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We discuss different aspects of a possible link between the (1+1)-matrix-brane system with qubit theory and non-compact Hopf maps. In
these scenarios, the (2+2)-signature plays an important role. We argue that such links may shed some light on the (2+2)-dimensional sector
of a (2+10)-dimensional target background.
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Our main goal in this work is to establish links between the
(1+1)-matrix-brane system [1] (see also Ref. 2) with qubit
theory (see Ref. 3 and references therein) and non-compact
Hopf maps [4]. In such connections the (2+2)-signature plays
a key role. It turns out that through the years the (2+2)-
signature has become a very important notion in different
scenarios of mathematics [5-6] (see also Refs. 7 and 8) and
physics. In fact, the (2+2)-signature emerges in several phys-
ical context, including self-dual gravitya la Plebanski (see
Ref. 9 and references therein), consistentN = 2 super-
string theory [10-11],N = (2, 1) heterotic string [12-15].
Furthermore, it has been emphasized [16-17] that Majorana-
Weyl spinors exist in a spacetime of (2+2)-signature. Using
the requirement of theSL(2, R)-group and Lorentz symme-
tries it has been proved [18] that (2+2)-target spacetime of
a 0-brane is an exceptional signature. Moreover, the (2+2)-
signature arises following an alternative idea to the notion of
‘worldsheets for worldsheets’ [19] or the 0-branes condensa-
tion [20]. Another recent motivation for a physical interest
in the (2+2)-signature has emerged via the discovery [21] of
hidden symmetries of the Nambu-Goto action. In fact, in this
case the Nambu-Goto action in a (2+2)-target spacetime can
be written in terms of a hyperdeterminant, revealing appar-
ently new hidden symmetries of such an action.

In this work, we shall explore possible links between
the (1+1)-matrix-brane system with qubit theory and non-
compact Hopf maps. We start by reviewing the relation be-
tween Refs. 1 and 21, concerning the (2+2)-signature. For
this purpose we shall consider both the (1+1)-matrix-brane
theory and the hyperdeterminant structure approach, focus-
ing on the (2+2)-signature.

First, consider the line element

ds2 = dxµdxνηµν . (1)

Here, we shall assume that the indicesµ, ν ∈ {1, 2, 3, 4} and
that the flat metricηµν = diag(1, 1,−1,−1) determines the
(2+2)-signature. Introducing the matrix

xab =
(

x1 + x3 x4 + x2

x4 − x2 x1 − x3

)
, (2)

one finds that (1) can be written as

ds2 = dxamdxbnεabεmn, (3)

wherea, b, m, n ∈ {1, 2}. Moreover, by defining the alterna-
tive matrix

ζpq =
(

x1 x3

x4 x2

)
, (4)

it is not difficult to show that (1) can also be written as

ds2 = dζamdζbnηabηmn. (5)

Here, ηab = diag(1,−1) and ηmn = diag(1,−1). This
proves that the three line elements (1), (3) and (5) are equiv-
alents. Thus, one can say that these equivalences provide
an interesting connection between the signatures (1+1) and
(2+2).

It turns out that such equivalences at the level of the line
elements (1), (3) and (5) can be transferred to the matrix

hab =
∂xµ

∂ξa

∂xν

∂ξb
ηµν . (6)

In fact, (6) can be written in the following two equivalent
forms

hab =
∂xcm

∂ξa

∂xdn

∂ξb
εcdεmn (7)

and

hab =
∂ζcm

∂ξa

∂ζdn

∂ξb
ηcdηmn. (8)

So, by introducing the quantity

v ij
a =

∂xij

∂ξa
, (9)

it is straightforward to verify that

det(hab) =
1
2!

εacεbd ∂xµ

∂ξa

∂xν

∂ξb

∂xα

∂ξc

∂xβ

∂ξd
ηµνηαβ (10)

can be written as
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Det(hab) ≡ 1
2!

εacεbdεegεfhεikεjlv
ef

a v gh
b v ij

c v kl
d . (11)

Here, the notation Det(hab) means hyperdeterminant. Thus,
one finds that the Nambu-Goto action

S =
∫

dξ(1+1)
√
−det(hab) (12)

can also be written as

S =
∫

dξ(1+1)
√
−Det(hab). (13)

Actually, one has

det(hab) = Det(hab). (14)

Similarly, introducing the quantity

u ij
a =

∂ζij

∂ξa
, (15)

it is also straightforward to see thatdet(hab), given in (10),
can also be written as

Det(hab)≡ 1
2!

εacεbdηegηfhηikηjlu
ef

a u gh
b u ij

c u kl
d . (16)

This means that the Nambu-Goto action (12) is also equiva-
lent to

S =
∫

dξ(1+1)
√
−Det(hab). (17)

This shows that in (2+2)-dimensionsS,S andS are equiva-
lent actions. The interesting thing is thatS reveals new hid-
den symmetries in the original Nambu-Goto actionS [21].
Presumably, the same conclusion can be said in the case of
the actionS. (Details of the connections between the actions
S,S andS can be found in Ref. 1.)

In order to related the previous discussion with qubit the-
ory and Hopf maps it is convenient to introduce the math-
ematical notion of2 by 2 real matricesM(2, R). It turns
out that through the years the importance ofM(2, R)) has
emerged in different scenarios of physics and mathematics,
including Clifford algebras [22-23], matroid theory [24-25]
(see also Refs. 26 to 32 and references therein), string the-
ory [33], 2d gravity [34], 2t physics [35], qubit theory (see
Refs. 3 and references therein) among others. We argue that
these connections may suggest that one may even consider
the setM(2, R) as one of the underlaying structures of su-
persymmetry andM -theory [36]. This last observation is due
in part to the fact thatM(2, R) is linked to a2-rank self-dual
oriented matroid and to the fact that in both oriented matroid
theory andM -theory the duality concept plays a fundamen-
tal role. Indeed, it has been proposed [27] that oriented ma-
troid theory may be considered as the underlying mathemat-
ical framework forM -theory.

Let us briefly recall some aspects ofM(2, R). It is not
difficult to see that any matrix

M =
(

a b
c d

)

in M(2, R) (with diag(a, d) and antidiag(b, c)) can be written
as

Mij = xδij + yεij + rηij + sλij . (18)

Here, δij = diag(1, 1), εij = antidiag(1,−1), ηij =
diag(1,−1) andλij = antidiag(1, 1) are fundamental2 by
2 matrices and the quantitiesx, y, r ands are related to the
real quantitiesa, b, c andd by

x =
1
2
(a + d), y =

1
2
(b− c),

r =
1
2
(a− d), s =

1
2
(b + c). (19)

Our first observation is that a complex number

z = x + iy, (20)

wherex andy are real numbers andi2 = −1, can also be
written as [37-38]

zij = xδij + yεij . (21)

In this case, the product of two complex numbers corresponds
to the usual matrix dot product. According to (18), this is
equivalent to setr = 0 ands = 0. So, from these simply
observations one may conclude that the complex structure is
contained inM(2, R). If instead, one setsy = 0 andr = 0
(or s = 0) in (18) one arrives to the so called split num-
bers [39] (or semicomplex numbers (among other alternative
names)). These kind of numbers shall play and important role
below. But before, we use split algebra let just mention the
following. Traditionally, one can not setx = 0 andy = 0
because the dot product ofηik andλlj is not closed. In fact,
one has

ηikδklλlj = εij , (22)

where the quantityδkl plays the role of the dot product. How-
ever, one may introduce a new kind of product (and therefore
new kind of numbers which we shall call “niet” (from dutch
word meaning “no”)) complex if instead ofδkl one usesηkl

in such a way that the product combination ofηik andλlj is
again closed. In fact, in this case one has

ηikηklλlj = λij . (23)

Denoting the matrices product withηkl as a star? one sees
that (23) becomes

η ? λ = λ. (24)

Thus, one can show that all possible combinations ofδ andε
with the dot product are equivalent to all possible combina-
tions ofη andλ with the star product. Therefore, through the
prescription

δ ↔ η, ε ↔ λ, · ↔ ?. (25)
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one discovers that the niet-complex algebra is isomorphic to
the complex structure (see Ref. [40] for more details). On the
other hand the split number differ from the complex numbers
in a number of facts. First while in the complex numbers
ε2 = −1 in the split numbersλ2 = 1. Furthermore, the
fact that in the complex numbers one haszz∗ = x2 + y2, in
the case of split numbers one hasww∗ = x2 − y2, where
z∗ = x − iy andw∗ = x − jy, with j = λ. Of course,
according to the Hurwitz theorem the split number structure
does not form a division algebra. One can see this by assum-
ing y = x and noting that in this caseww∗ = 0. So, split
numbers withy = x does not have inverse.

It is worth mentioning the following observations. It is
known that the fundamental matrices given in (18) not only
form a basis forM(2, R) but also determine a basis for the
Clifford algebrasC(2, 0) and C(1, 1). In fact one has the
isomorphismsM(2, R) ∼ C(2, 0) ∼ C(1, 1). Moreover,
one can show thatC(0, 2) can be constructed using the fun-
damental matrices in (18) and Kronecker products. It turns
out thatC(0, 2) is isomorphic to the quaternionic algebraH.
Thus, it is proved that all the otherC(a, b)’s can be con-
structed from the basic building blocksC(2, 0), C(1, 1) and
C(0, 2) (see Ref. 41 and references therein).

Let us now briefly describe the connection of the coordi-
natesxij andζam in M(2, R) with qubit theory. Let us first
introduce the basis

| j1j2...jn〉 =| j1〉⊗ | j2〉 ⊗ ...⊗ | jn〉. (26)

A general qubit can be written as

|Ψ〉 =
1∑

j1,j2,...,jn=0

ψj1j2...jn | j1j2...jn〉. (27)

For instance, a3-qubit is expressed by

Ψ =
1∑

j1,j2,j3=0

ψj1j2.j3 | j1j2j3〉. (28)

The central idea is to identifyxij andζam with 2-rebits which
are the real version of the corresponding2-qubitsψj1j2 (see
Ref. 3 and references therein).

Let us now come back to consider again the three Nambu-
Goto type actionsS, S andS, given in (12), (13) and (17),
respectively. First of all, the idea is to relate these actions
with the Polyakov action

S =
1
2

∫
dξ(1+1)√−g

[
gab ∂xµ

∂ξa

∂xν

∂ξb
ηµν

]
. (29)

It is well known that this action is equivalent to the Nambu-
Goto action (12) (and therefore to the other two actionsS
andS). Let us recall how this is achieved. Making variations
of (29) with respect togab one obtains the expression

∂xν

∂ξa

∂xσ

∂ξb
ηνσ − 1

2
gab

(
gcd ∂xµ

∂ξc

∂xν

∂ξd
ηµν

)
= 0, (30)

which can be used to substitutegab in (29) and in that way
one obtains the Nambu-Goto action (12). One sees that in
order to related (29) with the hyperdeterminant is enough to
consider (7). In fact, in this case (29) becomes

S =
1
2

∫
dξ(1+1)√−g

[
gab ∂xcm

∂ξa

∂xdn

∂ξb
εcdεmn

]
, (31)

which leads to (13). Of course, this is only true in 2+2-
dimensions. Similarly, by writing (29) as

S =
1
2

∫
dξ(1+1)√−g

[
gab ∂ζam

∂ξa

∂ζbn

∂ξb
ηabηmn.

]
, (32)

where (8) was used, one obtains (17), after variations ofgab.
From the above observations one is tempting to raise the

question: what could be the role of the matricesM(2, R) in
the structure ofM -theory? One knows that the duality con-
cept is an essential aspect inM -theory. Similarly, duality is
a central notion in oriented matroid theory. This is one of
the reasons that oriented matroid theory has been proposed
as the underlying mathematical structure ofM -theory [27].
In this scenario one observe thatM(2, R) describes a self-
dual graphic oriented matroid and therefore is in agreement
with bothM (atroid) theory andM -theory. So, an audacious
proposal could be thatM(2, R) may be one of the essential
building blocks ofM -theory. This proposal is reinforce by
the fact thatM(2, R) is related to qubit theory via (2+2)-
dimensions and to supersymmetry via the Clifford algebra.

By further research and in order to related the previous
discussion with the qubit theory we shall consider the2+10-
dimensional spacetime. This signature has emerged as one
of the most interesting possibilities for the understanding of
both supergravity and super Yang-Mills theory inD = 11.
What it is important for us is that the (2+10)-dimensional the-
ory seems to be the natural background for the (2+2)-brane
(see Refs. 1, 10, 11 and references therein). Thus, let us think
in the possible transition

M (2+10) → M (2+2) ×M (0+8), (33)

which, in principle, can be achieved by some kind of symme-
try breaking applied to the full metric of the spacetime mani-
fold M (2+10). It has been shown that the symmetrySL(2, R)
makes the (2+2)-signature an exceptional one [18]. On the
other hand, the (0+8)-signature is Euclidean and in princi-
ple can be treated with the traditional methods such as the
octonion algebraic approach. In pass, it is interesting to ob-
serve that octonion algebra is also exceptional in the sense of
the celebrated Hurwitz theorem. Thus, one can say that both
(2+2) and (0+8) are exceptional signatures. This means that
the transition (33) is physically interesting.

Consider now the action of the (1+1)-matrix-brane in
(2+10)-dimensional target spacetime background [1],

S =
1
2

∫
dξ(2+2)√−g

√−γ

×
[
gabγmn ∂xν̂

∂ξam

∂xσ̂

∂ξan
ην̂σ̂ − 2

]
, (34)
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whereην̂σ̂ is a flat metric and the indiceŝν, σ̂ now run from1
to 12. Splitting the flat metricην̂σ̂ according to the transition
(2+10)→ (2+2)+(0+8) one finds that (34) can be written as

S = S1 + S2, (35)

where

S1 =
1
2

∫
dξ(2+2)√−g

√−γ

×
[
gabγmn ∂xA

∂ξam

∂xB

∂ξbn
ηAB

]
(36)

and

S2 =
∫

dξ(2+2)√−g
√−γ

×
[
gabγmn ∂xÂ

∂ξam

∂xB̂

∂ξbn
ηÂB̂ − 2

]
. (37)

Here, the indicesA,B run from1 to 4 andÂ, B̂ run from5
to 12. Using the changexA → xpq one can writeS1 in the
form

S1 =
1
2

∫
dξ(2+2)√−g

√−γ

×
[
gabγmn ∂xcd

∂ξam

∂xkl

∂ξbn
εckεdl

]
, (38)

while if one uses the changexA → ζpq one has

S1 =
1
2

∫
dξ(2+2)√−g

√−γ

×
[
gabγmn ∂ζij

∂ξam

∂ζkl

∂ξbn
ηikηjl

]
. (39)

Now, both metricsgab andγmn ‘live’ in (1+1)-dimensions.
So, according to our previous discussion (38) and (39) can be
expressed in terms of the fundamental matricesδij , εij , λij

andηij which are elements of the basis ofM(2, R). This
means that we have proved that (2+2)-dimensional sector of
M (2+10) can be connected with qubit theory via the elemen-
tary basis matricesδij , εij , λij andηij .

It is interesting to observe that both actionsS1 andS1,
given in (38) and (39) respectively, are double Weyl invariant
in the sense that are invariants with respect to the transforma-
tions gab → efgab andγmn → ehγmn, for arbitrary func-
tionsf andh. This is quite interesting because as it is known
the Weyl invariance of the Polyakov action is linked to the
critical dimensions of the target spacetime determined by the
metricηAB . If one adds to this observation the fact that the
flat target metricηAB in the action (36) is written in terms
of eitherεckεdl or ηikηjl (according to (38) and (39), respec-
tively), which are the qubit inspired metrics, one is tempted
to conjecture a link between the critical dimensions and qubit
theory in the (1+1)-matrix-brane theory.

Let us now discuss the (1+1)-matrix-brane theory from
the perspective of split algebra. First, observe that if one has
two split numbersdω1 = dx1 + jx3 anddω2 = dx2 + jdx4

(remember;j = λ with j2 = 1) then one gets the invariant

ds2 = dω1dω1∗ + dω2dω2∗

= dx1dx1 + dx2dx2 − dx3dx3 − dx4dx4, (40)

which determines, in a natural way, a (2 + 2)-signature. This
means that the Nambu-Goto action in (2+2)-dimensions can
also be written as

S =
1
2

∫
dξ(1+1)√−g

[
gab ∂ωm

∂ξa

∂ω∗n

∂ξb
δmn.

]
, (41)

or

S=
1
2

∫
dξ(1+1)√−g

[
gab ∂ωcmr

∂ξa

∂ω∗dns

∂ξb
δcdδmn.

]
, (42)

where we wroteω in terms ofδij andλij . Similarly, in the
case of (1+1)-matrix-brane system one must have

S1 =
1
2

∫
dξ(2+2)√−g

√−γ

×
[
gabγmn ∂ωcir

∂ξam

∂ω∗djs

∂ξbn
δcdδij

]
. (43)

One of the reason to become interested in the structure (43)
is because recently Hasebe [4] has introduced the mathemat-
ical concept of non-compact Hopf maps. In fact, in analogy
to the Hopf maps (which play a key role in the paralelliz-

abilty of spheres and division algebras [42])S3 S1

−→ S2,

S7 S3

−→ S4 andS15 S7

−→ S8 and using the split algebra

Hasebe introduced the non-compact Hopf mapsH2,1 H1,0

−→
H1,1, H4,3 H2,1

−→ H2,2 and H8,7 H4,3

−→ H4,4 . Here,Hp,q

denotes higher dimensional hyperboloids

xAxA − xÂxÂ = −1, (44)

whereA = 1, ..., p andÂ = 1, ..., q + 1. Indeed, in terms of
the signature the non-compact Hopf maps may be also writ-

ten as(2 + 2)
(1+1)−→ (1 + 2), (4 + 4)

(2+2)−→ (2 + 3) and

(8 + 8)
(4+4)−→ (4, 5). So, the (2+2)-signature and the split

algebra play a key role in these developments. Moreover,
one may expect this approach to be useful in the context of
M -theory since it has been shown [43] that versions ofM -
theory lead to type IIA string theories in spacetime of signa-
tures (0+10), (1+9), (2+8), (6+4) and (5+5), and to type IIB
string theories of signatures (1+9), (3+7) and (5 +5). It turns
out that these theories are linked by duality transformations.
One notices that the (5+5)-signature is common to both type
IIA strings and type IIB strings. So, one wonders whether
Hasebe formalism and matrix-brane theory may also be re-
lated to the (5+5)-signature.

It is worth remarking that the split quaternions can also
be related to the (2+2)-signature in a natural way. In fact,

Rev. Mex. Fis.62 (2016) 251–256



REMARKS ON THE (1+1)-MATRIX-BRANES, QUBIT THEORY AND NON-COMPACT HOPF MAPS 255

one may reveal split quaternionic structure in the action (43)
by writing dp = dω1 + idω2 and properly using the algebra
betweeni, j andk = ij, with k2 = 1 (see the algebra (4)
in Ref. 44). Considering such an algebra it is not difficult to
show thatdp can also be written as

dp = dz1 + dz2j = dx1 + ix2 + jdx3 + kdx4, (45)

wheredz1 = dx1 + ix2 anddz2 = dx3 + idx4 and therefore
one getsdpdp∗ = dz1dz1∗ − dz2dz2∗. Thus, one finds that
in this case the action (43) becomes

S1 =
1
2

∫
dξ(2+2)√−g

√−γ

[
gabγmn ∂p

∂ξam

∂p∗

∂ξbn

]
. (46)

It turns out that one of the advantage of the formulation (46)
is that may shed light on a possible route to supersymmetrize
the (1+1)-matrix-brane theory via the proposed 2-spinors
over the split quaternions structure [44]. This is particularly

interesting because there exist already a formulation of the
Dirac equation in terms of the split-quaternions. Moreover,
the usual Dirac 4-spinor is replaced by a 2-spinor with split
quaternionic components. In this framework, the SO(3, 2;R)
symmetry of the Lorentz invariant scalarψ̄ψ is manifest and
therefore there exist a finite unitary representations of the
Lorentz group over the split-quaternions (see Ref. [44] for
details).

Finally, since part of the motivation of considering non-
compact Hopf maps it emerges from the concept of fuzzy
spheres [45] it may be interesting for further research to re-
late the (1+1)-matrix-brane with fuzzy geometry.
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