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In this work, after reviewing the theory of the elastic properties of RBIO; , an extension suitable to explain the sound speed experiments

of Lupienet al. [2] and Clifford et al. [3] is carried out. It is found that the discontinuity in the elastic constaptdb/es unambiguous
experimental evidence that the ;BuO; superconducting order parametehas two components and shows a broken time-reversal sym-
metry state. A detailed study of the elastic behavior is performed by means of a phenomenological theory employing the Ginzburg-Landau
formalism.

Keywords: Elastic properties; unconventional superconductors; time reversal symmetry; Ginzburg-Landau theory; sound speed.

En este trabajo, luego de realizar una réuisile la tedia de las propiedadesasticas del compuesto sRuQ; , se presenta una extedsi

gue permite explicar los resultados de los experimentos, sobre la rapidez del sonido realizados por Lupien y colaboradores [2] y Clifford y
colaboradores [3]. Se muestra que la discontinuidad observada en la conétstita@s constituye una evidencia experimental directa de

que el paametro de orde® tiene dos componentes y rompe la sirfeette inversin temporal. Tamlgin se realiza un estudio detallado del
comportamiento élstico usando una tdarfenomendigica basada en el formalismo de Ginzburg-Landau.

Descriptores: Propiedades @ékticas; superconductores no convencionales; simeér inversdn temporal; teda de Ginzburg-Landau;
rapidez del sonido.

PACS: 74.20.De; 74.70.Rp; 74.70.Pq

1. Introduction plies that¥ has two different components with the time re-
versal symmetry broken. Similar conclusions from a muon
In a triplet superconductor the electrons in the Cooper pair§pin relaxation 4SR) experiment were reported by Luke
are bound with spins parallel rather than antiparallel to onél- [10]. Recently, experiments on the effects of uniaxial
another,i.e. they are bound in spin triplets [5, 7, 13]. For stresso;, as a symmetry-breaking field were performed by
this kind of superconductors, the spins are lying on the bas#Flifford and collaborators [3], reporting that for s5u0O, the
plane, while the pair orbital momentum is directed along thesymmetry-breaking field can be controlled experimentally.
z-direction and their order parametéris represented by a Additionally, experiments by Lupieet al [2] showed the
three-dimensional vectat(k). If ¥ is of the typek, +ik,,  €xistence of small step in the transverse sound mode T[100].
there is a Cooper pair residual orbital magnetism, which gives  This body of results evidences the need of extending or
place to an state of broken time reversal symmetry, edge cutteveloping theoretical models to explain the changes occur-
rents in the surface of the superconductor, and a tiny magnetigng in C;; at T, which, as far as we know, has not been
field around non-magnetic impurities. carried out even in quite recent works [3]. Thus, the aim
Based on the results of the Knight shift experiment per-of our work is to extend an elasticity property phenomeno-
formed through the superconducting transition temperaturégical theory to show that $RuQ, is an unconventional
T, [8, 9], it has been proposed that ,BuUQ, is a triplet su-  superconductor with a two-componeht4, 11]. Here, let us
perconductor. These experiments showed that Pauli spin sugiention that a different theory of SRuQ, elastic properties
ceptibility of the conduction electrons in the superconductingvas presented by Sigrist [12]. However, unlike this paper,
state remains unchanged respect to its value in the norm&ligrist work does not take into account the splittingptue
state. Moreover, it has been reported [10] thatreaks time  to o;, and directly calculates the jumps at zero stress, where
reversal symmetry, which constitutes another key feature othe derivative ofl” with respect tar; doesn't exist.

unconventionality. In this work, we first perform an analysis based o a
The SpRuQy, elastic constant€’;; have been measured that transforms as one of the two dimensional irreducible

as the temperature T is lowered throufgh The results show representations of the sRuQ, point group [4, 13]. Sub-

a discontinuity in one of the elastic constants [2]. This im-sequently, we construct the ;5uO, superconducting phase
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diagram under an external. This phase diagram is em- the fact that for a given thermodynamic quantidy its dis-
ployed to develop a complete theory of the elastic behaviocontinuity along the transition line points is obtained from
of SprRUQ, , based on a two component Ginzburg-LandauAQ = Q(T. +0%) — Q(T. — 0*), where0™ is a positive in-
(GL) model. This allows to properly calculate the jumps finitesimal quantity. Finally, by combining Egs. (3) and (4),
in the components of the elastic compliances SFinally,  the variation inS;; is found to be:

we propose that there are significant advantages for using 4 ‘

SrLRUO, as a material for a detailed study of symmetry- AS;; = Af” d%((_fl) d];(éj). (5)
breaking effects in superconductivity described by a two- e o i

componentl. Before continuing, it is interesting to mention that besides
of our previous works [4, 11], we are not aware of any other
works that have derived Ehrenfest relations for the case where
appliedo; produces a phase transition splitting.

2. Ehrenfest relations for a uniaxial stresss;

Provided thatr; does not split the phase transition [4], for
appliedo;, Ehrenfest relations can be derived in analogous3,  Ginzburg-Landau model
manner to the case of applied hydrostatic pressure [11, 14],
under the condition that,Tis known as a function of;. In In this section, a phenomenological model which takes into
order to simplify the calculations, we make use of the Voigtaccount the SIRuO; crystallographic point group 13 is de-
notation: = xx, yy, 2z, yz, vz, vy [15]. rived and employed. As we show, the analysigiolising an

For a second order phase transition, the Gibbs free energyrder parameter which belongs to any of the one dimensional
G derivatives respect to T, the entrofy= —(0G/0T),, and  representations of [} is not able to describe the splitting of
respect tar;, the elastic strain,e= —(0G/do;)r are contin- T, under an external stress field. In order to account prop-
uous functions ofr; and T. Therefore, at the transition line, erly for the splitting, superconductivity in §RuO, must be
Ae;(T,0;) = 0andAS(T,0;) = 0. From this, forS and  described by &, transforming as one of the,, two dimen-
e;, the boundary conditions between the two phases are  sional irreducible representations;, or E,,,, which at this

level of theoretical description render identical results [4,11].

oS oS
Al = dr + A|(z—) |do; =
[(6T)a]} * {(30j>T} =0 3.1. Superconducting free energy

A {(861') ]dT A [( Oei ) ]dgi —0 (1)  Inorder to derive a suitablg'L free energyG", we first will
T /o, 9o/ suppose that the §RuO, superconductivity is described by

an order parameter”, which transforms according to one of
the eight one-dimensional representations @f:0' = A,
Agg, Big, Bag, Arus Ay, Biy, Or By, Let us notice that
an analysis employing thepoint group renders similar re-
sults. Here we will analyze the terms @ linear ino; and
quadratic iny"":

By using the definitions of the thermal expansion
a; = (0e;/OT),, the specific heat at constant stresS,, =
T(05/9T),, and the elastic compliances;S= (de;/do;)r,
together with the Maxwell identity (9S/00;)r
(0e;/OT),,, the previous relations can be rewritten as,

C dJZ‘

o N — b
At gp Alee =0 G" = Go+a(DW" + 5 !
do;

A(ai)aj + % A(SL])T =0. (2) + [CL (Umw + Uyy) +c O-zz]lwr|2~ (6)
From the first expression in Eq. (2), the relation foris . The terms proportional 0, o, ando-.. in Eq. (6) give
found to be rise to discontinuities in the elastic constants, ewdenced_from

sound speed measurements [17]. On the other hand, discon-
Aa, = -AC, d InT,(o;) 3) tinuities in the elastic compliancsss and in the elastic con-

dO’,‘ ’

likewise, from the second expression of Eq. (2), the relatio
for S;; is obtained to be,

stantC¢ arise from the linear coupling with,.,. However,
due to symmetry, the later linear coupling does not exist for
nanyl“; therefore,Sgg andCgg are expected to be continuous
at T, for any of the one-dimensional irreducible representa-
T, (o;) tion that assumes a one-dimensiogiél. Nevertheless, the
(4)  results of Lupieret al. experiments [2] showed a disconti-
nuity in Cgg. Hence, based exclusively on sound speed mea-
It is important to distinguish that the print lettér denotes  surements, we conclude that none of the one-dimensional ir-
the entropy, while the symbol; Smeans the elastic compli- reducible representations can provide an appropriate descrip-
ances. In similar manner, the print lettér stands for the tion of superconductivity in SRuQ, . As far as we know,
specific heat and the symbo}; for the elastic stiffness. Let this conclusion has not been previously established in the lit-
us also point out that in deriving these expressions, we usegrature [3]. Let us mention that for any one-dimensidnal

ASij:—Aai

dO’j
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a detailed analysis of the calculation of the jump&ig is
presented in Ref. 11.

Due to the absence of discontinuity $3s for any of the
one-dimensional’, the superconductivity in $SRuQ, must
be described by an order parametér transforming as one
of the two-dimensional representatiols, or Es,, [4]. The
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minimal if sin? 2y = 0. In this case, eithen, = 0 or ),

= 0. Since for a superconducting stgig;, ¢, ) ~ (1, £17),

from the previous analysis, the lowe&ststate corresponds to

bz — by > 0. This thermodynamic state breaks time-reversal-
symmetry; and hence, it is believed to be the state describ-
ing superconductivity in SRuOy [4,5,7]. In addition, it is

G L theory establishes that only the parameters of one of thound that for the phase transition to be of second order, it is

irreducible representations becomes non-zerf,atThere-

fore, following the evidence provided in Refs. 5 and 19, we

required thab = by + by — b3 > 0.
At this point it is important to understand why the state

choose ther,,, spin-triplet state as the correct representation(v,,, v, ) ~ (1, £ie) has been chosen for the analysisogf
for SKLRUO, , and the speed measurements are analyzed iand why it gives rise to the discontinuity #ys [11]. Mini-

terms of the model)® = (v, ,), with 1, and, trans-

mization of Eq. (7) with respect tp andy, and employing

forming as the components of a vector in the basal planeEqg. (8) renders a set of solutions for the two-component order
The expression fofy is determined by symmetry arguments parameter which depend on the relation between the coeffi-
based on the analysis of the second and fourth order invargientsby, b2, andbs and also on the value of the phageand
ants (real terms) ofs". To maintain gauge symmetry, only y. Thus, for the E representation, solutions of the form,

real and even products df can occur in the expansion of
G"'; thus, we find that all real invariants should be formed

by second and fourth order productsg®. To obtain its
expression, we use the fact th@tis invariant with respect
to a transformation by the generatats and ¢y, of Dyy,.

Y1 =1n(1,0)¢?,

are obtained, which are very similar to those found forithe
one-dimensional irreducible representation. Therefore, these
solutions are not able to account for the jumplgs. How-

(11)

Applying the generators to different second and fourth ordeever, solutions with both components different than zero are

combination of products af’s, we find only one second or- also attained:

der invariant+,.|? + |+, |> and three fourth order invariants, N

namely|ip. 21y [2, [va|* + [y ]*, andy2y;? + 3202, - e
For the zerar; case, the expansion 6f gives place to:

V3

7 (17i)77' (12)

o = (1»1) , Py =

Each of these solutions corresponds to different relations
for thebd;. This is illustrated by Fig. 1, which shows the phase
diagram, displaying the domains ¢f, > ands as a func-
tion of b1, by andbs. Now, if the jump inCgg corresponds
to aG minimum, the coupling term withg must be taken to
be different from zero. If the solution, is considered, the
wherea = o/ (T' — To) and the coefficients;, by, andbs  term containingrs becomes zero; therefore it is not accept-
are material-dependent real constants [20, 21]. These coeffihle. On the other hand, this requirement is satisfied by
cients have to satisfy special conditions in order to maintaifith the form(1,4)n. Hence, theZ L analysis renderd; as

the free energy stability. The analysis@fis accomplished  the solution that breaks time reversal symmetry.
by considering two compone(,;, ¢, ) with the form:

b
G = Go+a(T) (JWal? + [0, ) + 5 (Wal® + |, )

b
el P + 5 (03057 +wpul?) Y]

A

("/’wa %) = (779: eiw/27i My e—W’/2); 8 Py 3 Py
wheren, andn, are both real and larger than zero. After twe CO\T ZTTMSW )
substitution of, andsp, in Eq. (7) ,G becomes: -
relative phase A¢ 5 m/2 t
G = Go+ aAT)2 + 1)+ 202 4+ ) :
= 0 « T].L ny 4 77;1, ny é W:L
b
+ (ba — ba)man; + 2bsn2n; sin” . 9) 3 >z
]
For fixed values of the coefficients andb,, if b3 > 0, relative phase AQ+ T 5
G will reach a minimal value if the last term vanishes, if two components
¢ = 0. Moreover, ifp, andn, have the formy, = n sinx VI=(y 50 3)
andn, =7 cosy, G becomes 1
b="b,

b b
G = Go+ a(T)n? + =5 — —n*sin? 2y,

1 1 (10)

FIGURE 1. Superconducting state phase diagram for the two di-
mensional representation E of the tetragonal grou@®function

of the material parameters land by showing the domains which
correspond to the order parameters 12, and«s. Each domain
corresponds to a different superconducting class.

whereb = bs — bs. If b > 0, G reaches its minimum value if
sin? 2 = 1, this condition is satisfied if = 7/4; and there-
fore n, =mn,. On the other hand, # < 0, thenG becomes
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3.2. Coupling of the order parameter to an external Wy
stress

The transition to an unconventional superconducting state .

shows manifestations as the breakdown of symmetries, suct T T

as the crystal point group or the time reversal symme- L o+

try [20,21]. This loss of symmetry has measurable manifesta-

tions in observable phenomena, as the splitting.afnder an I 1L|J'ml

elastic deformation. The coupling between the crystal lattice

and the superconducting state is described Refs. 20 and 21

As explained there, close tB., a new term is added t&, ]

which couples in second ord@r with e;; and in first order T T T

U with ¢;;. These couplings give place to discontinuities in L= £

Sijk atT. FIGURE 2. Temperature behavior of the two component order pa-
rameter(vy5, 1) for the case of a nonzero uniaxial stress below

3.3. Analysis of the phase diagram T.. Notice that only the BCS componetit. (T.+) becomes non

zero for temperatures betwe&h; and7._. The second uncon-
An expression fof7 accounting for a phenomenological cou- ventional componenp, (T.—) only appears belo. .
pling to Cgg in the SERuQ, basal plane is given by

G = Go+ /(T = Too) ([tha* + [t0y]?) + balthe|* |0y |?
b b N N
o (s + 1y ) + 5 (020 +wpul?) T T

1
—ESL‘]' O'iO'j—‘rO'iAi—f—O'i dij E]'. (13)

Here, A; are the temperature-dependent d;; are the
coupling terms betweew and §; and £; are the invariant
elastic compliance tensor components, defined below. In or-
der to determine these invariants describing the coupling of
the order parameter to the stress tensor, we construct the ter
sor E; with Voigt components?; = [¢,|?, E> = |1, |? and i 0
Es = ¢y, +v21,; whereEg couplessg andW. The tensor 1
d;; couplesE; with ¢; and has the same nonzero componentsFicure 3. Phase diagram showing the upper and lower super-
assS;;. By applying symmetry considerations [4], it is shown conducting transition temperatureg,,; andT._, respectively, as
that the only non-vanishing independent components; pf ~ functions of the compressible stress; along the a axis.
aredp1, diz2 = ds1, d31 = d32, andd66. Contributions toG
that are quadratic in bothl and o were neglected. Such is the higher of the two critical temperatures at which the ini-
terms would have given an addition&l dependence to the il transition occurs. As should be expected, just below,

Si; [17]. However, given the large number of independentonly ¢ is non zero. Asl" is further lowered, another phase
constants occurring in the associated sixth rank tensor, at thfsansition happens &t._, which is different thaif.,,. Below
point, it is not clear whether or not the explicit inclusion of 7. they,, is also different from zero (see Fig. (2)). Thus, in
such terms would be productive. the presence of a non zero compressihle¥ has the form

Now, let us consider the case of uniaxial compression ¥z, ¥y) ~ (1, +i€), wheree is real and equal to zero be-

along thea axis (only witho; < 0). If in Eq. (13), only  tweenT., and7._ (phase 1), and increases fram= 0 to

quadratic terms i are kept, this equation can be written as € ~ 1 asT’ becomes smaller thafy. (phase 2), as illustrated
in Figs. (1) and (2).

T..

Gquad= ' [T—Tey (01)]|0e >+ [T —Toy(01)] |00y, (14) The next step is finding[._. To achieve this goal,
) the equilibrium value of the non zero component «of,
hereT. (o1) andT;, (1) are given by 2 = —20,, /by is replaced in Eq. (13) and.T follows from
o1 d11 dio -
T, =To——" T =To—01—2 . (15 -
1 (01)=Teo o y(01) 0TI (15) T —T. =— [dll dlﬂ [b—f b} 0. (16)

20 b

In what follows, we assume thdt; — di2 > 0, such that
T+ > Tey. Notice that this does not imply any lost in gen- To obtain Eq. (16), it is assumed that < o, and only
erality, assumingl;; — d12 < 0, would render an identical linear terms irs are kept. The phase diagram for this system

model, simply by exchanging theandy indices. Here, T, is shown in Fig. (3).
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4. Calculation of the discontinuities At T.., and in the presence of;, the second order terms

in Eg. (19) dominate and has a single component,;
As discussed before, an external uniaxial stress acting on thgnereas aff,  a second component, appears. Thus, at
SrRUO, basal plane breaks the tetragonal symmetry of thgery low 7, the fourth order terms dominate the Eq. (19) be-
crystal. As a consequence of this, when a second order trafzyior. Each of these two-component domains has the form

sition to the superconducting state occurs, it splits into tWasf 4, given by Eq. (12). In this case&; can be written in
transitions. For the case of applied, the analysis of the be-  terms ofy), andr, as

havior of the sound speed &t requires a systematic study

of these second-order phase transitions. Moreover, thermo-
dynamic quantities, such @4, /do;, C,, anda,, which are
needed in order to calculate the componerfjsage accom-
panied by a discontinuity at each of the second order phase

transitions. _ _ The analysis of Eq. (20) depends on the relation between
As depicted in Fig. (3), for a givea, # 0 asT is low-  he coefficientd,, bo, andbs. Assuming thabs > 0, ands,

ered belowl .., a first discontinuity for a thermodynamical andn, are both different from zero, and following the proce-
quantity @ is observed at the first line of transition temper- q,re described after Eq. (9) one arrives to

atures. This discontinuity along the transition line, corre-
sponding to the higher transition temperaturés,= 7., (Y, ) = (1, Eie), (21)
(0:) is given by AQ" = Q(Tet + 07) — Q(Tey — 0F),

where 0" is a positive infinitesimal number. If T is fur- wheree is real and grows from = 0toe ~ 1 asT is reduced
ther dropped belowW._, a second discontinuity arises, and belowT_, while Eg. (20) becomes

the lower line of transition temperatures appears. The dis- b

continuity along this line, af’ = T._ (o0;), is defined by — a.n? 24 L2 0 2\2 o 22
AQ~ = Q(T.— + 0%) — Q(T._ — 0+) [18]. The sum of AG = aomy oyt + g ()" = (bs =ba)rem. (22)
these two discontinuities

b

4
+ (ba — ba)mam, + 2bsn2ny sin® 0. (20)

AG = g + aymy + — (3 +n2)?

To calculate the jumps &, we usen, = o/ (T —T¢.)
andey, = o' (T — T¢,), and assume that., > T,,. For
the intervalT., > T > T._, the equilibrium value forr

ives the correct expressions for the discontinuitiggatfor ~ Satisfiesa, > 0 anda, =0, i.e. 7, > 0 andn, = 0, with
g P &a 2 = —2a,/b;, obtaining thatl., and its derivative with

the case witlr; = 0, where the Ehrenfest relations do not hold "= el
directly [4]. As an example of these discontinuities, the two€SPect tar; are respectively,
jumps inC,, under an externat; are sketched in Fig. (4).

AQ(Tw,0 =0) = AQT + AQ™, (17)

o
Tet(01) =Teo — 071/ dqy,

4.1. Jumps due to a uniaxial stresg dT,. diy
Zoer 2 (23)

!/

The free energy, Eqg. (13), for the cases where bgtAndog d o «
are nonzero Is. The specific heat discontinuity @t.,, relative to its normal

state value, is calculated by using:
G = Go+ g2 + ay |ty 2 + oodas (1rt] + Bi0y) Y using
b
2l 15202 + baltta Pl Co/T4
bs o w2 2,/ %2

Herea, = OL’(T — Tco) +o1d11 andOéy = O/(T — Tco) +

. : - . AC AT
o1d1o. If only o, is applied, this equation becomes: 4" e

b
AG = aultul? + ay i + 2 (? + [ )2

e

b ;
+balu P ® + 5 (0305 +Upe®), (19) : ;

whereAG = G — Go(T'). The nature of the superconduct- Tc- rI'c+ T

ing state that follows from Eq. (19), depends on the values of, g re 4. Schematic dependence of the specific heat on the tem-
the coefficientd,, b2, andbs. The analysis from Eq. (19) of perature, for the case of an uniaxial stress splitting th&R60;

the superconducting part 6f is performed by using, as was transition Temperature. Notice the two jumps in the heat capacity
done previously, an expression férgiven by Eq. (8). near the transition temperatur€s; and7._.
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2A . .
AC,, = -T AaGQTG \r=1,., (24) which results in )
b
and renders the result AC, =-2T. a/QE' (32)
ACH — 2Topa/? (25) The size of these jumps is complicated to infer, because it
o1 by ' depends on the material parametigrsh, andbs, and on the

coupling constantg;; andd;s.
With the help of the Ehrenfest relation, Eq. (3), the dis-
continuity ina; atT,_ is obtained to be

A schematic depiction of th€’, discontinuities below
this transition temperature is exhibited in Fig. (4). At,,
the discontinuity inn,, is calculated by applying the Ehren-
fest relation of Eq. (3), yielding:

Aa; = —a' (d,;/+ b di/_), (33)
20[/ d11 b bl b
Aaf = T (26)  and after employing Egs. (4) and (5), the discontinuity in
Sy j atT,_ is shown to be

The disconti.nuities irb,;; are obtained by using Egs. (4) 2 . .
and (5), rendering the result, As;j,:fm <d¢/+ — gd"/‘> (dj/+ — Edj,_> . (34)
—M (27) Hered;+ = d;;y + dy2. The discontinuities occurring

by atT,y, in the absence of uniaxial stress, can be obtained by

In the previous expression a prime on an index (a# in 2dding the discontinuities occurring &, and7._, yield-

or j') indicates a Voigt index taking only the values 1,2, or 3.1Ng:

+ o
ASi/J‘/ -

Thus, from Ecl1 (_27) ;hd%change H, atT., can be calcu- ACO — QTCOO/Z, Aal — 70/d1-/+’
lated to beA ST} = —=1t. o1 b i b
To find the discontinuities &, _, the invarian{n?2 +72)? 1/ dos d dor d.
. . . SO ot i+ ]/+ il — j,* 35
in Eq. (22) is expanded, after which takes the form, AS; 3 5 ; (35)
AG = agn? + b*l774 Before continuing, it is important to emphasize that at at
T4 zero stress, the derivative @f. with respect tas; is not de-

by ol o b1 4 fined, therefore, there is no reason to expect any of the Ehren-
oy + {5 tb2—bs)me)ny+ny (28)  fest relations to hold [4,11].

In this expression, the second order terrmjnis renor-  4.2.  Jumps due to a shear stressg
malized by the square of.. The second transition tempera- . .
ture is determined from the zero of the total prefactonpf ~ When a shear stress; is applied to the basal plane of

obtaining thatZ,_ and its derivative with respect to are: SrRUOy , the crystal tetragonal symmetry is broken, and a
second transition to a superconducting state occurs. Accord-

o1 b ingly, for this case the analysis of the sound speed behavior
T._ =T,——|d dio — =(d12 — d11) |, . X .
(1) 20/ [ 11 + 612 b( 12 11)} at 7. also requires a systematic study of the two successive
dT,_ 1 b second order phase transitions. Very important to mention
Jo. = 2o [du + dio — g(dm - du)] (29)  that theCyg discontinuity observed by Lupien [2] &t., can

be explained in this context.
Below T, the superconducting free energy, Eq. (28) has to If there is a double transition, the derivative Bf with
be minimized respect to both componentslofAfter doing  respect toog i.e. dT./dog is different for each of the two
so,n, andn, for this temperature range are found to be transition lines. At each of these transitiods,,, a,,,, and
] Sfjﬁ show discontinuities. As discussed before, the sum of
Tli - [(b — 5)% + (b + z})%}’ them gives the correct expressions for the discontinuities at
2bb zero shear stress, where the Ehrenfest relations do not hold.
9 1 ~ ~ TheT.—o¢ phase diagram will be similar to that obtained
My = {U) ~baz+ (- b)%] (30) for o1; therefore, the diagram in Fig. (3) also qualitatively

]y - 7
2bb
. _ _ holds here. In the case of an appliegd AG is given by
This analysis shows that the second superconducting phase

is different in symmetry, and that time reversal symmetry  AG = a([v4]* + [¢y|*) + o6des (V2 + Vithy)
is broken. The change iV, at 7., with respect to its b

value in the normal phas&\C;, 'V, is found to be AC N = + Zl(lz/av\2 + [y |2)? + balthe [2aby |2
—2T._a’ 1/b. The specific heat variation @._ is,

b-
2 Wy ). (36)

AC;, =AC;N - ACH (31)

o1’
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Herea = o/ (T — Ti), and the minimization oG is ity in C}f. atT,, are respectively found to be:
performed as in the; case,.e. by substituting the general

expression forr given in Eq. (8). After doing SOAG be- d Tt - _ @’
comes dog o
2T, o
. b 2 + o Ll
AG = a(n? + 7]2) + 2nyny 06 sin ¢ dig + Zl (ng + 775) ACT b . (42)
4 (ba — ba)n2n2 + 2631202 sin? . 37 After applying the Ehrenfest relations, Egs. (4) and (5), the
(b2 = baJry 81Tty S 37) results forAa,, andASgs at7. are:
In the presence ofg, the second order term determines 20 deg
the phase beloW.,, which is characterized by, and by Aot =— b
1y = 0. As the temperature is lowered bel@y_, depend- )
ing of the value of b a second component, may appear. ASfy = — 2 d/a@ (43)
If at T._ a second component occurs, the fourth order terms b

in Eq. (37) will be the dominant one. Thus for very low T's, ForT,,_, the derivative of this transition temperature with re-
or for o — 0, a time-reversal symmetry-breaking Supercon-spect toog, and the discontinuities in the specific heat, ther-

ducting state emerges. The analysis of Eq. (37) depends Gfja| expansion and elastic stiffness respectively are:
the relation between the coefficierits and b3. It also de-

pends on the values of the quantitigsand1,, and of the dT.. _ bdess

phasep. If b3 < 0, andn, andn, are both nonzero, the dos  2bsa’’

sfta_lte with minimum energy has a phase 7/2. The tran-_ B AT, o' by

sition temperature is obtained from Eq. (37), by performing Al =— oy (44)

the canonical transformations;, = (1/v/2)(n, + 1¢) and
ny = (1/v/2)(n, — ne). After their substitution, Eq. (37)

_ 2d'des
becomes Aaj, = T
AG = ayni +a_n; dZs b
e T AT ASgy = — 5562, (45)
R R b b - 2)? (38 o
4re e G Since for the case afg, the derivative off, with respect to

og is not defined at zero stress point, the Ehrenfest relations
do not hold afl’,y. Thus, the discontinuities occurring’gty,

in the absence afg, are calculated by adding the expressions
obtained for the discontinuities &t and7,._,

If, as was done beforey. = nsiny andn, = ncosy,
Eq. (38) takes the form

AG = a,n?sin? x + a_n? cos® x

4 2T, o2
b1 (ba 4 by) cos? 2] (39) ACg, = ——5—,
d2
AG is minimized ifcos 2 = 1, this is, if y = 0. Also, in ASgs = —ﬁ, (46)
order for the phase transition to be of second oridedefined 3
asb’ = by +by+bs, must be larger than zero. Thereforegdf Aagﬁ =0.

is non zero, the state with the lowest free energy corresponds o ) ) o
to by < 0, phasep equal tor /2, and¥ of the form: Notice that in this case, there is no dlscontmuny(ﬁﬁIG.
Since the phase diagram was determined as a function

(arby) ~ 1) (e%” 67%)' (40) _of 6, rather than.as a function of the strain, (see Fig. (3)),
in this work, as in Refs. 4 and 11, we make use of the
6 x 6 elastic compliance matri$, whose matrix elements
are S;;. However, the sound speed measurements are best
interpreted in terms of the elastic stiffness maifix with
matrix elementg’;;, which is the inverse of [23]. There-
fore, it is important to be able to obtain the discontinuities
in the elastic stiffness matrix in terms of the elastic compli-
ance matrix. Thus, close to the transition liG&7,. +0*) =
b C(T.—-0")+A Cand §T. +07) =S(T. — 07) + AS,
by a ° dee- (41)  where0* is positive and infinitesimal. By making use of the
fact thatC (7, +0%) S(T. + 0™) =1, wherel is the unit ma-
The derivative ofl ., with respect targ, and the discontinu- trix, it is shown that, to first order, the discontinuities satisfy,

In phase 1 of Fig. (3} = 0, and asl" is lowered below
T._, phase 2y grows from 0 to approximately /2. Again,
following an analysis similar to that carried out fer, the
two transition temperaturég., andT,._ are obtained to be:

o
Teq(06) =Too — OTG,dG&

T.— (06) =Ty +
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AC= —CASC. In this manner, it is found that, for instance can be formed from the three independgmnarameters, and
atT.., ACH; ~ (2(Cj1 d;1)?/b1). From this expression these two independent ratios could be determined, for exam-
it is clear thatAC]; must be greater than zero. In general, ple, by experimentally determining the ratid€} /AC in
atT.., T._, andT,, the expressions that define the jumpsthe presence of the, andog [4, 11].

for the discontinuities in elastic stiffness and compliances, Measurements results for the ;BuQO, elastic constants
due to an external stress, have either a positive or a negatilelow 7, are presented in Ref. 2. There, it is concluded
value. In this wayAS,;, ASy,, ASz3, andASge are all neg-  that the quantitie€’y, and C;; — C1» follow the same be-
ative; while, the stiffness componemsC,;, ACss, ACss, havior as those of the BCS superconducting transition, which
andACgg are all positive. is evidenced by a change in slope beldyw. On the other
hand, a discontinuity is observed f6ks below T, with-

out a significant change in the sound speed slopg gees
below 1 Kelvin. It has been previously stated [2, 11] that

Since for SsRUO;, the symmetry-breaking field, due to this kind of Cig phanges can be understood as a signature
o;, is under experimental control, states of zero symmetrny an unconventional transition to a superconducting phase.
chieved [1-3]. Hence, it has significant advantages the us@)- [3], Iead to consider SRuO, as an excellent candidate
of SKLRUO, as a material in detailed studies of supercon-for a detailed experimental investigation of the effects of a
ductivity symmetry-breaking effects, described by a two-Symmetry-breaking field in unconventional superconductors.
component order parameter. Nevertheless, determining from

SKLRUO, exp_erimenta_ll measurements the mggnitude_of th%cknowledgments
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5. Final remarks
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three linearly independent parametérs,b2, andbs, are re-
quired to specify the fourth order terms i occurring in
Eqg. (1); whereas only two independent parametgrandb,,
are required fof/ Pt3. For SpRuQy, two independent ratios
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1. the Voigt notation for Gs means G, where6 = xy [15].

7. The invariance under the gauge symméfifl ) means that the
quantitiesy; must transform according to the rulg — e,
andi, — e,
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