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In this paper, the fractional derivatives in the sense of the modified Riemann-Liouville derivative and the Feng’s first integral method are
employed for solving the important nonlinear coupled space-time fractional mKdV partial differential equation, this approach provides new
exact solutions through establishing first integrals of the mKdV equation. The present method is efficient, reliable, and it can be used as an
alternative to establish new solutions of different types of fractional differential equations applied in mathematical physics.
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1. Introduction

Fractional differential equations are generalizations of classi-
cal differential equations of integer order. In recent years,
nonlinear fractional differential equations (NFDEs) have
gained considerable interest. It is caused by the development
of the theory of fractional calculus itself but also by their ap-
plications in various sciences such in physics, biology, engi-
neering, signal processing, system identification, control the-
ory, finance and fractional dynamics and others areas [1-9].
A special class of analytical solutions, the so-called travel-
ing waves for nonlinear fractional partial differential equa-
tions (NFPDEs), is of fundamental importance because sev-
eral physical models are often described by such wave phe-
nomena. However, not all NFPDEs are solvable. As a result,
recently new techniques have been successfully developed
to construct new solutions for fractional nonlinear partial
differential equations of physical interest, such as the Ado-
mian decomposition method [10-11], the variational itera-
tion method [14-15], the homotopy analysis method [12-13],
the homotopy perturbation method [16-17], the Lagrange
characteristic method [16-17], the fractional sub-equation
method [19], and so on.

In Ref. [20], Jumarie proposed a modified Riemann-
Liouville derivative. With this kind of fractional derivative
and some useful formulas, we can convert fractional differ-
ential equations into integer-order differential equations by
variable transformation.

Feng [21] has introduced a reliable and effective method
called the Feng’s first integral method to look for traveling
wave solutions of NFPDEs. The basic idea of this method
is to construct a first integral with polynomial coefficients by

using the division theorem. This method in comparison with
other methods has many advantages; it avoids a great deal of
complicated and tedious calculation and provides exact and
explicit traveling solutions with high accuracy. The Feng’s
first integral method [22-25] can be used to construct the ex-
act solutions for some time fractional differential equations.

Among the nonlinear PDEs there are some important
examples of fundamental interest in mathematical-physical
models. For example, some types of coupled Korteweg de-
Vries (KdV). The coupled KdV equation describes, in a gen-
eral form, competition between the weak nonlinearity and the
weak dispersion in many physical systems. Since the first
coupled KdV system was presented by Hirota and Satsuma
in 1981 [26] and have been carefully studied in Refs. [2]7
and [28]. Some important coupled KdV models have been
proposed [29-30]. In Ref. [31] the authors have introduced
a 4 × 4 matrix spectral problem with three potentials for the
Hirota-Satsuma coupled KdV equation by which the coupled
modified Korteweg de-Vries (mKdV) equation was obtained
as a new integrable generalization of the Hirota-Satsuma cou-
pled KdV equation. In general the KdV coupled equation de-
scribes the interaction between two long waves with different
dispersion relations. It is a non-linear equation that exhibits
special solutions, known as solitons, which are stable and do
not disperse with time [26].

Some kinds of coupled KdV equations have also been
introduced in the literature, as a model describing two res-
onantly interacting normal modes of internal-gravity-wave
motion in a shallow stratified liquid [32-33]. In princi-
ple, many of other coupled KdV equations are introduced
mathematically because of their integrability [34]. Recently,
some quite general coupled KdV equations have been derived
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in real physical areas, such as in two-layer fluid of atmo-
spheric dynamical system [35] and in a two-component Bose-
Einstein condensate [36]. A quite general coupled mKdV
equation in a two-layer fluid system has been used to describe
the atmospheric and oceanic phenomena, and it has been de-
rived by using the reductive perturbation method [37].

The present work investigates the applicability and ef-
fectiveness of the Feng’s first integral method to obtain new
exact analytical solutions for the nonlinear space-time frac-
tional coupled mKdV equation [31], which has been ana-
lyzed applying the sub-equation method in the integer order
limit case, called the extended tanh-function method [38-40].
We will show that the Feng’s first integral method allows
to obtain new analytical solutions for the mKdV space-time
fractional partial differential equation, that have not been ob-
tained in previous works [41-43].

The paper is structured as follows, in Sec. 2 the modified
Riemann-Liouville derivative and the Feng’s first integral

method is presented, in Sec. 3 we present the applications and
give conclusions in Sec. 4.

2. The Modified Riemann-Liouville Derivative
and the Feng’s First Integral Method

In this section we present the main ideas of the Feng’s first
integral method. This method considers the Jumarie modi-
fied Riemann-Liouville fractional derivative of orderα, we
first give some definitions and properties of the modified
Riemann-Liouville derivative which are used further in this
work.

Assume thatf : R → R, x → f(x) denotes a continu-
ous (but not necessarily differentiable) function. The Jumarie
modified Riemann-Liouville derivative of orderα is defined
by the expression [20]

Dα
x f(x) =





1
Γ(1−α)

x∫
0

(x− ξ)−α−1[f(ξ)− f(0)]dξ, α < 0,

1
Γ(1−α)

x∫
0

(x− ξ)−α[f(ξ)− f(0)]dξ, 0 < α < 1,

[fα−n(x)]n, n ≤ α ≤ n + 1, n ≥ 1.

(1)

Some properties of the fractional modified Riemann-
Liouville derivative are

Dα
x xγ =

Γ(γ + 1)
Γ(γ + 1− α)

xγ−α, (2)

Dα
x (f(x)g(x)) = g(x)(Dα

x f(x)) + f(x)(Dα
x g(x)), (3)

Dα
x f [g(x)] = f

′
g[g(x)]Dα

x g(x)

= (Dα
g f [g(x)])(g′(x))α. (4)

Now in order to introduce the Feng’s first integral
method [21], let us consider the space-time fractional differ-
ential equation with independent variablesx1, x2, . . . , xm, t
and dependent variableu

F (u,Dα
t u,Dα

x1
u,Dα

x2
uDα

x3
u, . . . , D2α

t u,

D2α
x1

u,D2α
x2

u,D2α
x3

u, . . .) = 0. (5)

Using the variable transformation

u(x1, x2, . . . , xm, t) = U(ξ),

ξ =
k1x

α
1 + k2x

α
2 + . . . + kmxα

m + ctα

Γ(1 + α)
, (6)

whereki andc are constants to be determined later; the frac-
tional differential equation (5) is reduced to a nonlinear ordi-
nary differential equation

H = H(U(ξ), U ′(ξ), U ′′(ξ), . . .), (7)

whereU ′(ξ) = dU(ξ)/dξ.

We assume that Eq. (7) has a solution in the form

U(ξ) = X(ξ), (8)

and introduce a new independent variableY (ξ) = X ′(ξ),
which leads to the following system of nonlinear ordinary
differential equations

X ′(ξ) = Y (ξ),

Y ′(ξ) = G(X(ξ), Y (ξ)). (9)

Now, let us to introduce the central idea of the Feng’s first
integral method. By using the division theorem for two vari-
ables in the complex domain which is based on the Hilbert-
Nullstellensatz theorem [44], we can obtain one first integral
to Eq. (9) which can reduce Eq. (7) to a first-order integrable
ordinary differential equation. An exact solution to Eq. (5) is
then obtained by solving this equation directly.

Division Theorem: Suppose thatP (x, y) andQ(x, y) are
polynomials inC[x, y], andP (x, y) is irreducible inC[x, y].
If Q(x, y) vanishes at all zero points ofP (x, y), then there
exists a polynomialH(x, y) in C[x, y] such that

Q(x, y) = P (x, y)H(x, y). (10)
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3. Applications

The aim of this work is to obtain analytical solutions, by ap-
plying the Feng’s first integral method [20], for the space-
time fractional coupled mKdV equation

Dα
t u =

1
2
D3α

x u− 3u2Dα
x u

+
3
2
D2α

x v + 3Dα
x (uv)− 3λDα

x u, (11)

Dα
t v = −D3α

x v − 3vDα
x v − 3(Dα

x u)(Dα
x v)

+ 3u2Dα
x v + 3λDα

x v,

t > 0, 0 < α ≤ 1, (12)

where Dα
x and Dα

t are the Jumarie’s modified Riemann-
Liouville derivatives. λ is a constant andα is the parame-
ter describing the order of the fractional derivatives ofu(x, t)
andv(x, t). The obtained solutions would be important for
previous works where approximated methods [45-47] have
been applied to solve the coupled mKdV equation.

By considering the traveling wave transformation

u(x, t) = u(ξ), v(x, t) = v(ξ),

with: ξ =
kxα + ctα

Γ(1 + α)
, (13)

wherek andc are constants, substituting (13) into Eq. (11),
we can reduce the Eq. (11) into an ordinary differential equa-
tion (ODE)

cu′(ξ) =
k3

2
u′′′(ξ) +

3
2
k2v′′(ξ)

+ 3k(u(ξ)v(ξ))′ − 3ku2(ξ)u′(ξ)− 3αku′(ξ),

cv′(ξ) = −k3v′′′(ξ)

− 3kv(ξ)v′(ξ)− 3k2u′(ξ)v′(ξ) + 3αkv′(ξ). (14)

For our purpose, we can consider the following ansätz

v(ξ) = A + Bu(ξ), (15)

whereA andB are coefficients to be determined. The above
transformation was first considered by Fan as one of possible
ans̈atz to obtain analytical solutions of the coupled mKdV
Eq. (14), when the extended tanh-function method [38] was
applied. Substituting (15) into (14), the Eq. (14) are trans-
formed into the following ordinary differential equations for
the functionu(ξ), i.e.

2cu′(ξ) = k3u′′′(ξ) + 3k2Bu′′(ξ)

+ 6k(2Bu(ξ) + A− u2(ξ)− λ)u′(ξ),

cv′(ξ) = −k3u′′′(ξ)− 3k(ku′(ξ)

+ (A + Bu(ξ))− u2(ξ)− λ)u′(ξ). (16)

By adding the two Eqs. (16), the next equation is obtained

3cu′(ξ) = 3k2Bu′′(ξ)− 3k2(u′(ξ))2)

+ 6kBu(ξ)u′(ξ + 3k(A + Bu(ξ))u′(ξ)

− 3ku2(ξ)u′(ξ)− 3λku′(ξ). (17)

We can rewrite the above equation to obtain

u′′(ξ) =
1

k2B

[
(c + λk − kA)− 3kBu(ξ) + ku2(ξ)

]
u′(ξ)

+
1
B

(u′(ξ))2, (18)

now using Eqs. (8) and (9), Eq. (18) is equivalent to
the two-dimensional autonomous systemu(ξ) = X(ξ) and
Y (ξ) = X ′(ξ), where

dX(ξ)
dξ

= Y (ξ), (19)

dY (ξ)
dξ

=
[
βδ − 3β

κ
X(ξ) + βX(ξ)2

]
Y (ξ) + κY (ξ)2,

with

κ =
1
B

, β =
1

Bk
δ =

c

k
+ λ−A. (20)

Now, the solution of the Eq. (19) can be investigated by
applying the Feng’s first integral method. According to the
Feng’s first integral method, we suppose thatX(ξ) andY (ξ)
are nontrivial solutions of Eq. (19), andQ(X, Y ) is an irre-
ducible polynomial in the complex domainC, such that

Q(X(ξ), Y (ξ)) =
m∑

i=0

ai(X(ξ))Y i(ξ) = 0, (21)

where the coefficientsai(X)(i = 0, 1, . . . , m) are polynomi-
als ofX andam(X) 6= 0. Due to the division theorem, there
exists a polynomialg(X) + h(X)Y in the complex domain
C[x, y], such that

dQ

dξ
=

∂Q

∂X

dX

dξ
+

∂Q

∂Y

dY

dξ

= (g(X) + h(X)Y (ξ))
m∑

i=0

ai(X)Y i(ξ) = 0. (22)

We consider the case wherem = 1 in Eq. (21), by
equating the coefficients ofY i(i = 2, 1, 0) on both sides of
Eq. (22), we have

ȧ1(X) = a1(X)(h(X)− κ), (23)

ȧ0(X) = g(X)a1(X) + h(X)a0(X)

− a1(X)
(
βδ − 3β

κ
X + βX2

)
, (24)

0 = a0(X)g(X), (25)
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sinceai(X)(i = 0, 1) are polynomials ofX. Balancing
the degrees ofg(X) and a0(X), from Eq. (23) it can be
concluded thata1(X) is constant andh(X) = κ = 1/B.
For simplicity, we takea1(X) = 1. Substitutinga1(X),
andh(X) into (24) and (25), and setting all the coefficients
of powers ofX to be zero, a system of nonlinear algebraic
equations have been obtained, from these equations, we get
g(X) = 0, and

ȧ0(X) = κa0 − a1

(
βδ − 3β

κ
X + βX2

)
, (26)

wherea0(X) can be expressed as follows

a0(X) = A0 + B0X +
β

κ
X2, (27)

andA0 andB0 are given by

B0 = − β

κ2
,

A0 =
β

κ

(
δ − 1

κ2

)
, (28)

and therefore

a0(X) =
β

κ

(
δ − 1

κ2

)
− β

κ2
X +

β

κ
X2, (29)

by taking into account the condition:

0 = Q(X, Y ) = a0(X) + a1(X)Y (X), (30)

and the relationa1(X) = 1, from Eq. (29), it follows that

Y (ξ) = −
(

β

κ

(
δ − 1

κ2

)
− β

κ2
X +

β

κ
X2

)
. (31)

Combining this first integralY (ξ), with the two-dimensional
autonomous system of the Eq. (9), the exact solutions to the
second order differential equation (18) can be obtained, and
considering the relation (15), then the exact traveling wave
solutions to the mKdV system (11) can be written in terms of
the solution of the following first order differential equation

dX(ξ)
dξ

= −
(

β

κ

(
δ − 1

κ2

)
− β

κ2
X +

β

κ
X2

)
. (32)

If we substitute this last result into any one of the
Eqs. (16),(u(ξ) = X(ξ)) i.e.

2cu′(ξ) = k3u′′′(ξ) + 3k2Bu′′(ξ) + 6k(Bu(ξ)

+ (A + Bu(ξ))− u2(ξ)− λ)u′(ξ), (33)

the following condition required for the ansätz of the Eq. (15)
is obtained

A = −B2

2
+ λ, (34)

in order that the solutionu(ξ) = X(ξ) satisfies the coupled
mKdV equation, with

κ =
1
B

, β =
1

Bk
δ =

c

k
+

B2

2
. (35)

The general solution for the space-time fractional mKdV
Eq. (11) is obtained by solving the first order differential
equation (32), which can be written as follows

dX(ξ)
dξ

= r + pX + qX2, (36)

where

q = −1
k

= −β

κ
, r = q

(
δ − 1

κ2

)

=
1
k

(
B2

2
− c

k

)
, p = − q

κ
=

B

k
, (37)

andX(ξ) satisfies the generalized Riccati equation (36). The
generalized Riccati equation (36) has twenty seven solu-
tions [48], which can be expressed as follows.

Family 1: Whenp2 − 4qr < 0 andpq 6= 0 (or rq 6= 0),
the solutions of Eq. (36) are

X1(ξ) =
1
2q

(
− p + h tan

(1
2
hξ

))
,

X2(ξ) = − 1
2q

(
p + h cot

(1
2
hξ

))
,

X3(ξ) =
1
2q

(−p + h(tan(hξ)± sec(hξ))),

X4(ξ) = − 1
2q

(p + h(cot(hξ)± csc(hξ))),

X5(ξ)=
1
4q

(
−2p+h

(
tan

(1
4
hξ

)
− cot

(1
4
hξ

)))
,

X6(ξ)=
1
2q

(
−p+

√
(M2−N2)(h2)−Mh cos(hξ)

M sin(hξ)+N

)
,

X7(ξ)=
1
2q

(
−p+

√
(M2−N2)(h2)+Mh cos(hξ)

M sin(hξ)+N

)
, (38)

with h =
√

4qr − p2, whereM andN are two non-zero real
constants and satisfies the conditionM2 −N2 > 0.

X8(ξ) =
−2r cos( 1

2hξ)
h sin( 1

2hξ) + p cos( 1
2hξ)

,

X9(ξ) =
−2r sin( 1

2hξ)
−p sin(1

2hξ) + h cos( 1
2hξ)

,

X10(ξ) =
−2r cos(hξ)

h sin(hξ) + p cos(hξ)± h
,

X11(ξ) =
2r sin(hξ)

−p sin(hξ) + h cos(hξ)± h
,

X12(ξ)=
4r sin( 1

4hξ) cos( 1
4hξ)

−2p sin( 1
4hξ) cos( 1

4hξ)+2h cos2( 1
4hξ)−h

. (39)

Family 2: Whenp2 − 4qr > 0 andpq 6= 0 (or rq 6= 0),
the solutions of Eq. (36) are
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X13(ξ) = − 1
2q

(
p +

√
−h2 tanh

(1
2

√
−h2ξ

))
,

X14(ξ) = − 1
2q

(
p +

√
−h2 coth

(1
2

√
−h2ξ

))
,

X15(ξ) = − 1
2q

(
p +

√
−h2

(
tanh(

√
−h2ξ)± i sec h(

√
−h2ξ)

))
,

X16(ξ) = − 1
2q

(
p +

√
−h2

(
(coth(

√
−h2ξ)± i csc h(

√
−h2ξ)

))
,

X17(ξ) = − 1
4q

(
2p +

√
−h2

(
tanh

(1
4

√
−h2ξ

)
+ coth

(1
4

√
−h2ξ

)))
,

X18(ξ) =
1
2q

(
− p +

√
(M2 + N2)(−h2)−M

√−h2 cosh(
√−h2ξ)

M sinh(
√−h2ξ) + N

)
,

X19(ξ) =
1
2q

(
− p−

√
(N2 −M2)(−h2) + M

√−h2 sinh(
√−h2ξ)

M cosh(
√−h2ξ) + N

)
, (40)

whereM andN are two non-zero real constants and satisfies the conditionN2 −M2 > 0

X20(ξ) =
2r cosh

(
1
2

√−h2ξ
)

√−h2 sinh
(

1
2

√−h2ξ
)
− p cosh

(
1
2

√−h2ξ
) ,

X21(ξ) =
2r sinh

(
1
2

√−h2ξ
)

√−h2 cosh
(

1
2

√−h2ξ
)
− p sinh

(
1
2

√−h2ξ
) ,

X22(ξ) =
2r cosh

(√−h2ξ
)

√−h2 sinh
(√−h2ξ

)
− p cosh

(√−h2ξ
)
± i
√−h2

,

X23(ξ) = −
2r sinh

(√−h2ξ
)

−p sinh
(√−h2ξ

)
+
√−h2 cosh

(√−h2ξ
)
±√−h2

,

X24(ξ) =
2r sinh

(
1
4

√−h2ξ
)

cosh
(

1
4

√−h2ξ
)

−2p sinh
(

1
4

√−h2ξ
)

cosh
(

1
4

√−h2ξ
)

+ 2
√−h2

(
cosh2

(
1
4

√−h2ξ
)
− 1

2

) . (41)

Family 3: Whenr = 0 and pq 6= 0, the solutions of
Eq. (36) are

X25(ξ) =
−pd

q[d + cosh(pξ)− sinh(pξ)]
,

X26(ξ) = − p[cosh(pξ) + sinh(pξ)]
q[d + cosh(pξ) + sinh(pξ)]

. (42)

whered is an arbitrary constant.
Family 4: Whenq 6= 0 andr = p = 0, the solution of

Eq. (36) is

X27(ξ) = − 1
qξ + c1

, (43)

wherec1 is an arbitrary constant.

For the nonlinear space-time fractional coupled mKdV
Eq. (11), we have found twenty seven solutions that can be

obtained from the solutions (38), (39), (40), (41), (42) and
(43) the relations (15), (37) and the condition (34).

It is worth noting that solution (38) and (39) are not of
the soliton type, because they are periodical-type solutions in
the variableξ. Moreover, for the solutionX27(ξ) it can be
shown that this one does not correspond with the traveling
wave solution, since the conditionr = p = 0, together with
the relation (37) give as a result thatc = 0 and thenX27(ξ)
is not an analytical solution of the traveling wave type for the
coupled mKdV equation.
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However, the solutions (40), (41) and (42) correspond to
the traveling wave type soliton solutions. It can be shown that
for the special case of the solution

X13(ξ) = − 1
2q

(
p +

√
−h2 tanh

(1
2

√
−h2ξ

))
, (44)

when we take into account the relationh =
√

4qr − p2,
where the coefficientsp, q andr are given by Eq. (37), then
the solutionX13(ξ) can be rewritten as

X13(ξ) = −
[

p

2q
+

√
p2 − 4qr

2q
tanh

1
2

√
p2 − 4qrξ

]
. (45)

Substituting (37) in order to simplify the expression√
p2 − 4qr, we obtain

√
p2 − 4qr =

1
k

√
3B2 − 4

( c

k

)
= γ, (46)

and

c =
3kB2

4
− γ2k3

4
, (47)

where
γ =

√
p2 − 4qr. (48)

Therefore the solution (45) simplifies to

X13(ξ) =
B

2
+

γk

2
tanh

(γ

2
ξ
)
, (49)

taking into account the relationu(ξ) = X(ξ) and the
Eq. (15), the exact analytical solution for the space-time frac-
tional coupled mKdV Eq. (11), is given by

u(ξ) =
B

2
+

γk

2
tanh

(γ

2
ξ
)
,

v(ξ) = −B2

2
+ λ + B

(B

2
+

γk

2
tanh

(γ

2
ξ
))

= λ +
γkB

2
tanh

(γ

2
ξ
)
, (50)

with
ξ =

kxα + ctα

Γ(1 + α)
, (51)

where we have taken into account thatA = −(B2/2) + λ.

We notice that for this particular solutionu(ξ) = X13(ξ),
we have recovered the previously well known solution (50),
that have been found in Ref. [43], but to the best of our
knowledge the general solutions: (40), (41) and (42), that
correspond to the travelling wave type soliton solution, have
not been obtained previously in the literature. Since the
coupled mKdV equation describes approximately the motion
phenomena appearing in a two-layer fluid system [35], the
new analytical solutions (40), (41) and (42) would be useful
in the study of the physical behavior of these fluid systems.

4. Conclusions

In this paper, the Feng’s first integral method was applied suc-
cessfully to obtain new exact analytical solutions of the non-
linear space-time fractional mKdV equation (11). The perfor-
mance of the Feng’s first integral method is reliable and ef-
fective to obtain new solutions. This method has more advan-
tages: it is direct and concise. Thus, the proposed method can
be extended to solve many systems of nonlinear fractional
partial differential equations in mathematical and physical
sciences. Also, the new exact analytical solutions, Eq. (40),
(41) and (42), obtained for the coupled mKdV equation can
be very useful as a starting point of comparison when some
approximate methods are applied to this nonlinear space-time
fractional equation.
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Jiménez, C.M. Astorga-Zaragoza, L.J. Morales-Mendoza, and
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3. J.F. Ǵomez-Aguilar, M. Miranda-Herńandez, M.G. Ĺopez-
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