (15),

ν(x, t) =
{ c2

2ak2
(x− λt)2 + c3(x− λt) + c4

} 1
n

, (16)

and

u(x, t)=
1
λ

{ c2

2ak2
(x−λt)2+c3(x−λt)+c4

}m
n

+c1, (17)

wherec3 andc4 are arbitrary constants.
Case 2. If we takem = n− 1 andc = λ/c1 in Eq. (14), the
following traveling wave solutions are obtained

(νn)′′ = − bm + c

ak2λ(m + 1)
νn +

c2

ak2
.

ν(x, t) =

{
c2λ(m + 1)

bm + c

+ c5 sin

(
1
k

√
bm + c

aλ(m + 1)
(x− λt)

)

+ c6 cos

(
1
k

√
bm + c

aλ(m + 1)
(x− λt)

)} 1
n

(18)

and

u(x, t) =
1
λ

{
c2λ(m + 1)

bm + c

+ c5 sin

(
1
k

√
bm + c

aλ(m + 1)
(x− λt)

)

+ c6 cos

(
1
k

√
bm + c

aλ(m + 1)
(x− λt)

)}m
n

+ c1

(19)

wherec5 andc6 arbitrary constants. In view of (18) and (19),
we clearly see that these solutions exist provided that
(bm + c)/(aλ(m + 1)) > 0.

ν(x, t) =

{
− c2λ(m + 1)

bm + c

+ c7 sinh

(
1
k

√
− bm + c

aλ(m + 1)
(x− λt)

)

+ c8 cosh

(
1
k

√
− bm + c

aλ(m + 1)
(x− λt)

)} 1
n

(20)

and

u(x, t) =
1
λ

{
− c2λ(m + 1)

bm + c

+c7 sin

(
1
k

√
bm + c

aλ(m + 1)
(x− λt)

)

+c8 cosh

(
1
k

√
− bm + c

aλ(m + 1)
(x− λt)

)}m
n

+c1 (21)
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wherec7 andc8 arbitrary constants. In view of (20) and (21),
we clearly see that these solutions exist provided that
(bm + c)/(aλ(m + 1)) < 0.
Case 3.c + bm 6= 0, cc1 − λ 6= 0 and speciallyc2 = 0.

Let

dνn

dξ
= z,

d2νn

dξ2
= z

dz

dνn
. (22)

Substituting (22) into (14) leads to the following equation

ak2

(
nν

n−3
2

dν

dξ

)2

=
−2n(cc1 − λ)

n + 1

− 2n(bm + c)
λ(m + 1)(m + n + 1)

νm. (23)

Lettingν = w2/m, we have

ν = w
2
m ⇒ dv =

2
m

w
2
m−1dw, (24)

which changes Eq. (23) to

4ak2n2

m2

(
w

(n−m−1)
m

dw

dξ

)2

=
−2n(cc1 − λ)

n + 1

− 2n(bm + c)
λ(m + 1)(m + n + 1)

w2. (25)

If we taken = 2m + 1 in Eq. (25), we get the algebraic
traveling wave solution of the form:

ν(ξ) =
[

1
B

(A−B2ξ2 − 2B2ξC −B2C2)
] 1

m

, (26)

and

u(ξ) =
1

λB
(A−B2ξ2 − 2B2ξC −B2C2) + c1, (27)

where

A =
−(cc1 − λ)m2

4ak2(m + 1)(2m + 1)
and

B =
m2(bm + c)

2ak2λ(m + 1)(3m + 2)(2m + 1)
.

Case 4.If m = n− 1, we know that Eq. (25) becomes

(
dw

dξ

)2

=
(n− 1)2

4ak2n2

×
[
−2n(cc1 − λ)

n + 1
− 2(b(n− 1) + c)

λn2
w2

]
, (28)

wheren 6= 1 anda, k, n, λ 6= 0.
If we takeanλ(c + bn − b) > 0, then we acquire from

Eqs. (5) and (28)

ν(x, t) =

{
2n2λ(λ− cc1)

(n + 1)(bn− b + c)
sin2

×
[

n− 1
2 | kn |

√
bn− b + c

λan
(ξ + A)

]} 1
n−1

,

u(x, t) =
2n2(λ− cc1)

(n + 1)(bn− b + c)
sin2

×
[

n− 1
2 | kn |

√
bn− b + c

λan
(ξ + A)

]
+ c1, (29)

and

ν(x, t) =

{
2n2λ(λ− cc1)

(n + 1)(bn− b + c)
cos2

×
[

n− 1
2 | kn |

√
bn− b + c

λan
(ξ + A)

]} 1
n−1

,

u(x, t) =
2n2(λ− cc1)

(n + 1)(bn− b + c)
cos2

×
[

n− 1
2 | kn |

√
bn− b + c

λan
(ξ + A)

]
+ c1. (30)

Theorem 1. TheD(m,n) system has solutions in Eq. (28)
described as follows:

1. Whenanλ(c + bn− b) > 0,

ν =





{
2n2λ(λ− cc1)

(n + 1)(bn− n + c)
cos2

[
n− 1

2 | kn |

√
bn− b + c

λan
(ξ + A)

]} 1
n−1

, | √b0(ξ) |≤ π
2 ,

0, Otherwise

(31)

is a solitary wave solution with compact support.
2. Whenanλ(c + bn− b) > 0,

ν =





{
2n2λ(λ− cc1)

(n + 1)(bn− n + c)
cos2

[
n− 1

2 | kn |

√
bn− b + c

λan
(ξ + A)

]} 1
n−1

, 0 ≤| √b0(ξ) |≤ π,

0, Otherwise

(32)
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is a compacton solution for Eq. (1) and

√
b0 =

n− 1
2 | kn |

√
bn− b + c

λan
.

3. Equation (25) can be written as following

(
dw

dξ

)2

= (w2)
m−n+1

m

{
−2m2(cc1 − λ)
4ak2n(n + 1)

− 2m2(bm + c)
4ak2nλ(m + 1)(m + n + 1)

w2

}
. (33)

If n = 1 in Eq. (33) that yields as

(
dw

dξ

)2

= (w2)

{
−m2(cc1 − λ)

4ak2

+
−m2(bm + c)

2ak2λ(m + 1)(m + 2)
w2

}
. (34)

Whena(cc1 − λ) < 0,

ν(x, t) =

(
− 2(bm + c)

λ(cc1 − λ)(m + 1)(m + 2)
csch2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

])− 1
m

,

u(x, t) = − 2(bm + c)
λ2(cc1 − λ)(m + 1)(m + 2)

csch−2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]
+ c1, (35)

which is a singular soliton solution for theD(m,n) equation
for

0 < ξ <
πm

2k

√
(cc1 − λ)

a

4. Whena(cc1 − λ) > 0 andm < 0,

ν(x, t) =

{
− 2(bm + c)

λ(cc1 − λ)(m + 1)(m + 2)
sec2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]}− 1
m

,

u(x, t) = − 2(bm + c)
λ2(cc1 − λ)(m + 1)(m + 2)

sec−2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]
+ c1, (36)

is a traveling wave solution for theD(m,n) equation for

ξ <
πm

4k

√
(cc1 − λ)

a
.

Remark 1. If (bn− b− c)/(λan) < 0, it follows
from (6) and (28) that

ν(x, t) =

{
− 2n2λ(λ− cc1)

(n + 1)(bn− b + c)
sinh2

×
[

n− 1
2 | nk |

√
−bn− b + c

λan
(ξ + A)

]} 1
n−1

,

u(x, t) = − 2n2(λ− cc1)
(n + 1)(bn− b + c)

sinh2

×
[

n− 1
2 | nk |

√
−bn− b + c

λan
(ξ + A)

]
+ c1, (37)

and

ν(x, t) =

{
2n2λ(λ− cc1)

(n + 1)(bn− b + c)
cosh2

×
[

n− 1
2 | nk |

√
−bn− b + c

λan
(ξ + A)

]} 1
n−1

,

u(x, t) =
2n2(λ− cc1)

(n + 1)(bn− b + c)
cosh2

×
[

n− 1
2 | nk |

√
−bn− b + c

λan
(ξ + A)

]
+ c1, (38)

Theorem 2. TheD(m,n) equation with whenm = n equa-
tion has the following solutions:

1. When(c+bn−b) < 0, anλ > 0, (λ−cc1)(n+1) < 0
andn 6= 1

ν(x, t) =

{
− 2n2λ(λ− cc1)

(n + 1)(bn− b + c)
sinh2

×
[

n− 1
2 | nk |

√
−bn− b + c

λan
(ξ + A)

]} 1
n−1

,

u(x, t) = − 2n2(λ− cc1)
(n + 1)(bn− b + c)

sinh2

×
[

n− 1
2 | nk |

√
−bn− b + c

λan
(ξ + A)

]
+ c1, (39)

is a solitary solution of Eq. (1).

2. When(c+bn−b) < 0, anλ < 0, (λ−cc1)(n+1) > 0
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andn 6= 1

ν(x, t) =

{
2n2λ(λ− cc1)

(n + 1)(bn− b + c)
cosh2

×
[

n− 1
2 | nk |

√
−bn− b + c

λan
(ξ + A)

]} 1
n−1

,

u(x, t) =
2n2(λ− cc1)

(n + 1)(bn− b + c)
cosh2

×
[

n− 1
2 | nk |

√
−bn− b + c

λan
(ξ + A)

]
+ c1, (40)

is a solitary solution of Eq. (1). If we taken < 1, then
Eq. (40) is a bounded solution.

3. m = n < 1 solutions (39) and (40) turns to solitary
wave solutions

ν(x, t) =

{
(n + 1)(bn− b + c)

2n2λ(λ− cc1)
csc2

×
[

n− 1
2 | nk |

√
−bn− b + c

λan
(ξ)

]} 1
n−1

,

u(x, t) =
(n + 1)(bn− b + c)

2n2(λ− cc1)
csc2

×
[

n− 1
2 | nk |

√
−bn− b + c

λan
(ξ)

]
+ c1, (41)

and

ν(x, t) =

{
(n + 1)(bn− b + c)

2n2λ(λ− cc1)
sec2

×
[

n− 1
2 | nk |

√
−bn− b + c

λan
(ξ)

]} 1
n−1

,

u(x, t) =
(n + 1)(bn− b + c)

2n2(λ− cc1)
sec2

×
[

n− 1
2 | nk |

√
−bn− b + c

λan
(ξ)

]
+ c1. (42)

Case 5.a(cc1 − λ) > 0 andm > 0

Thus, by using (8) and (34), the periodic solutions of

Eq. (1) are obtained as:

ν(x, t) =

{
− λ(m + 1)(m + 2)(cc1 − λ)

bm + c
csc2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]} 1
m

,

u(x, t) = − (m + 1)(m + 2)(cc1 − λ)
bm + c

csc2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]
+ c1. (43)

and

ν(x, t) =

{
− λ(m + 1)(m + 2)(cc1 − λ)

bm + c
sec2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]} 1
m

,

u(x, t) = − (m + 1)(m + 2)(cc1 − λ)
bm + c

sec2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]
+ c1. (44)

Case 6.a(cc1 − λ) < 0 andm > 0
Therefore, by considering (9) and (34), solitary pattern

and bell-shaped solitary wave solutions of (1) are obtained
as:

ν(x, t) =

{
− λ(m + 1)(m + 2)(cc1 − λ)

bm + c
cosh2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]} 1
m

,

u(x, t) = − (m + 1)(m + 2)(cc1 − λ)
bm + c

cosh2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]
+ c1. (45)

and

ν(x, t) =

{
− λ(m + 1)(m + 2)(cc1 − λ)

bm + c
sech2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]} 1
m

,

u(x, t) = − (m + 1)(m + 2)(cc1 − λ)
bm + c

sech2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]
+ c1, (46)
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Case 7.a(cc1 − λ) < 0, m < 0 andm 6= 0.
Using the solutions of (43) and (44), gives the following

compacton solutions as:

ν(x, t) =

{
− bm + c

λ(m + 1)(m + 2)(cc1 − λ)
cos2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]}− 1
m

,

u(x, t) =
bm + c

λ2(m + 1)(m + 2)(cc1 − λ)
cos−2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]
+ c1, (47)

for ∣∣∣∣
πm

2k

√
(cc1 − λ)

a

∣∣∣∣ ≤
π

2

andu = 0, otherwise.

ν(x, t) =

{
− λ(m + 1)(m + 2)(cc1 − λ)

bm + c
sin2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]} 1
m

,

u(x, t) =
(m + 1)(m + 2)(cc1 − λ)

bm + c
sin−2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]
+ c1, (48)

for

0 ≤
∣∣∣∣
πm

2k

√
(cc1 − λ)

a

∣∣∣∣ ≤ π

andu = 0, otherwise.
Case 8.a(cc1 − λ) > 0, m < 0 andm 6= 1.

Using cosh(x) = cos(ix) andsinh(x) = − sin(ix) we
have the following solitary pattern solutions of Eq. (1):

ν(x, t) =

{
− bm + c

λ(m + 1)(m + 2)(cc1 − λ)
cosh2

×
[

m

2 | k |

√
cc1 − λ)

a
(ξ)

]}− 1
m

,

u(x, t) =
bm + c

λ2(m + 1)(m + 2)(cc1 − λ)
cosh−2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]
+ c1, (49)

and

ν(x, t) =

{
− λ(m + 1)(m + 2)(cc1 − λ)

bm + c
sinh2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]} 1
m

,

u(x, t) =
(m + 1)(m + 2)(cc1 − λ)

bm + c
sinh2

×
[

m

2 | k |

√
cc1 − λ

a
(ξ)

]
+ c1, (50)

Remark 2. Whenm = n < 1, the obtained solution (42)
agrees with the outcomes (2.13a), (2.13b) in [36] and (25) in
[37]. The solution (42) changes to the compacton solution
(2.12a) and the periodic solution (2.12b) in [36,37].

If m > 0, the obtained solution (46) is consented with
the outcomes (3.18a) and (3.18b) described in [36] and (26)
in [37]. The solution (46) changes to the solitary pattern so-
lution (3.17a) and solitary wave solution (3.17b) in [36].

Remark 3. If a(cc1 − λ) < 0, the obtained solution (35)
agrees with the outcomes (3.9a) and (3.9b) in [36] and (32)
in [37]. The solution (35) changes to the singular solitary
wave solution.

Remark 4. If we take (c + bn − b) < 0, anλ > 0,
(λ− cc1)(n + 1) < 0 then the obtained solution (39) similar
to the solitary pattern solutions (3.7a) and (3.7b) in [36] and
(46) in [37].

3. Variational principle

In this Section, He’s variational principle will be applied to
the system (1). This technique was first proposed by He [21]
and it is popularly known as He’s semi-inverse variational
principle. Some years back, it was applied mainly to ex-
tract soliton solutions of nonlinear PDEs and systems by
many authors [16-24]. Biswas and co-workers [17-20] ob-
tained optical solitons and soliton solutions with higher or-
der dispersion by applying the He’s variational principle. Xu
and Zhang’s [25] used a variational principle to construct
catalytic reactions in short monoliths by He’s semi-inverse
approach. He’s variational method was used to the effec-
tive nonlinear oscillators with high nonlinearity by Liu [26].
Zhenget al. [27] established a class of generalized varia-
tional principles for the initial-boundary value problem of mi-
cromorphic magneto electrodynamics by He’s semi-inverse
technique. In order to seek traveling wave solutions of the
system (1). We consider

(cc1 − λ)ν + ak2(νn)′′ +
bm + c

λ(m + 1)
νm+1 = c2. (51)
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Let νn = V

J =

∞∫

∞

[
n(cc1 − λ)

n + 1
V

n+1
n − ak2

2
(V ′)2

+
n(bm + c)

λ(m + 1)(m + n + 1)
V

m+n+1
n

]
dξ, (52)

the 1-soliton solution ansatz, given by

V (ξ) = {p sech2(qξ)} 1
n , (53)

is substituted into (51). Here, in (53), the parametersp and
q represent the amplitude and inverse width of the soliton,
respectively.

J =

∞∫

−∞
{p1(p sech2[qξ] + 2p2pq2(−2 + cosh[2qξ])

× sech4[qξ] + p3(p sech2[qξ])(m+1)}dξ, (54)

wherep1 = cc1 − λ, p2 = ak2 and

p3 =
bm + c

λ(m + 1)
.

From the above equation it is obtained as

J =
8p

15q

{
2pq2(−cc1 + λ)− 1541+m(c + bm)p1+m

(1 + m)(2 + m)2λ

× F [2 + m, 2(2 + m), 3 + m,−1]

+
154nak2pn

(1 + n)2
F [1 + n, 2(1 + n), 2 + n,−1]

}
, (55)

whereF is Gauss’ hypergeometric function defined as

F [α, β, γ, z] =
Γ(γ)

Γ(α)Γ(β)

∞∑
n=0

Γ(α+n)Γ(β+n)
Γ(γ+n)

zn

n!
(56)

and Re[(2 + m)q] > 0, Re[(1 + n)q] > 0, Re[q] > 0.
MakingJ stationary with respect top andq results in

dJ

dp
= − 8

15qλ(1 + m)(2 + m)(1 + n)
154(l+m)

× (c + bm)(1 + n)p(l+m)

× F [2 + m, 2(2 + m), 3 + m,−1]

+ λ(2 + 3m + m2)(4(1 + n)pq2(cc1 − λ)

−154nak2pnF [1+n, 2(1+n), 2+n,−1]) = 0, (57)

dJ

dp
= − 8

15
p

{
2p(−cc1 + λ) +

154l+m(c + bm)pl+m

(1 + m)(2 + m)2q2λ

× F [2 + m, 2(2 + m), 3 + m,−1]

−154nak2pn

(1+n)2q2
F [1+n, 2(1+n), 2+n,−1]

}
= 0. (58)

Solving Eqs. (57) and (58) form = n = 2 simultane-
ously, we get

p =
35ak2λ

9(2b + c)
, q =

k

3

√
ap

λ− cc1
, (59)

Therefore, by substitutingp and q in (52) we have the
following a new solitary wave solution for the system (1) as:

ν(x, t) =

{
35ak2λ

9(2b + c)
sech2

×
(

k

3

√
ap

λ− cc1
[k(x− λt)]

)} 1
n

,

u(x, t) =
35ak2λ

9(2b + c)
sech−2

×
(

k

3

√
ap

λ− cc1
[k(x− λt)]

)
+ c1. (60)

So, the solitary wave solution (60) will exist for
ap(λ− cc1) > 0.

4. Results and Discussions

In this article, we investigated the nonlinear dispersion
D(m,n) system and obtained some traveling wave solutions
by applying the ansatz technique and the He’s variational
principle. Several forms of solutions including topological,
non-topological, compacton, solitary pattern, singular soli-
ton, algebraic and periodic wave solutions were acquired.
The approaches can be used to a lot of other nonlinear dif-
ferential equations and coupled systems. Some new obtained
exact solutions were previously unknown by other methods.
We proved the existence of these solutions for a generalized
form of the D(m,n) system under specific conditions. In
general, the outcome expose that the ansatz approach and the
He’s variational principle are important mathematical tech-
niques for solving nonlinear partial differential equations in
terms of correctness and ability to avoid errors.
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plic. 61 (2011) 2201.

27. X.W. Zhou and L. Wang,Comp. Math. Applic.61 (2011) 2035.

28. A. Biswas and C.M. Khalique,Nonlinear Dyn.63 (2011) 623.

29. S. Lai, Y. Wu, and Y. Zhou,Comput. Math. Applic.56 (2008)
339.

30. S. Lai and Y. Wu Math,Comput. Model.47 (2008) 1089.

31. S. Lai, Y. Wu and B. Wiwatanapataphee,J. Comp. Appl. Math.
212(2008) 291.

32. S. Lai,Comp. Appl. Math. 231(2009) 311.

33. J.H. He,Abstract and Applied AnalysisID: 916793: (2012) p.p.
130.

34. J. Biazar and Z. Ayati J. KingSaud Unv. Sci.24 (2012)315.

35. F.D. Xie and Z.Y. Yan Chaos,Solitons and Fractals39 (2009)
866.

36. X.J. Deng, J.L. Cao and X. Li Commun,Nonlinear Sci. Numer.
Simulat.215(2010) 281.

37. S.A. El-Wakil and M.A. Abdou Chaos,Solitons Fractals31
(2005) 1256.

38. J.H. He,Applied Mathematics Letters52 (2016) 1.

39. J.H. He,Applied Mathematics Letters64 (2017) 94.

40. J.H. He,Applied Mathematics Letters72 (2017) 65.

Rev. Mex. Fis.63 (2017) 378-385


