
RESEARCH Revista Mexicana de Fı́sica63 (2017) 351-355 JULY-AUGUST 2017

Effect of the variational symmetries of the lagrangian on the
propagator and associated conserved operators
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Making use of the expression for the propagator in terms of path integrals, we study the effect of certain variational symmetries of a
Lagrangian on the corresponding propagator. We also show that by considering a point transformation that relates two different Lagrangians
one can obtain a relation between the corresponding propagators.
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Haciendo uso de la expresión para el propagador en términos de integrales de trayectoria, estudiamos el efecto de ciertas simetrı́as varia-
cionales de una lagrangiana sobre el propagador correspondiente. Mostramos también que, considerando una transformación puntual que
relaciona dos lagrangianas diferentes, se puede obtener una relación entre los propagadores correspondientes.
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1. Introduction

In (classical) analytical mechanics, certain families of trans-
formations are related with conserved quantities. In the La-
grangian formulation, each one-parameter family of varia-
tional symmetries of the Lagrangian leads to a constant of
motion (see,e.g., Ref. [1] and the references cited therein),
while in the Hamiltonian formulation, each one-parameter
family of canonical transformations that leave the Hamilto-
nian invariant is associated with a constant of motion. This
last result has an analog in quantum mechanics, where each
one-parameter family of unitary operators that leave invariant
the Hamiltonian operator leads to a conserved operator [2].
This analogy might be expected owing to the close relation-
ship between the Hamiltonian formulation of classical me-
chanics and the standard formalism of the non-relativistic
quantum mechanics.

However, the quantum dynamics can be also related di-
rectly with the Lagrangian formalism through the expression
for the time evolution operator (propagator) in terms of path
integrals (see,e.g., Refs. [3–6]).

For example, in the case of a quantum system formed by
a spin-0 particle in the three-dimensional space, the propaga-
tor, K(r1, t1; r0, t0), which is the wavefunction at the point
r1, at timet1, if the particle was localized atr0, at timet0, is
related to the time evolution operator,U(t1, t0), by means of

K(r1, t1; r0, t0) = 〈r1|U(t1, t0)|r0〉 (1)

and, as is well known, Feynman’s rule allows us to find the
propagator through

K(r1, t1; r0, t0) =

(r1,t1)∫

(r0,t0)

D{r(t)}

× exp
i
~

t1∫

t0

L(r, ṙ, t)dt, (2)

whereL(r, ṙ, t) is the Lagrangian of the classical system (we
do not need to be more specific about this expression, be-
cause in the rest of this paper we will not use it for explicit
calculations). This relation suggests that the symmetries of
the Lagrangian determine symmetries of the propagator and,
therefore, that the variational symmetries of the Lagrangian
must determine some conserved operators of the quantized
system. One of the aims of this paper is to study such con-
nections.

In quantum mechanics, the symmetries and the conserved
quantities are usually defined making use of the Hamiltonian
operator: A unitary operator,T (which may depend on the
time and on one or several parameters), is a symmetry (of the
quantum system, or of the Hamiltonian) if

T−1HT − i~T−1 ∂T

∂t
= H, (3)

and a Hermitian operator,A (which may depend explicitly
on the time, in spite of the fact that we are making use of the
Schr̈odinger picture), is conserved if

i~
∂A

∂t
+ [A,H] = 0. (4)
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Making use of these definitions one can prove that ifA is
conserved then the unitary operatorsTs ≡ exp(−isA/~), for
s ∈ R, form a one-parameter group of symmetries ofH and,
conversely, if the unitary operatorsTs form a one-parameter
family of symmetries ofH then, assuming thatT0 is the iden-
tity operator,A ≡ i~ ∂Ts/∂s|s=0 is conserved [2]. (It may
be noticed that ifT satisfies (3), then it also satisfies (4); the
essential difference between Eqs. (3) and (4) is that in the first
case the operatorT must have an inverse.)

In this paper we show that Feynman’s formula (2) allows
us to determine the effect of certain variational symmetries of
L on the propagator, which, in turn, allows us to find the cor-
responding conserved operators. In Sec. 2, we characterize
the symmetries and the conserved operators employing the
time evolution operator. In Sec. 3, we relate variational sym-
metries of the Lagrangian with conserved operators by means
of the Feynman integral. In Sec. 4 we show that when two
different Lagrangians are related by means of an appropri-
ate point transformation, one can readily find one propagator
in terms of the other. Throughout the paper we give several
examples.

2. Symmetries and conserved operators in
terms of the evolution operator

Taking into account what is meant by a symmetry operator,
T , of a quantum system, which can depend explicitly on the
time, we could take as the definition of such an operator the
condition

T (t1)U(t1, t0) = U(t1, t0)T (t0), (5)

for all values oft0 andt1 (roughly speaking, ifT is a sym-
metry operator, then one should get the same result by ap-
plying T at some initial time and then allowing the system to
evolve, or letting first the system to evolve and then applying
the transformationT ). In fact, we can readily demonstrate
that Eq. (5) is equivalent to Eq. (3): Differentiating both sides
of (5) with respect tot1 and evaluating these derivatives at
t0 = t1, we obtain
[
∂T (t1)

∂t1
U(t1, t0) + T (t1)

∂U(t1, t0)
∂t1

]

t0=t1

=
[
∂U(t1, t0)

∂t1
T (t0)

]

t0=t1

.

Making use of the fact that the time evolution operator must
satisfy

i~
∂U(t1, t0)

∂t1
= H(t1)U(t1, t0),

and thatU(t1, t1) is the identity operator, we obtain (3).
In a similar manner one verifies that Eq. (4) is equivalent

to the condition

A(t1)U(t1, t0) = U(t1, t0)A(t0), (6)

for all values oft0 andt1. With the aid of Eqs. (5) and (6), the
relationship between conserved operators and symmetries of
a quantum system, mentioned in the Introduction, is clearly
visible.

Since the propagator is given by the matrix elements of
the time evolution operator in the basis formed by the eigen-
states of the position operator, Eqs. (5) and (6) can be written
in terms of the propagator which, in turn, is related to the La-
grangian of the corresponding classical system by means of
the path integral (2).

3. Effect of the variational symmetries of the
Lagrangian on the propagator

In this section we begin by recalling some basic facts about
the variational symmetries of a Lagrangian. As we shall
show, certain one-parameter families of variational symme-
tries ofL correspond to symmetries of the propagator.

By definition, a variational symmetry of a Lagrangian,
L(qi, q̇i, t), is a coordinate transformationq′i = q′i(qj , t),
t′ = t′(qj , t), such that

L(q′i, q̇
′
i, t

′)
dt′

dt
= L(qi, q̇i, t) +

d
dt

F (qi, t), (7)

whereq̇′i ≡ dq′i/dt′ andF (qi, t) is some real-valued function
of qi andt, only. There exists a constant of motion associated
with each one-parameter family of variational symmetries of
L, q′i = q′i(qj , t, s), t′ = t′(qj , t, s), wheres is a real param-
eter that takes values in some neighborhood of zero, given
by

n∑

i=1

∂L

∂q̇i
ηi + ξ

(
L−

n∑

i=1

∂L

∂q̇i
q̇i

)
−G, (8)

where

ηi(qj , t) ≡ ∂q′i
∂s

∣∣∣∣
s=0

, ξ(qj , t) ≡ ∂t′

∂s

∣∣∣∣
s=0

, (9)

are the components of the so-called infinitesimal generator of
the symmetry transformations, andG(qi, t) ≡ ∂F/∂s|s=0.
(We are assuming that fors = 0, q′i(qj , t, s) andt′(qj , t, s)
reduce toqi andt, respectively.) For a given Lagrangian, the
functionsηi, ξ, andG, are determined by

n∑

i=1

[
∂L

∂qi
ηi +

∂L

∂q̇i

(
dηi

dt
− q̇i

dξ

dt

)]

+
∂L

∂t
ξ + L

dξ

dt
=

dG

dt
(10)

(see,e.g., Ref. [1] and the references cited therein).
Taking into account that the “path differential measure,”

D{r(t)}, comes from integration on the coordinates and a
factor that depends on the time interval, we restrict ourselves
to coordinate transformations with Jacobian equal to 1 and
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dt′/dt = 1, so that the measure is invariant. Then, by com-
bining Eqs. (2) and (7) we find that, under a variational sym-
metry of the Lagrangian satisfying these conditions, the prop-
agator transforms according to

K(r′1, t
′
1; r

′
0, t

′
0) = K(r1, t1; r0, t0) ei[F (r1,t1)−F (r0,t0)]/~.

Equivalently, in terms of the evolution operator,

〈r′1|U(t′1, t
′
0)|r′0〉 = 〈r1|eiF (r,t1)/~

× U(t1, t0)e−iF (r,t0)/~|r0〉, (11)

wherer is the positionoperator. Expressing|r′0〉 and|r′1〉 in
terms of|r0〉 and|r1〉, respectively, one obtains a relation of
the form (5), which allows us to identify a symmetry opera-
tor associated with the variational symmetry ofL. (Note that
this is true for discrete or continuous transformations.)

3.1. Examples

As a first simple example, we consider a particle of massm in
a uniform gravitational field, in one dimension. The standard
Lagrangian is

L(x, ẋ, t) =
m

2
ẋ2 −mgx (12)

(in the case of a uniform electric field,E, we replacemg
by−eE, wheree is the electric charge of the particle). This
Lagrangian possesses a five-dimensional group of variational
symmetries [1]. One subgroup of these variational symme-
tries are the Galilean transformations

x′ = x− V t, t′ = t, (13)

whereV is a real parameter that takes the place of the param-
eters employed above. In fact, a straightforward computa-
tion shows that

L(x′, ẋ′, t′) =
m

2
(ẋ− V )2 −mg(x− V t) = L(x, ẋ, t)

+
d
dt

(
−mV x +

mV 2t

2
+

mgV t2

2

)
,

which allows us to identify the functionF (x, t) appearing in
Eq. (7). Thus, in this case, Eq. (11) takes the form

〈x1 − V t1|U(t1, t0)|x0 − V t0〉
= 〈x1|eiF (x,t1)/~U(t1, t0)e−iF (x,t0)/~|x0〉, (14)

with

F (x, t) = −mV x +
1
2
mV 2t +

1
2
mgV t2.

Using the well-known fact that, for any real number,a,

|x0 + a〉 = e−iap/~|x0〉, (15)

wherep is the momentum operator, Eq. (14) can also be writ-
ten as

〈x1|e−iV t1p/~U(t1, t0)eiV t0p/~|x0〉
= 〈x1|eiF (x,t1)/~U(t1, t0)e−iF (x,t0)/~|x0〉,

where all the reference tox1 andx0 (which are two arbitrary
real numbers) now appears in the bra〈x1| and the ket|x0〉,
respectively. Hence, we have the relation betweenoperators

e−iV t1p/~U(t1, t0)eiV t0p/~

= eiF (x,t1)/~U(t1, t0)e−iF (x,t0)/~,

which amounts to

e−iF (x,t1)/~e−iV t1p/~U(t1, t0)

= U(t1, t0)e−iF (x,t0)/~e−iV t0p/~.

Comparing this last equation with Eq. (5) we conclude that
the operator

TV (t) ≡ exp
[

i
~

(
mV x− mV 2t

2
− mgV t2

2

)]

× exp
(
− i
~
V tp

)
(16)

is a symmetry of the system and, therefore, its infinitesimal
generator

A(t) ≡ i~
∂TV

∂V

∣∣∣∣
V =0

= −mx +
mgt2

2
+ tp,

is conserved (cf. Ref. [2]). Furthermore, since
TV = exp(−iV A/~), it follows that (16) must be equiv-
alent to

TV (t) = exp
[
− i
~

(
−mV x +

mgV t2

2
+ V tp

)]
.

Note that we did not have to know the explicit expression of
the propagator or of the evolution operator.

A second example, more involved than the previous one,
is given by the standard Lagrangian for a particle of massm
in a uniform gravitational field,

L =
m

2
(ẋ2 + ẏ2)−mgy.

As shown in Ref. [1], solving Eq. (10) one finds that a varia-
tional symmetry of this Lagrangian is given by the functions

ξ = 0, η1 = y + 1
2gt2, η2 = −x. (17)

The corresponding group of coordinate transformations is
found to be

x′ = x cos s + y sin s + 1
2gt2 sin s,

y′ = −x sin s + y cos s + 1
2gt2(cos s− 1), (18)

t′ = t.
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In fact, a straightforward computation shows that

L(x′, y′, ẋ′, ẏ′, t′) = L(x, y, ẋ, ẏ, t)

+
d
dt

mg
[
ty(1− cos s) + tx sin s + 1

2gt3(1− cos s)
]
,

which is of the form (7), with

F = mg
[
ty(1− cos s) + tx sin s + 1

2gt3(1− cos s)
]
.

The effect of the transformation (18) on the eigenstates of
the position operators is [cf. Eqs. (17)]

|r′〉 = exp
{− is[(y + 1

2gt2)px − xpy]/~
} |r〉

= exp
[
is(Lz − 1

2gt2px)/~
] |r〉,

wherer = (x, y) andLz is the angular momentum operator
xpy − ypx. Hence, from Eq. (11), we have

e−is(Lz− 1
2 gt1

2px)/~U(t1, t0)eis(Lz− 1
2 gt0

2px)/~

= eiF (x,y,t1)/~U(t1, t0)e−iF (x,y,t0)/~,

which implies that the operator

Ts = e−iF (x,y,t)/~ e−is(Lz− 1
2 gt2px)/~

is symmetry of the system [see Eq. (5)] and that

A = i~
∂Ts

∂s

∣∣∣∣
s=0

= Lz − 1
2gt2px + mgtx

is conserved. (It may be noticed that, forg = 0, the trans-
formations (18) become rotations in thexy-plane about the
origin and, in that case, the conserved operator,A, is just the
angular momentum, as one would expect.)

4. Point transformations that relate two differ-
ent Lagrangians

Apart from the coordinate transformations that leave invari-
ant a given Lagrangian, the coordinate transformations that
relate two different Lagrangians are also very useful. This
procedure has been applied previously to some specific ex-
amples: In Ref. [7] the effect of extended Galilean trans-
formations on the one-dimensional Schrödinger equation is
studied making use of path integrals and in Ref. [8], con-
sidering also Galilean transformations, the propagator for a
charged particle in a crossed uniform electromagnetic field is
obtained from that of a charged particle in a uniform mag-
netic field.

We shall consider coordinate transformations
q′i = q′i(qj , t), t′ = t′(qj , t), such that

L(1)(q′i, q̇
′
i, t

′)
dt′

dt
= L(2)(qi, q̇i, t) +

d
dt

F (qi, t), (19)

whereL(1) andL(2) are two Lagrangians with the same num-
ber of degrees of freedom andF (qi, t) is a function ofqi andt
only [cf. Eq. (7)]. For instance, the coordinate transformation

x′ = x + 1
2gt2, t′ = t, (20)

relates the Lagrangians

L(1)(x, ẋ, t) = 1
2mẋ2, L(2)(x, ẋ, t) = 1

2mẋ2 −mgx,

corresponding to a free particle and a particle in a uniform
gravitational field, respectively. Indeed,

L(1)(x′, ẋ′, t′)
dt′

dt
= 1

2m(ẋ + gt)2

= 1
2mẋ2 + mgtẋ + 1

2mg2t2

= 1
2mẋ2 −mgx

+
d
dt

(mgtx + 1
6mg2t3),

which is of the form (19), with F (x, t) = mgtx
+(1/6)mg2t3.

From Eq. (2) we find that, under a coordinate transfor-
mation with Jacobian equal to 1 anddt′/dt = 1, such that
Eq. (19) holds, the propagators are related by

K(1)(r′1, t
′
1; r

′
0, t

′
0) = K(2)(r1, t1; r0, t0)

× exp
i
~
[F (r1, t1)− F (r0, t0)], (21)

or, in terms of the evolution operators,

〈r′1|U (1)(t′1, t
′
0)|r′0〉

= 〈r1|eiF (r,t1)/~U (2)(t1, t0)e−iF (r,t0)/~|r0〉. (22)

4.1. Examples

As is well known, the propagator for a free particle in one
dimension is

K(1)(x1, t1;x0, t0) =
√

m

2πi~(t1 − t0)
exp

im(x1 − x0)2

2~(t1 − t0)
.

Hence, making use of Eqs. (21) and (20) we find that the
propagator for a particle in a uniform gravitational field must
be given by

K(2)(x1, t1; x0, t0) =
√

m

2πi~(t1 − t0)
exp

im(x′1 − x′0)
2

2~(t1 − t0)

× exp
i
~

(
mgt0x0 + 1

6mg2t0
3 −mgt1x1 − 1

6mg2t1
3
)

=
√

m

2πi~∆t
exp

im
2~∆t

[
(x1 − x0)2 − g(x1 + x0)(∆t)2

− 1
12g2(∆t)4

]
,

with ∆t ≡ t1 − t0.
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On the other hand, making use of Eqs. (15) and (20) in
(22) we obtain the relation between the evolution operators

eigt1
2p/2~U (1)(t1, t0)e−igt0

2p/2~

= eiF (x,t1)/~U (2)(t1, t0)e−iF (x,t0)/~,

which means that the operator

e−iF (x,t)/~ eigt2p/2~ = e−i(mgtx+
1
6mg2t3)/~ eigt2p/2~

maps solutions of the Schrödinger equation for a free particle
into solutions of the Schrödinger equation for a particle in a
uniform gravitational field (cf. Refs. [7, 9] and the references
cited therein).

Another well-known example corresponds to the La-
grangians

L(1)(x, y, ẋ, ẏ, t) =
m

2
(ẋ2 + ẏ2)− mω2

2
(x2 + y2),

of a two-dimensional isotropic harmonic oscillator, and

L(2)(x, y, ẋ, ẏ, t) =
m

2
(ẋ2 + ẏ2) +

eB0

2c
(xẏ − yẋ),

of a charged particle in a uniform magnetic field perpendicu-
lar to thexy-plane, provided thatB0 = 2mωc/e (or, equiva-
lently, ω = eB0/2mc). One readily verifies that the relation
(19) is satisfied with

x′ = x cos ωt− y sin ωt, y′ = x sin ωt + y cosωt,

t′ = t, and F = 0. Thus, we conclude that the opera-
tor T = exp(−iωtLz/~) maps solutions of the Schrödinger
equation for the two-dimensional harmonic oscillator into so-
lutions of the Schr̈odinger equation for a particle in a uniform
magnetic field.

5. Concluding remarks

Apart from the expression (2), the propagator can also be
written in terms of path integrals in the phase space (see,e.g.,
Refs. [10, 4]) and therefore one could also consider the effect
of canonical transformations on the propagator. The possi-
bility of using canonical coordinates is highly interesting, be-
cause one can relate (locally at least) any pair of systems with
the same number of degrees of freedom by means of a canon-
ical transformation.
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