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Remarks on the (1+1)-Matrix-Branes, qubit theory and non-compact Hopf maps
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We discuss different aspects of a possible link between the (1+1)-matrix-brane system with qubit theory and non-compact Hopf maps. In
these scenarios, the (2+2)-signature plays an important role. We argue that such links may shed some light on the (2+2)-dimensional sectc
of a (2+10)-dimensional target background.
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Our main goal in this work is to establish links between theone finds that (1) can be written as
(1+1)-matrix-brane system [1] (see also Ref. 2) with qubit

theory (see Ref. 3 and references therein) and non-compact ds® = dz"" dz"" e apErmn, ()
Hopf maps [4]. In such connections the (2+2)-signature plays

a key role. It turns out that through the years the (2+2)Wherea,b,m,n € {1,2}. Moreover, by defining the alterna-
signature has become a very important notion in differenflvé matrix L

scenarios of mathematics [5-6] (see also Refs. 7 and 8) and (Pl = < vl ) , ()
physics. In fact, the (2+2)-sighature emerges in several phys- T

ical context, including self-dual gravitg la Plebanski (see it is not difficult to show that (1) can also be written as

Ref. 9 and references therein), consistdht= 2 super-

string theory [10-11],N = (2,1) heterotic string [12-15]. ds® = dC¥™dC™ oy mn.- (5)
Furthermore, it has been emphasized [16-17] that Majorana-

Weyl spinors exist in a spacetime of (2+2)-signature. Using1ere, n., = diag1l, 1) andn,,, = diag(l,—1). This

the requirement of thé (2, R)-group and Lorentz symme- proves that the three line elements (1), (3) and (5) are equiv-
tries it has been proved [18] that (2+2)-target spacetime oflents. Thus, one can say that these equivalences provide
a 0-brane is an exceptional signature. Moreover, the (2+2)an interesting connection between the signatures (1+1) and
signature arises following an alternative idea to the notion of2+2).

‘worldsheets for worldsheets’ [19] or the O-branes condensa- It turns out that such equivalences at the level of the line
tion [20]. Another recent motivation for a physical interest elements (1), (3) and (5) can be transferred to the matrix

in the (2+2)-signature has emerged via the discovery [21] of Onk D

hidden symmetries of the Nambu-Goto action. In fact, in this Rab = == = M-

case the Nambu-Goto action in a (2+2)-target spacetime can 9 9¢

be written in terms of a hyperdeterminant, revealing appary, fact, (6) can be written in the following two equivalent

(6)

ently new hidden symmetries of such an action. forms
In this work, we shall explore possible links between oxc™m Hrin
the (1+1)-matrix-brane system with qubit theory and non- b= hga peb €cdEmn )

compact Hopf maps. We start by reviewing the relation be- nd

tween Refs. 1 and 21, concerning the (2+2)-signature. Fo? acem edn
this purpose we shall consider both the (1+1)-matrix-brane hap = oga ggv edlmn- (8)
theory and the hyperdeterminant structure approach, focus-
ing on the (2+2)-signature. So, by introducing the quantity
First, consider the line element g
i 0¥
Vo™ = JAza> (9)
ds?® = dat dx¥ ny.. (1) g
Here, we shall assume that the indiges € {1,2,3,4} and itis straightforward to verify that
that the flat metrie),,, = diag(1,1,—1,—1) determines the S
(2+2)-signature. Introducing the matrix det(hap) = lgacgbd Oxt Oz¥ Oz Ox (10)

2! D€x 0gb dge pgd mvles

pab _ ol + 23 2t + 22 @ .
T\t —a2? =23 ) can be written as
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in M (2, R) (with diag(a, d) and antidiagp, ¢)) can be written
as

1 .
Det(hap) = Eaacgbdgegafhfiké‘jlvae'beg vc”vdkl. (12)

Here, the notation Dék,;,) means hyperdeterminant. Thus
one finds that the Nambu-Goto action

Mij = xéij + yei; +rni + S/\ij. (18)

' Here, ;; = diag(1,1), ¢;; = antidiagl,—1), n;; =
diag(1, —1) and \;; = antidiag1,1) are fundamentat by
S — /d£(1+1) — det(hay) (12) 2 matrices_ _and the quantities y, » and s are related to the

. real quantities:, b, c andd by

can also be written as

S = / de+D/—Det(hyy). (13)

r=Satd), y=30b-0),

1 1
Actually, one has r=gla—d), s=;(b+o). (19)
det(hqp) = Det(hap). (14)  Our first observation is that a complex number
Similarly, introducing the quantity r= oty (20)
L OCH
u,” = , (15) .
a oga wherex andy are real numbers and = —1, can also be

it is also straightforward to see thdtt(h,;), given in (10), written as [37-38]

can also be written as

1 ac_bd ef, gh_  ij kl e xéij i veu (21)
Det(hubL?! & eglgnliktsitta ™ty e M (16) In this case, the product of two complex numbers corresponds
This means that the Nambu-Goto action (12) is also equivato the usual matrix dot product. According to (18), this is
lent to equivalent to set = 0 ands = 0. So, from these simply
S = /d§(1+1) /—Det(hay)- (17)  observations one may conclude that the complex structure is
contained inM (2, R). If instead, one setg = 0 andr = 0

This shows that in (2+2)-dimensiot§ S andS are equiva-  (or s = 0) in (18) one arrives to the so called split num-
lent actions. The interesting thing is tiareveals new hid-  pers [39] (or semicomplex numbers (among other alternative
den symmetries in the original Nambu-Goto acti®rf21].  names)). These kind of numbers shall play and important role
Presumably, the same conclusion can be said in the case pélow. But before, we use split algebra let just mention the
the actionS. (Details of the connections between the actionsfollowing. Traditionally, one can not set = 0 andy = 0
S, S andS can be found in Ref. 1.) because the dot product af, and)\;; is not closed. In fact,

In order to related the previous discussion with qubit the-gne has
ory and Hopf maps it is convenient to introduce the math-
ematical notion of2 by 2 real matricesM (2, R). It turns

out that through the years the importanceldf2, ) has  where the quantity*! plays the role of the dot product. How-
emerged in different scenarios of physics and mathematicgyer, one may introduce a new kind of product (and therefore
including Clifford algebras [22-23], matroid theory [24-25] new kind of numbers which we shall call “niet” (from dutch
(see also Refs. 26 to 32 and references therein), string thgyord meaning “no”)) complex if instead o one usesg)*

ory [33], 2d gravity [34], 2¢ physics [35], qubit theory (see in such a way that the product combinationgf and.;; is
Refs. 3 and references therein) among others. We argue thagain closed. In fact, in this case one has

these connections may suggest that one may even consider

the setM (2, R) as one of the underlaying structures of su- niknkl)\lj = \ij. (23)
persymmetry and/-theory [36]. This last observation is due

in part to the fact thad/ (2, R) is linked to a2-rank self-dual Denoting the matrices product witf! as a star one sees
oriented matroid and to the fact that in both oriented matroid, 5 (23) becomes
theory andM -theory the duality concept plays a fundamen-

tal role. Indeed, it has been proposed [27] that oriented ma- nxA=A. (24)

troid theory may be considered as the underlying mathematrhusy one can show that all possible combinations arids

ical framework for/-theory. with the dot product are equivalent to all possible combina-

i _Let us briefly recall SOme aspects bf (2, R). Itis not tions ofn and A with the star product. Therefore, through the
difficult to see that any matrix prescription

N6 N = iy (22)

a b
=00 Fen sen s @
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one discovers that the niet-complex algebra is isomorphic tavhich can be used to substitujg, in (29) and in that way
the complex structure (see Ref. [40] for more details). On th@ne obtains the Nambu-Goto action (12). One sees that in
other hand the split number differ from the complex numbersorder to related (29) with the hyperdeterminant is enough to
in a number of facts. First while in the complex numbersconsider (7). In fact, in this case (29) becomes
e2 = —1 in the split numbers\? = 1. Furthermore, the 1 Hzem Hpdn
fact that in the complex numbers one has = 22 + 42, in S = f/dguﬂ)\/—ig [gab - bfcdemn} . (31)
the case of split numbers one has* = x2 — y?, where 2 oge 98
2* =z — iy andw* = = — jy, with j = \. Of course, Which leads to (13). Of course, this is only true in 2+2-
according to the Hurwitz theorem the split number structuredimensions. Similarly, by writing (29) as
does not form a division algebra. One can see this by assum- 1 acam ochn
ingy = = and noting that in this casew* = 0. So, split S = §/d§(1+1)\/—7} [g“ba v nabnmn-:l , (32)

: ) e 0
numbers withy = = does not have inverse.

It is worth mentioning the following observations. It is Where (8) was used, one obtains (17), after variations,of
known that the fundamental matrices given in (18) not only ~ From the above observations one is tempting to raise the
form a basis forM (2, R) but also determine a basis for the question: what could be the role of the matrice$2, R) in
Clifford algebrasC(2,0) and C(1,1). In fact one has the the structure of\/-theory? One knows that the duality con-
isomorphismsM (2, R) ~ C(2,0) ~ C(1,1). Moreover, Ceptis an essential aspectifi-theory. Similarly, duality is
one can show thaf/(0, 2) can be constructed using the fun- @ central notion in oriented matroid theory. This is one of
damental matrices in (18) and Kronecker products. It turnghe reasons that oriented matroid theory has been proposed
out thatC'(0, 2) is isomorphic to the quaternionic algebia  @s the underlying mathematical structureldttheory [27].
Thus, it is proved that all the otheF(a,b)'s can be con- In this scenario one observe thaf(2, R) describes a self-
structed from the basic building block(2,0), C(1,1) and ~ dual graphic oriented matroid and therefore is in agreement
C(0,2) (see Ref. 41 and references therein). with both M (atroid) theory and\/-theory. So, an audacious

Let us now briefly describe the connection of the coordi-Proposal could be that/(2, k) may be one of the essential
natesz’/ and¢®™ in M (2, R) with qubit theory. Let us first building blocks of M-theory. This proposal is reinforce by

introduce the basis the fact thatM (2, R) is related to qubit theory via (2+2)-
dimensions and to supersymmetry via the Clifford algebra.
| j1j2--dn) = J1)® | j2) @ ...® | jn)- (26) By further research and in order to related the previous
discussion with the qubit theory we shall consider2hel0-
A general qubit can be written as dimensional spacetime. This signature has emerged as one

of the most interesting possibilities for the understanding of
both supergravity and super Yang-Mills theorylih = 11.
What it is important for us is that the (2+10)-dimensional the-
ory seems to be the natural background for the (2+2)-brane

1

|T) = Z wj1j2~~jn

J1,J25-:Jn=0

j1j2~~jn>~ (27)

For instance, &-qubit is expressed by (see Refs. 1, 10, 11 and references therein). Thus, let us think
) in the possible transition
U= Y I Gags). (28) MEHO — 2 MO0, (33)
J1,J2,33=0

which, in principle, can be achieved by some kind of symme-

The central idea is to identify’’ and¢® with 2-rebits which  try breaking applied to the full metric of the spacetime mani-

are the real version of the correspondingubitsy717z (see  fold M®+10). Ithas been shown that the symmesig(2, R)

Ref. 3 and references therein). makes the (2+2)-signature an exceptional one [18]. On the
Let us now come back to consider again the three Nambuother hand, the (0+8)-signature is Euclidean and in princi-

Goto type actionsS, S andS, given in (12), (13) and (17), Ple can be treated with the traditional methods such as the

respectively. First of all, the idea is to relate these action®ctonion algebraic approach. In pass, it is interesting to ob-
with the Polyakov action serve that octonion algebra is also exceptional in the sense of

the celebrated Hurwitz theorem. Thus, one can say that both
g }/dg(lﬂ)\/_—g |:g“b Ozt Oa” } (29) (2+2) and (0+8) are exceptional signatures. This means that
2

aea gev |- the transition (33) is physically interesting.
Consider now the action of the (1+1)-matrix-brane in

It is well known that this action is equivalent to the Nambu- (2+10)-dimensional target spacetime background [1]

Goto action (12) (and therefore to the other two actiSns )
ands). L_et us recall how this is ac_h|eved. Makmg variations S == /d§(2+2)\/jgﬁ
of (29) with respect t@,; one obtains the expression 2
Ox? Ox?
8.TV 83;“7 1 .d 855“ a.’l’;l/ X |:gabfymn ——Noe — 2 (34)
Aea acp Hve — 5Ya ¢ — N | =0, 30 am an Vo ’
a7 o 5 9ab <g ogc agd ) (30) g ¢
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wheren, s is a flat metric and the indiceés 6 now run froml Let us now discuss the (1+1)-matrix-brane theory from

to 12. Splitting the flat metrie);; according to the transition the perspective of split algebra. First, observe that if one has

(2+10)— (2+2)+(0+8) one finds that (34) can be written as two split numbersiw! = dz! + jz?® anddw? = dz? + jdz*
(remember; = X\ with 52 = 1) then one gets the invariant

S =51+ So, 35
L2 (35) ds? = dw'dw' + dw?dw?*
where 0
= dzldat + da?dz® — dadda® — datdz®,  (40)
1 242
S1 = 9 /dﬁ( V=gV which determines, in a natural way, 2+ 2)-signature. This
9uA 9B means that the Nambu-Goto action in (2+2)-dimensions can
% [ gy 8;'1 _ o”éﬁ n AB} (36)  also be written as
1 Ow™ Juw*™
S = [ deMD =g | g 6. 41
and 2/5 919" 5¢ aeb , o (4))
or
52 = /d€(2+2) A 1 O™ H *dns
- . S:*/dg(l—i_l)\/_g |:gab u wl75cd6mn:| ’ (42)
b ord 9B ) a7 2 o¢e o0&
X R A A —
ogam ggbn a5 37) where we wrotev in terms ofd,;; and A;;. Similarly, in the
case of (1+1)-matrix-brane system one must have
Here, the indicesi, B run from1 to 4 and A, B run from5 1
to 12. Using the change® — 2?9 one can writeS; in the Si=3 /d§(2+2)\/—g\/—’y
form
awci’r 8w*djs
1 ab,. mn o
Sl = 5/'dé'(Q"‘Q) /_g /_’Y X |:g Y 8€am 8§b" 5cd67,j:| (43)
ozcd 9l One of the reason to become interested in the structure (43)
X {gaby"‘” fgam awa€Ck€dl:| , (38) is because recently Hasebe [4] has introduced the mathemat-

ical concept of non-compact Hopf maps. In fact, in analogy
to the Hopf maps (which play a key role in the paralelliz-

while if one uses the change' — (P9 one has o
abilty of spheres and division algebras [48} = 52,

1
S1= 5 /d€(2+2)\/—9\/ - §7 52 st andsts 5L 8 and using the split algebra
ocii k! Hasebe introduced the non-compact Hopf maps' 2
x [Q“bvmn DEe oEon W@W} : (39) g g3 1 g2 and gsT L At Here, HP

denotes higher dimensional hyperboloids
Now, both metricsy® and~™" ‘live’ in (1+1)-dimensions. N i
So, according to our previous discussion (38) and (39) can be rhrA —rtr gy =1, (44)
expressed in terms of the fundamental matriggss;;, A;;
andn;; which are elements of the basis df(2, R). This

means that we have proved that (2+2)-dimensional sector

whered =1, ...,pandA = 1, ...,¢ + 1. Indeed, in terms of
(;[Pe signature the non-compact Hopf maps may be also writ-

(1+1) (242)
M2+10) can be connected with qubit theory via the elemen1€n as(2(4+42)) — (1+2),4d+4 — (2+3)and
tary basis matrices;;, €;;, A;; andn;;. (8 4+ 8) i (4,5). So, the (2+2)-signature and the split

It is interesting to observe that both actid®s and Sy, algebra play a key role in these developments. Moreover,
given in (38) and (39) respectively, are double Weyl invariantone may expect this approach to be useful in the context of
in the sense that are invariants with respect to the transformai/ -theory since it has been shown [43] that versiond/bf
tions g% — ef g2 andy™" — eh~™n, for arbitrary func-  theory lead to type IIA string theories in spacetime of signa-
tions f andh. This is quite interesting because as it is knowntures (0+10), (1+9), (2+8), (6+4) and (5+5), and to type 11B
the Weyl invariance of the Polyakov action is linked to the string theories of signatures (1+9), (3+7) and (5 +5). It turns
critical dimensions of the target spacetime determined by theut that these theories are linked by duality transformations.
metricn4 . If one adds to this observation the fact that theOne notices that the (5+5)-signature is common to both type
flat target metricy 4 in the action (36) is written in terms 1lA strings and type 1IB strings. So, one wonders whether
of eithere e Or ;.15 (according to (38) and (39), respec- Hasebe formalism and matrix-brane theory may also be re-
tively), which are the qubit inspired metrics, one is temptedated to the (5+5)-signature.
to conjecture a link between the critical dimensions and qubit It is worth remarking that the split quaternions can also
theory in the (1+1)-matrix-brane theory. be related to the (2+2)-signature in a natural way. In fact,
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one may reveal split quaternionic structure in the action (43)nteresting because there exist already a formulation of the

by writing dp = dw' + idw? and properly using the algebra
betweeni, j andk = ij, with k2 = 1 (see the algebra (4)

Dirac equation in terms of the split-quaternions. Moreover,
the usual Dirac 4-spinor is replaced by a 2-spinor with split

in Ref. 44). Considering such an algebra it is not difficult to quaternionic components. In this framework, the SO(3, 2;R)

show thatdp can also be written as

dp = dz" + dz?j = da' + iz? + jda® + kdz*,  (45)

wheredz! = dz' +1i2? anddz? = dz3 + idz* and therefore
one getsipdp* = dz'dz'* — dz?dz**. Thus, one finds that
in this case the action (43) becomes

op Op”
agam agbn

1
S =3 / de®TD /=g/= | g®ym . (46)

symmetry of the Lorentz invariant scala) is manifest and
therefore there exist a finite unitary representations of the
Lorentz group over the split-quaternions (see Ref. [44] for
details).

Finally, since part of the motivation of considering non-
compact Hopf maps it emerges from the concept of fuzzy
spheres [45] it may be interesting for further research to re-
late the (1+1)-matrix-brane with fuzzy geometry.
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