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A detailed Dirac’s canonical analysis for a topological four dimensionalBF -like theory with a compact dimension is developed. By per-
forming the compactification process we find out the relevant symmetries of the theory, namely, the full structure of the constraints and the
extended action. We show that the extended Hamiltonian is a linear combination of first class constraints, which means that the general
covariance of the theory is not affected by the compactification process. Furthermore, in order to carry out the correct counting of physical
degrees of freedom, we show that must be taken into account reducibility conditions among the first class constraints associated with the ex-
cited KK modes. Moreover, we perform the Hamiltonian analysis of Maxwell theory written as aBF -like theory with a compact dimension,
we analyze the constraints of the theory and we calculate the fundamental Dirac’s brackets, finally the results obtained are compared with
those found in the literature.
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1. Introduction

Models that involve extra dimensions have introduced com-
pletely new ways of looking up on old problems in theoretical
physics; the possible existence of a dimension extra beyond
the fourth dimension was considered around 1920’s, when
Kaluza and Klein (KK) tried to unify electromagnetism with
Einstein’s gravity by proposing a theory in 5D, where the fifth
dimension is a circleS1 of radiusR, and the gauge field is
contained in the extra component of the metric tensor (see
Ref. 1 and references therein). Nowadays, the study of mod-
els involving extra dimensions have an important activity in
order to explain and solve some fundamental problems found
in theoretical physics, such as, the problem of mass hierar-
chy, the explanation of dark energy, dark matter and infla-
tion [2]. Moreover, extra dimensions become also impor-
tant in theories of grand unification trying of incorporating
gravity and gauge interactions consistently. In this respect,
it is well known that extra dimensions have a fundamental
role in the developing of string theory, since all versions of
the theory are natural and consistently formulated only in
a spacetime of more than four dimensions [3,4]. For some
time, however, it was conventional to assume that in string
theory such extra dimensions were compactified to complex
manifolds of small sizes about the order of the Planck length,
`P ∼ 10−33 cm [4,5], or they could be even of lower size
independently of the Plank Length [6-8]; in this respect, the
compactification process is a crucial step in the construction
of models with extra dimensions [9].

On the other hand, there are phenomenological and theo-
retical motivations to quantize a gauge theory in extra dimen-
sions, for instance, if there exist extra dimensions, then their

effects could be tested in the actual LHC collider, and in the
International Linear Collider [10].

We can find several works involving extra dimensions, for
instance, in Refs. 4, 5, and 9 is developed the canonical anal-
ysis of Maxwell theory in five dimensions with a compact
dimension, after performing the compactification and fixing
the gauge parameters, the final theory describes to Maxwell
theory plus a tower of KK excitations corresponding to mas-
sive Proca fields. Furthermore, in the context of Yang-Mills
(YM) theories, in Ref. 11 it has been carry out the canonical
analysis of a 5D YM theory with a compact dimension; in
that work were obtained different scenarios for the 4D effec-
tive action obtained after the compactification; if the gauge
parameters propagate in the bulk, then the excited KK modes
are gauge fields, and they are matter vector fields provided
that those parameters are confined in the 3-brane.

On the other side, the study of alternative models describ-
ing Maxwell and YM theories expressed as the coupling of
topological theories have attracted attention recently because
of its close relation with gravity. In fact, the study of topo-
logical actions has been motived in several contexts of the-
oretical physics given their interesting relation with physical
theories. One example of this is the well-known MacDowell-
Maunsouri formulation of gravity (see Ref. 12 and references
therein). In this formulation, breaking theSO(5) symmetry
of aBF -theory forSO(5) group down toSO(4) we can ob-
tain the Palatini action plus the sum of second Chern and Eu-
ler topological invariants. Due to these topological classes
have trivial local variations that do not contribute classically
to the dynamics, we thus obtain essentially general relativ-
ity [13,14]. Furthermore, in Refs. 15 and 16 , an analysis of
specific limits in the gauge coupling of topological theories
yielding a pure YM dynamics in four and three dimensions
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has been reported. In this respect, in the four-dimensional
case, nonperturbative topological configurations of the gauge
fields are defined as having an important role in realistic the-
ories, e.g. quantum chromodynamics. Moreover, the 3D
case is analyzed at the Lagrangian level, and the action be-
comes the coupling ofBF -like terms in order to generalize
the quantum dynamics of YM [15].

Because of the ideas expressed above, in this paper we
analyze a four dimensionalBF -like theory and the Maxwell
theory written as aBF -like theory (it is also called first or-
der Maxwell action [17]) with a compact dimension. First,
we perform the analysis for theBF term; in this case we are
interested in knowing the symmetries of a topological the-
ory defined in four dimensions with a compact dimension.
We shall show that in order to obtain the correct counting of
physical degrees of freedom, we must take into account re-
ducibility conditions among the first class constraints of the
KK excitations; hence, in this paper we present the study of a
model with reducibility conditions in the KK modes. Finally,
we perform the Hamiltonian analysis of first order Maxwell
action with a compact dimension, and we compare our results
with those found in the literature. In addition, we have added
as appendix the fundamental Dirac’s brackets of the theories
under study, thus we develop the first steps for studying the
quantization aspects.

2. Hamiltonian dynamics of a BF-like topolog-
ical theory with a compact dimension

In the following lines, we shall study the Hamiltonian dynam-
ics for a four dimensionalBF -like topological theory with a
compact dimension; then we develop the canonical analysis
of a four dimensional Maxwell theory written as aBF -like
theory with a compact dimension.

Let us start with the following action reported in Sun-
dermeyer’s book [18] (also Yang-Mills theory is written as a
BF -like theory in that book) defined in four dimensions

S1 [A, B] =
∫

d4x

{
1
4
BMNBMN

− 1
2
BMN (∂MAN − ∂NAM )

}
, (1)

whereBMN = −BNM . The equations of motion obtained
from (1) are given by

∂MBMN = 0, (2)

BMN = ∂MAN − ∂NAM . (3)

By taking into account (3) in (2), we obtain the Maxwell’s
free field equations. The action (1) is written in the first order
form, it have been analysed without a compacta dimension in
Ref. 17. In that paper was worked the context of S-duality
transformation by taking into account the general covariance

of the Dirac algorithm and also the Dirac brackets of the the-
ory were constructed by using the field redefinition method.
Moreover, a pure Dirac’s analysis of the action (1) has been
reported in Ref. 19, where it was showed that the action can
be split in two terms lacking physical degrees of freedom,
the complete action, however, does have physical degrees of
freedom, the Maxwellian degrees of freedom. The studio of
action (1) with a compact dimension becomes important be-
cause could expose some information among the topological
sector given in the second term on the right hand side of (1)
(theBF term), and the dynamical sector given in the full ac-
tion. Furthermore, our study could be useful for extending
the work reported in Ref. 17 in order to find the dual theory
of Maxwell with extra dimensions.

Hence, we first analyze the following action

S2 [A, B] =
∫

d4x
{
BMN (∂MAN − ∂NAM )

}
. (4)

The actionS2 is a topological theory, and its study in the
context of extra dimensions become relevant. We need to re-
member that topological field theories are characterized by
being devoid of local degrees of freedom. That is, the theo-
ries are susceptible only to global degrees of freedom asso-
ciated with non-trivial topologies of the manifold in which
they are defined and topologies of the gauge bundle, thus the
next question arises; it is affected the topological nature ofS2

because of the compactification process?. Moreover, in or-
der to carry out the counting of physical degrees of freedom
of (4) without a compact dimension, we must take into ac-
count reducibility conditions among the constraints [19,20],
hence, it is interesting to investigate if reducible constraints
are still present after performing the compactification pro-
cess. In fact, the Hamiltonian analysis of theories with re-
ducibility conditions among the constraints in the context of
extra dimensions has not been performed, and we shall an-
swer these questions along this paper.

For simplicity, we shall work with a four dimensional ac-
tion. Then we will perform the compactification process in
order to obtain a three dimensional effective Lagrangian. It
is straightforward perform the extension of our results to di-
mensions higher than four. The notation that we will use
along the paper is the following: the capital latin indices
M, N run over 0, 1, 2, 3 here 3 label the compact dimen-
sion and these indices can be raised and lowered by the
four-dimensional Minkowski metricηMN = (−1, 1, 1, 1); z
will represent the coordinate in the compact dimension and
µ, ν = 0, 1, 2 are spacetime indices,xµ the coordinates that
label the points for the three-dimensional manifoldM3; fur-
thermore we will suppose that the compact dimension is a
S1/Z2 orbifold whose radius isR; then any dynamical vari-
able defined onM3×S1/Z2 can be expanded in terms of the
complete set of harmonics [4,5,11,21]

B3µ(x, z) =
1√
πR

∞∑
n=1

B3µ
(n)(x) sin

(nz

R

)
,
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Bµν(x, z) =
1√
2πR

Bµν
(0)(x)

+
1√
πR

∞∑
n=1

Bµν
(n)(x) cos

(nz

R

)
,

A3(x, z) =
1√
πR

∞∑
n=1

A
(n)
3 (x) sin

(nz

R

)
,

Aµ(x, z) =
1√
2πR

A(0)
µ (x)

+
1√
πR

∞∑
n=1

A(n)
µ (x) cos

(nz

R

)
. (5)

The dynamical variables of the theory are given byA
(0)
i ,

A
(0)
0 , B0i

(0), Bij
(0), A

(n)
3 , A

(n)
i , A

(n)
0 , B03

(n), Bi3
(n), B0i

(n), Bij
(n),

with i, j = 1, 2.
Let us perform the Hamiltonian analysis of the topologi-

cal term given byS2

S2 [A, B] =
∫

d3x

2πR∫

0

dz
{
BMN (∂MAN−∂NAM )

}
. (6)

First, we start the analysis by performing the 3+1 decompo-
sition and we use explicitly the expansions given in (5); then
we perform the compactification process on aS1/Z2 orb-
ifold, we obtain the following effective Lagrangian

L2 = 2B0i
(0)Ȧ

(0)
i + 2A

(0)
0 ∂iB

0i
(0) + Bij

(0)F
(0)
ij

+
∞∑

n=1

[
2A

(n)
0 ∂iB

0i
(n) + 2B0i

(n)Ȧ
(n)
i

+ 2Bi3
(n)

(
∂iA

(n)
3 +

n

R
A

(n)
i

)

+ 2B03
(n)

(
∂0A

(n)
3 +

n

R
A

(n)
0

)
+ Bij

(n)F
(n)
ij

]
, (7)

whereF
(m)
ij = ∂iA

(m)
j − ∂jA

(m)
i . The first three terms on

the left hand side are called the zero modes and the theory de-
scribes a topological theory [19,20,22], the following terms
correspond to a KK tower; in fact, bothBαβ

(n) andA
(n)
α are

called Kaluza-Klein (KK) modes. In the following, we shall
suppose that the number of KK modes is given byk, taking
the limit k →∞ at the end of the calculations.

The theory under study is a singular system, it is easy to
observe that the Hessian is a10k − 4 × 10k − 4 matrix, it
has a determinant equal to zero. Hence, the Hamiltonian for-
malism calls for the definition of the momenta

(
Π(n)

MN , ΠM
(n)

)

canonically conjugate to
(
A

(n)
M , BMN

(n)

)
,

ΠM
(n) =

δL2

δ
(
∂0A

(n)
M

) , Π(n)
MN =

δL2

δ
(
∂0BMN

(n)

) , (8)

here,n = 1, 2, 3, .., k − 1. We also can observe that the rank
of the Hessian is zero, so we expect10k − 4 primary con-
straints; from the definition of the momenta (8). We identify
the following primary constraints:

zero-modes k-modes

φ
(0)
0j ≡Π(0)

0j ≈0, φ
(n)
03 ≡ Π(n)

03 ≈0,

φ
(0)
ij ≡Π(0)

ij ≈0, φ
(n)
i3 ≡Π(n)

i3 ≈0,

φi
(0)≡Πi

(0)−2B0i
(0)≈0, φ

(n)
0i ≡Π(n)

0i ≈0,

φ0
(0)≡Π0

(0)≈0, φ
(n)
0i ≡Π(n)

0i ≈0,

φ3
(n)≡Π3

(n)−2B03
(n)≈0,

φi
(n)≡Πi

(n)−2B0i
(n)≈0,

φ0
(n)≡Π0

(n)≈0.

(9)

Furthermore, the canonical Hamiltonian is given by

Hc =
∫

d2x

(
−A

(0)
0 ∂iΠi

(0) −Bij
(0)F

(0)
ij

+
∞∑

n=1

[
− 2Bi3

(n)

(
∂iA

(n)
3 +

n

R
A

(n)
i

)

−A
(n)
0

(
∂iΠi

(n) +
n

R
Π3

(n)

)
Bij

(n)F
(n)
ij

])
.

Thus by using the primary constraints (9), we define the pri-
mary Hamiltonian given by

HP = Hc+
∫

dx2

[
λ0j

(0)φ
(0)
0j +λij

(0)φ
(0)
ij +λ

(0)
i φi

(0)

+λ
(0)
0 φ0

(0)+
∞∑

n=1

(
λ03

(n)φ
(n)
03 +λj3

(n)φ
(n)
j3 +λ

(n)
3 φ3

(n)

+ λ0j
(n)φ

(n)
0j +λij

(n)φ
(n)
ij +λ

(n)
i φi

(n)+λ
(n)
0 φ0

(n)

)]
, (10)

whereλ03
(n), λj3

(n), λ
(n)
3 , λ0j

(n), λij
(n), λ

(n)
i , λ

(n)
0 andλ0j

(0), λij
(0),

λ
(0)
i , λ

(0)
0 are Lagrange multipliers enforcing the constraints.

The non-vanishing fundamental Poisson brackets for the the-
ory under study are given by

{A(m)
M (x0, x), ΠN

(n)(x
0, y)} = δM

Nδm
nδ2(x− y),

{BMN
(m) (x0, x), Π(n)

IJ (x0, y)} =
1
2
δm

n

(
δM

Iδ
N

J

− δN
Iδ

M
J

)
δ2(x− y). (11)

Let us now analyze if secondary constraints arise from the
consistency conditions over the primary constraints. For this
aim, we construct the(10k − 4) × (10k − 4) matrix formed
by the Poisson brackets among the primary constraints; the

Rev. Mex. Fits.62 (2016) 31–44



34 ALBERTO ESCALANTE Y MOISES ZARATE REYES

non-vanishing Poisson brackets between primary constraints are given by

{φ(0)
0i (x), φj

(0)(y)} = δj
iδ

2(x− y),

{φ(m)
03 (x), φ3

(n)(y)} = δm
nδ2(x− y), (12)

{φ(m)
0i (x), φj

(n)(y)} = δm
nδj

iδ
2(x− y).

If we write to (12) in matrix form, it is straightforward to observe that has rank=6k−2 and4k−2 null vectors. From consistency
and by using the null vectors, we find the following4k − 2 secondary constraints

φ̇0
(0)(x) = {φ0

(0)(x),HP } ≈ 0 ⇒ ψ(0) = ∂kΠk
(0),≈ 0.

φ̇
(0)
ij (x) = {φ(0)

ij (x),HP } ≈ 0 ⇒ ψ
(0)
ij = F

(0)
ij ≈ 0,

φ̇
(m)
k3 (x) = {φ(m)

k3 (x),HP } ≈ 0 ⇒ ψ
(m)
k3 = ∂kA

(m)
3 +

m

R
A

(m)
k ≈ 0,

φ̇0
(m)(x) = {φ0

(m)(x),HP } ≈ 0 ⇒ ψ3
(m) = ∂kΠk

(m) +
m

R
Π(m) ≈ 0,

φ̇
(m)
ij (x) = {φ(m)

ij (x),HP } ≈ 0 ⇒ ψ
(m)
ij = F

(m)
ij ≈ 0; (13)

and the rank allows us to fix the following6k − 2 Lagrange multipliers

zero-modes k-modes

λ0j
(0) = −2∂iB

ij
(0), λ03

(n) = −2∂iB
i3
(n),

λ
(0)
i = 0, λ

(n)
3 = 0,

λ0k
(m) = −2∂iB

ik
(m) + 2m

R Bk3
(m),

λ
(m)
i = 0.

(14)

For this theory there are not third constraints. Hence, this completes Dirac’s consistency procedure for finding the complete
set of constraints. Explicitly the set of constraints primary and secondary obtained are given by

zero-modes k-modes

φ
(0)
0j ≡ Π(0)

0j ≈ 0, φ
(n)
03 ≡ Π(n)

03 ≈ 0,

φ
(0)
ij ≡ Π(0)

ij ≈ 0, φ
(n)
i3 ≡ Π(n)

i3 ≈ 0,

φi
(0) ≡ Πi

(0) − 2B0i
(0) ≈ 0, φ

(n)
0i ≡ Π(n)

0i ≈ 0,

φ0
(0) ≡ Π0

(0) ≈ 0, φ
(n)
ij ≡ Π(n)

ij ≈ 0,

ψ0
(0) ≡ ∂kΠk

(0) ≈ 0, φ3
(n) ≡ Π3

(n) − 2B03
(n) ≈ 0,

ψ
(0)
ij ≡ F

(0)
ij ≈ 0, φi

(n) ≡ Πi
(n) − 2B0i

(n) ≈ 0,

φ0
(n) ≡ Π0

(n) ≈ 0,

ψ
(n)
k3 ≡ ∂kA

(n)
3 + n

RA
(n)
k ≈ 0,

ψ3
(n) ≡ ∂kΠk

(n) + n
RΠ3

(n) ≈ 0,

ψ
(n)
ij ≡ F

(n)
ij ≈ 0.

(15)

Once identified all the constraints as primary, secondary etc., we may verify which ones correspond to first and second class.
For this purpose we will construct the matrix formed by the Poisson brackets among the primary and secondary constraints; in
order to achieve this aim, we find that the non-zero Poisson brackets among primary and secondary constraints are given by
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{φ(0)
0i (x), φ(0)j(y)} = δj

iδ
2(x− y),

{φj
(0)(x), ψ(0)

ls (y)} = − (
δj

s∂
y
l − δj

l∂
y
s

)
δ2(x− y),

{φ(m)
03 (x), φ3

(n)(y)} = δm
nδ2(x− y),

{φ(m)
0i (x), φj

(n)(y)} = δm
nδi

jδ
2(x− y), (16)

{φ3
(m)(x), ψ(n)

k3 (y)} = −δm
n∂y

kδ2(x− y),

{φj
(m)(x), ψ(n)

k3 (y)} = − n

R
δm

nδk
jδ

2(x− y),

{φj
(m)(x), ψ(n)

ls (y)} = −δm
n

(
δj

s∂
y
l − δj

l∂
y
s

)
δ2(x− y).

Again, if we write to (16) in matrix form, we find that has
a rank= 6k − 2 and8k − 4 null vectors. Thus, by using the
rank and the null vectors, we find the following 4 first class
constraints for the zero modes

γ̃
(0)
ij =F

(0)
ij − ∂iΠ

(0)
0j + ∂jΠ

(0)
0i ≈ 0,

γ(0) =∂iΠi
(0) ≈ 0,

γ
(0)
ij =Π(0)

ij ≈ 0,

γ0
(0) =Π0

(0) ≈ 0, (17)

and the following 4 second class constraints for the zero
modes

χ
(0)
0i =Π(0)

0i ≈ 0,

χi
(0) =Πi

(0) − 2B0i
(0) ≈ 0. (18)

Furthermore, we identifying the following8k − 8 first class
constraints for the KK-modes

γ̃
(m)
i3 =∂iA

(m)
3 +

m

R
A

(m)
i − ∂iΠ

(m)
03 − m

R
Π(m)

0i ≈ 0,

γ̃
(m)
ij =F

(m)
ij − ∂iΠ

(m)
0j + ∂jΠ

(m)
0i ≈ 0,

γ
(m)
i3 =Π(m)

i3 ≈ 0,

γ
(m)
ij =Π(m)

ij ≈ 0,

γ0
(m) =Π0

(m) ≈ 0,

γ(m) =∂iΠi
(m) +

m

R
Π3

(m) ≈ 0, (19)

and6k − 6 second class constraints

χ
(m)
03 =Π(m)

03 ≈ 0,

χ3
(m) =Π3

(m) − 2B03
(m) ≈ 0,

χi
(m) =Πi

(m) − 2B0i
(m) ≈ 0,

χ
(m)
0i =Π(m)

0i ≈ 0. (20)

With all this information at hand, the counting of degrees of
freedom is carry out as follows: there are20k−8 dynamical

variables,8k − 4 first class constraints and6k − 2 second
class constraints, therefore the number of degrees of freedom
is given by

G=
1
2

(20k−8− (2(8k−4)+6k−2))=− (k − 1). (21)

This is an interesting fact, the counting of degrees of free-
dom is negative and this can not be correct. It is important to
comment, that in a four dimensionalBF theory without a
compact dimension, in order to carry out the correct counting
of physical degrees of freedom, we must take into account the
reducibility conditions among first class constraints [20,22]
Hence, if we observe the constraints found above, we can
see that the reducibility among the constraints is also present;
however, there exist reducibility conditions in the first class
constraints of the KK excitations and there are not in the zero
mode. In fact, it can be showed that the reducibility condi-
tions are identified by the followingk − 1 relations

∂iγ̃
(m)
j3 − ∂j γ̃

(m)
i3 − m

R
γ̃

(m)
ij = 0. (22)

In this manner, the number of independent first class con-
straints are(8k− 4− k +1 = 7k− 3); then, this implies that
the number of physical degrees of freedom is

G =
1
2

(20k − 8− (2(7k − 3) + 6k − 2)) = 0. (23)

Therefore, theBF -like theory with a compact dimension is
still topological one. It is important to comment that if we
perform the counting of physical degrees of freedom for the
zero mode, then we find that it is devoid of local degrees
of freedom as expected; for the zero mode defined in three
dimensions there are not reducibility conditions. All this
information become relevant, because after performing the
compactification process there are already reducibility condi-
tions; we need to remember that the correct identification of
the constraints is a relevant step because they allows us iden-
tify observables and constraints are the best guideline to per-
form the quantization; similarly the reducibility conditions in
the KK modes must be taken into account in that process.
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With all this information, we can identify the extended action; thus, we use the first class constraints (20), the second class
constraints (18), the Lagrange multipliers (14) and we find that the extended action takes the form

SE

(
QK , PK , λK

)
=

∫
d3x

[
Ȧ(0)

ν Πν
(0) + Ḃνµ

(0)Π
(0)
νµ −H(0) − α̃ij

(0)γ̃
(0)
ij − α(0)γ(0) − αij

(0)γ
(0)
ij − α

(0)
0 γ0

(0) − λ0i
(0)χ

(0)
0i

− λ
(0)
i χi

(0) +
k∑

n=1

{
Ȧ

(n)
N ΠN

(n) + ḂMN
(n) Π(n)

MN −H(n) − αi3
(n)γ̃

(n)
i3 − αij

(n)γ̃
(n)
ij − λi3

(n)γ
(n)
i3

− λij
(n)γ

(n)
ij − λ

(n)
0 γ0

(n) − α(n)γ(n) − λ
(n)
i χi

(n) − λ0i
(n)χ

(n)
0i − λ03

(n)χ
(n)
03 − λ

(n)
3 χ3

(n)

}]
, (24)

where we abbreviate withQK y PK all the dynamical variables and the generalized momenta;λK stand for all Lagrange
multipliers associated with the first and second class constraints. From the extended action, it is possible to identify the
extended Hamiltonian which is given by

Hext =
∫

d2x
[
−A

(0)
0 γ(0) −Bij

(0)γ̃
(0)
ij +

k∑
n=1

[
−A

(n)
0 γ3

(n) − 2Bi3
(n)γ̃

(n)
i3 −Bij

(n)γ̃
(n)
ij

]
+ αij

(0)γ̃
(0)
ij + α(0)γ(0) + λij

(0)γ
(0)
ij

+ α
(0)
0 γ0

(0) +
k∑

n=1

{
αi3γ̃

(n)
i3 + αij

(n)γ̃
(n)
ij + λi3

(n)γ
(n)
i3 + λij

(n)γ
(n)
ij + λ

(n)
0 γ0

(n) + α(n)γ(n)

}]
. (25)

We can observe that this expression is a linear combination of constraints. In fact, they are first class constraints of the zero
mode and first class constrains of theKK-modes. It is well-known, that for the action (6) without compact dimensions, its
extended Hamiltonian is a linear combination of first class constraints [20,22]. Thus, we can notice that the general covariance
of the theory is not affected by the compactification process. Hence, in order to perform a quantization of the theory, it is
not possible to construct the Schrodinger equation because the action of the Hamiltonian on physical states is annihilation. In
Dirac’s quantization of systems with general covariance, the restriction on physical states is archived by demanding that the
first class constraints in their quantum form must be satisfied; thus in this paper we have all tools for studying the quantization
of the theory by means a canonical framework.

By following with our analysis, we need to know the gauge transformations on the phase space. For this important step,
we shall define the following gauge generator in terms of the first class constraints (20)

G=
∫

Σ

d2x

[
εi3
(n)γ̃

(n)
i3 +εij

(n)γ̃
(n)
ij +ε

(n)
0 γ(n)+ε̇i3

(n)γ
(n)
i3 +ε̇ij

(n)γ
(n)
ij + ε̇

(n)
0 γ0

(n)+εij
(0)γ̃

(0)
ij +ε̇ij

(0)γ
(0)
ij +ε

(0)
0 γ0

(0)+ε̇
(0)
0 γ(0)

]
. (26)

Thus we obtain that the gauge transformations on the
phase space are given by

zero-mode k-mode

δA
(0)
µ = −∂µε

(0)
0 , δA

(n)
µ = −∂µε

(n)
0 ,

δB0i
(0) = ∂kεki

(0), δA
(n)
3 = n

Rε
(n)
0 ,

δBij
(0) = ∂0ε

ij
(0), δB03

(n) = 1
2∂iε

i3
(n),

δΠi
(0) = ∂kεki

(0), δB0i
(n) = −∂kεik

(n) − n
2Rεi3

(n),

δΠ0
(0) = 0, δBi3

(n) = 1
2∂0ε

i3
(n),

δΠMN
(0) = 0, δBij

(n) = ∂0ε
ij
(n),

δΠ3
(n) = −∂iε

i3
(n),

δΠi
(n) = ∂kεki

(n) − n
Rεi3

(n),

δΠ0
(n) = 0,

δΠMN
(n) = 0.

(27)

We notice that the fieldsBMN andAM are gauge fields; there
are not degrees of freedom, thus, it is not relevant to fix the

gauge parameters. In the following lines, we shall perform
the Hamiltonian analysis of the action (1) and we will find
that the fieldBMN is not a gauge field anymore. There are
not reducibility conditions among the constraints, moreover,
there exist physical degrees of freedom and the fixing of the
gauge parameters will allow us to find massive Proca fields
and pseudo-Goldston bosons as expected. Furthermore, we
have added in the Appendix B the Dirac brackets of the the-
ory which are important for studying the quantization.

3. Hamiltonian analysis of the four-
dimensional Maxwell theory written as a
BF-like theory with a compact dimension

By following the steps developed in previous section, we can
perform the Hamiltonian analysis of (1). In this section we
shall resume the complete analysis; thus by performing the
3 + 1 decomposition. Using the expansion of the fields (5),
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and developing the compactification process on aS1/Z2 orb-
ifold, we obtain the following effective Lagrangian written as

L =
1
4
Bµν

(0)B
(0)
µν −

1
2
Bµν

(0)F
(0)
µν +

∞∑
n=1

[
1
2
Bν3

(n)B
(n)
ν3

−Bµ3
(n)

(
∂µA

(n)
3 +

n

R
A(n)

µ

)

+
1
4
Bµν

(n)B
(n)
µν − 1

2
Bµν

(n)F
(n)
µν

]
. (28)

We identify the zero mode given by
1
4
Bµν

(0)B
(0)
µν −

1
2
Bµν

(0)F
(0)
µν

and the following terms are identified as the KK excitations.
We have commented above, that the action (28) describes
Maxwell theory in three dimensions (zero mode) plus a tower
of KK-modes. The theory is singular, there exists the same
number of dynamical variables defined above. Hence, after
developing a pure Dirac’s analysis, we find a set of2k first
class constraints given by

γ0
(0) = Π0

(0) ≈ 0,

γ(0) = ∂iΠi
(0) ≈ 0,

γ0
(n) = Π0

(n) ≈ 0,

γ(n) = ∂iΠi
(n) +

n

R
Π3

(n) ≈ 0, (29)

and the following12k − 6 second class constraints

χ
(0)
0i = Π(0)

0i ≈ 0,

χ
(0)
ij = Π(0)

ij ≈ 0,

χj
(0) = Πj

(0) + B0j
(0) ≈ 0,

χ̃
(0)
ij =

1
2

(
B

(0)
ij − F

(0)
ij

)
≈ 0,

χ
(n)
03 = Π(n)

03 ≈ 0,

χ
(n)
i3 = Π(n)

i3 ≈ 0,

χ
(n)
0j = Π(n)

0j ≈ 0,

χ
(n)
ij = Π(n)

ij ≈ 0,

χ3
(n) = Π3

(n) + B03
(n) ≈ 0,

χi
(n) = Πi

(n) + B0i
(n) ≈ 0,

χ̃
(n)
i3 =

1
2

(
B

(n)
i3 −

(
∂iA

(n)
3 +

n

R
A

(n)
i

))
≈ 0,

χ̃
(n)
ij =

1
2

(
B

(n)
ij − F

(n)
ij

)
≈ 0. (30)

The identification of second class constraints, allows us to fix
the following12k − 6 Lagrange multipliers

zero-modes k-modes

λ0k
(0) = −4∂iB

ik
(0) + 2∂iF

ik
(0), λ03

(n) = −4∂iB
i3
(n) + 2∂i

(
∂iA

(n)
3 + n

RA
(n)
i

)
,

λij
(0) = ∂iΠj

(0) − ∂jΠi
(0), λi3

(n) = 2
(
∂iΠ3

(n) + n
RΠi

(n)

)
,

λ
(0)
i = 0, λ0i

(n) = −4∂kBki
(n) + 2∂kF ki

(n) + 2n
R

(
∂iA

(n)
3 + n

RA
(n)
i

)
,

βij
(0) = Bij

(0) − F ij
(0), λij

(n) = ∂iΠj
(n) − ∂jΠi

(n),

λ
(n)
3 = 0,

λ
(n)
i = 0,

βi3
(n) = 2

(
Bi3

(n) − F i3
(n)

)
,

βij
(n) = Bij

(n) − F ij
(n).

(31)

By using all this information it is possible to carry out the counting of degrees of freedom as follows; there are10k − 4
dynamical variables,2k first class constraints and12k − 6 second class constraints, thus

G =
1
2

(20k − 8− (2(2k) + 12k − 6)) = 2k − 1.

We observe that ifk = 1 we obtain one degree of freedom as expected for Maxwell theory in three dimensions.
By using the first class constraints (29), the second class constraints (30), and the Lagrange multipliers we find that the

extended action takes the form
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SE

(
QK , PK , λK

)
=

∫ [
Ȧ(0)

ν Πν
(0) + Ḃ(0)

νµ Πνµ
(0) −H(0) − β(0)γ(0) − λ

(0)
0 γ0

(0) − λ
(0)
i χi

(0) − λij
(0)χ

(0)
ij − βij

(0)χ̃
(0)
ij

+
N∑

n=1

{
Ȧ

(n)
N ΠN

(n) + Ḃ
(n)
MNΠMN

(n) −H(n) − λ
(n)
0 γ0

(n) − β(n)γ(n) − λ
(n)
i χi

(n) − λ
(n)
3 χ3

(n)

− λ03
(n)χ

(n)
03 − λ0i

(n)χ
(n)
0i − λi3

(n)χ
(n)
i3 − λij

(n)χ
(n)
ij − βi3

(n)χ̃
(n)
i3 − βij

(n)χ̃
(n)
ij

}]
dx3,

(32)

where the corresponding extended Hamiltonian is given by

Hext = H +
∫ [

β(0)γ
(0) + λ

(0)
0 γ0

(0) +
N∑

n=1

{
λ

(n)
0 γ0

(n) + β(n)γ(n)

}]
dx3. (33)

Here we define

H =
∫

d2x

(
1
2
Πi

(0)Π
(0)
i +

1
4
Bij

(0)B
(0)
ij −A

(0)
0 γ(0) +

(
−4∂jB

ji
(0) + 2∂jF

ji
(0)

)
χ

(0)
0i + 2χ

(0)
ij ∂jΠ

(0)
i − χ̃

(0)
ij F ij

(0)

+
N∑

n=1

[
1
2
Πi

(n)Π
(n)
i +

1
2
Π3

(n)Π
(n)
3 +

1
4
Bij

(n)B
(n)
ij +

1
2
Bi3

(n)B
(n)
i3 −A

(n)
0 γ(n) − F ij

(n)χ̃
(n)
ij + 2χ

(n)
ij ∂iΠ

(n)
j

−Bi3
(n)

(
∂iA

(n)
3 +

n

R
A

(n)
i

)
+

(
∂iA

(n)
3 +

n

R
A

(n)
i

)(
∂iA

(n)
3 +

n

R
A

(n)
i

)
+ 2

(
∂iΠ

(n)
3 +

n

R
Π(n)

i

)
χ

(n)
i3

+
(
−4∂jB

ji
(n) + 2∂jF

ji
(n) +

2n

R

(
∂iA

(n)
3 +

n

R
A

(n)
i

))
χ

(n)
0i +

(
−4∂iB

i3
(n) + 2∂i

(
∂iA

(n)
3 +

n

R
A

(n)
i

))
χ

(n)
03

])

=
∫

d2x

(
H(0) +

N∑
n=1

H(n)

)
.

(34)

Note, that the extended Hamiltonian is not a linear combination of constraints anymore, the termBMNBMN of the ac-
tion (1) breaks down the general covariance of the theory and eliminates the reducibility relations present in theBF -like
term.

Now, the first class constraints allows us to know the fun-
damental gauge transformations. For this important step, we
use the Castellani’s procedure [23,24] to construct the gauge
generators

G=
∫

Σ

[
ε
(n)
0 γ0

(n)+ε(n)γ(n)+ε
(0)
0 γ0

(0)+ε(0)γ(0)

]
dx2. (35)

Thus, we find that the gauge transformations on the phase
space are given for

zero modes

δA(0)
µ =− ∂µε(0),

δB(0)
µν =0,

δΠµ
(0) =0,

δΠµν
(0) =0, (36)

and the gauge transformation for theKK modes

δA(n)
µ = −∂µε(n), (37)

δA
(n)
3 =

n

R
ε(n), (38)

δB(n)
µν = 0, (39)

δΠµ
(n) = 0, (40)

δΠµν
(n) = 0, (41)

we can observe that the gauge transformations for the zero
mode are the same given for Maxwell theory written in the
standard form [24], and we also observe that theB filed is
not a gauge field anymore. Finally, the transformations of
the fieldsAn

µ, An
3 corresponding for thek-th mode are the
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same to those reported in the literature (see [4,24] and the
cites therein). Hence, by fixing the gauge parameters by
ε(n) = −(R/n)A(n)

3 and considering the second class con-
straints as strong identities, the effective action (28) is re-
duced to that reported in Ref. 4 and 25, namely

L = −1
4
Fµν

(0)F
(0)
µν

+
∞∑

n=1

[
− 1

4
F νµ

(n)F
(n)
νµ +

1
2

(
2n

R

)2

A(n)
µ Aµ(n)

]
, (42)

where we able to observe that the KK-modes are massive
Proca fields,A(n)

3 has been absorbed and it is identified as a
pseudo-Goldstone boson [4,25]. Furthermore, we have added
in the appendix A the Dirac brackets, thus we have developed
a full Hamiltonian analysis of the theory under study.

4. Conclusions

In this paper, the Hamiltonian analysis for a topologicalBF -
like theory and for Maxwell theory expressed as aBF -like
theory with a compact dimension has been performed. For
the former, we performed the compactification process on a
S1/Z2 orbifold, then we analysed the effective theory and
all the constraints, gauge transformations and the extended
Hamiltonian have been obtained. We also found that the
extended Hamiltonian is given by a linear combination of
first class constraints of the zero mode and first class con-
straints of the KK modes, this indicates that the compact-
ification process does not break the general covariance of
the theory. Moreover, we observed that reducibility relations
among the constraints are preserved before and after perform-
ing the compatification process, however, the reducibility is
given among the first class constraints of the excited modes,
there is not reducibility in the zero modes. This important
fact allowed us to conclude that the theory is a topological
one.

Finally, for Maxwell theory written in the first order for-
malism with a compact dimension, we found the constraints,
the gauge transformations and the extended action. We ob-
served that the theory do not present reducibility conditions
among the constraints, and the theory is not topological any-
more. In fact, the theory has the same symmetries and de-
grees of freedom than Maxwell theory with a compact di-
mension [4,9]. Finally by fixing the gauge parameters we
noted that the theory is reduced to Maxwell theory in three
dimensions described by the zero mode plus a tower of mas-
sive Proca fields excitations.

We would to comment that our results are generic and can
be extended to a 5D theory and models with a close relation
to YM and general relativity. In fact, we have commented
above that there are topological generalizations of Maxwell
and Yang-Mills theories in three and four dimensions, that

could provide generalized QCD theories as it is claimed in
Ref. 15. In this manner, our results can be used for studying
those generalizations in the context of extra dimensions. Fur-
thermore, we have commented that our results can be used for
extending those reported in Ref. 17. In fact, in this paper we
have at hand all the tools for study S-Duality of Maxwell the-
ory with a compact dimension. Moreover, our results also can
be used for studying models that are present in string theory
such as those models described by Kalb-Ramond fields. Fi-
nally, all the results presented in this work will be useful in or-
der to compare the Dirac quantization with other schemes, for
instance, with the Faddeev-Jackiw quantization (see the Ref.
26 and cites therein). In fact, in Faddeev-Jackiw approach it
is possible to obtain all the relevant Dirac’s results; the gener-
alized Faddeev-Jackiw brackets coincide with the Dirac ones,
basically in this formulation we only choose the symplectic
variables either the configuration space or the phase space
and by fixing the appropriated gauge, we can invert the sym-
plectic matrix in order to obtain a complete analysis. In this
respect, in order to make progress in the quantization, we will
work with the Faddeev-Jackiw formulation and we will con-
firm the results obtained along this paper. All these ideas are
in progress and will be the subject of future works.

Appendix

A.

In this section we will compute the Dirac brackets for theBF
theory with a compact dimension given by the action (7). By
using the constraints given in (17), (18) and the fixed gauge
∂iA

(0)
i ≈ 0, A

(0)
0 ≈ 0, 2ηij∂

iB0j
(0) ≈ 0 and2Bij

(0) ≈ 0 we
obtain the following set of second class constraints

χ̂(0) = ∂iA
(0)
i ≈ 0,

χ
(0)
0 = A

(0)
0 ≈ 0,

χ(0) = ∂iΠi
(0) ≈ 0,

χ̄0
(0) = Π0

(0) ≈ 0,

χ̃(0) =
1
2
ηijF

(0)
ij − ηij∂iΠ

(0)
0j ≈ 0,

χ̂(0) = 2ηij∂iB
0j
(0) ≈ 0,

χij
(0) = 2Bij

(0) ≈ 0,

χ̃
(0)
ij = Π(0)

ij ≈ 0,

χi
(0) = Πi

(0) − 2B0i
(0) ≈ 0,

χ
(0)
0i = Π(0)

0i ≈ 0.

(A.1)
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Thus, the matrix whose entries are given by the Poisson brackets among the constraints (A.1) takes the form

G
(0)
αν =




χ̂(0) χ
(0)
0 χ(0) χ̄0

(0)
χ̃(0) χ̂(0) χkl

(0)
χ̃

(0)
kl χk

(0)
χ

(0)
0k

χ̂(0) 0 0 −∇2 0 0 0 0 0 ∂k 0

χ
(0)
0 0 0 0 1 0 0 0 0 0 0

χ(0) ∇2 0 0 0 0 0 0 0 0 0

χ̄0
(0)

0 −1 0 0 0 0 0 0 0 0

χ̃(0) 0 0 0 0 0 −∇2 0 0 0 0

χ̂(0) 0 0 0 0 ∇2 0 0 0 0 ηik∂i

χij
(0)

0 0 0 0 0 0 0
(
δi

kδj
l − δi

lδ
j
k

)
0 0

χ̃
(0)
ij 0 0 0 0 0 0 − (

δi
kδj

l − δi
lδ

j
k

)
0 0 0

χi
(0)

−∂i 0 0 0 0 0 0 0 0 −δk
i

χ
(0)
0i 0 0 0 0 0 −ηji∂j 0 0 δk

i 0.




δ2(x− y)

(A.2)

Hence, the inverse is given

G
(0)−1
αν =




χ̂(0) χ
(0)
0 χ(0) χ̄0

(0)
χ̃(0) χ̂(0) χkl

(0)
χ̃

(0)
kl χk

(0)
χ

(0)
0k

χ̂(0) 0 0 1
∇2 0 0 0 0 0 0 0

χ
(0)
0 0 0 0 −1 0 0 0 0 0 0

χ(0) − 1
∇2 0 0 0 0 0 0 0 0 ∂k

∇2

χ̄0
(0)

0 1 0 0 0 0 0 0 0 0

χ̃(0) 0 0 0 0 0 1
∇2 0 0 ηik∂i

∇2 0

χ̂(0) 0 0 0 0 − 1
∇2 0 0 0 0 0

χij
(0)

0 0 0 0 0 0 0 − (
δi

kδj
l − δi

lδ
j
k

)
0 0

χ̃
(0)
ij 0 0 0 0 0 0

(
δi

kδj
l − δi

lδ
j
k

)
0 0 0

χi
(0)

0 0 0 0 − ηji∂j

∇2 0 0 0 0 δk
i

χ
(0)
0i 0 0 − ∂i

∇2 0 0 0 0 0 −δk
i 0




δ2(x− y). (A.3)

In this manner, the nonzero Dirac’s brackets are given by

{A(0)
i (x), Πj

(0)(y)}D =δj
iδ

2(x− y)− 1
∇2

(
∂i∂j − ηkiηlj∂k∂l

)
δ2(x− y),

{B0i
(0)(x), A(0)

j (y)}D =− 1
2
δj

iδ
2(x− y)− 1

2∇2

(
∂i∂j − ηkiηlj∂k∂l

)
δ2(x− y),

{B0i
(0)(x), Π(0)

0j (y)}D =0,

{Bij
(n)(x), Π(n)

kl (y)}D =0. (A.4)

We can obtain similar results for the excited modes. Therefore, we have in this work all the elements for studying the quanti-
zation of the theories under study. It is important to comment that all these results are not reported in the literature.

B.

In this appendix, we calculate the Dirac brackets for Maxwell theory written as a BF-like theory. For our aims we will calculate
the Dirac brackets for the zero mode, then we will calculate the brackets for the excited modes. Hence, by using the following
fixed gauge∂iA

(0)
i ≈ 0 andA

(0)
0 ≈ 0, we obtain the following set of second class constraints
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χ̄(0) =A
(0)
0 ≈ 0,

χ̂(0) =Π0
(0) ≈ 0,

χ̃(0) =∂iA
(0)
i ≈ 0,

χ(0) =∂iΠi
(0) ≈ 0,

χ
(0)
0i =Π(0)

0i ≈ 0,

χ
(0)
ij =Π(0)

ij ≈ 0,

χi
(0) =Πi

(0) + B0i
(0) ≈ 0,

χ̃
(0)
ij =

1
2

(
B

(0)
ij − F

(0)
ij

)
≈ 0. (B.1)

Thus, we can calculate the following matrix whose entries are given by the Poisson brackets between these constraints, obtain-
ing

C
(0)
αν (x, y) =




χ̄(0) χ̂(0) χ̃(0) χ(0) χ
(0)
0j χ

(0)
kl χk

(0)
χ̃

(0)
kl

χ̄(0) 0 1 0 0 0 0 0 0

χ̂(0) −1 0 0 0 0 0 0 0

χ̃(0) 0 0 0 −∇2 0 0 ∂k 0

χ(0) 0 0 ∇2 0 0 0 0 0

χ
(0)
0i 0 0 0 0 0 0 − 1

2
δi

k 0

χ
(0)
ij 0 0 0 0 0 0 0 − 1

4

(
δi

kδj
l − δi

lδ
j
k

)

χi
(0)

0 0 −∂i 0 1
2
δi

j 0 0 1
2

(
δi

l∂k − δi
k∂l

)

χ̃
(0)
ij 0 0 0 0 0 1

4

(
δi

kδj
l − δi

lδ
j
k

) − 1
2

(
δk

j∂i − δk
i∂j

)
0




δ2(x− y).

(B.2)

The inverse of this matrix is given by

C
(0)−1
αν (x, y)=




χ̄(0) χ̂(0) χ̃(0) χ(0) χ
(0)
0k χ

(0)
kl χk

(0)
χ̃

(0)
kl

χ̄(0) 0 −1 0 0 0 0 0 0

χ̂(0) 1 0 0 0 0 0 0 0

χ̃(0) 0 0 0 1
∇2 0 0 0 0

χ(0) 0 0 − 1
∇2 0 − 2∂k

∇2 0 0 0

χ
(0)
0i 0 0 0 2∂i

∇2 0 4
(
δi

l∂k − δi
k∂l

)
2δi

k 0

χ
(0)
ij 0 0 0 0 −4

(
δk

j∂i − δk
i∂j

)
0 0 4

(
δi

kδj
l − δi

lδ
j
k

)

χi
(0)

0 0 0 0 −2δi
k 0 0 0

χ̃
(0)
ij 0 0 0 0 0 −4

(
δi

kδj
l − δi

lδ
j
k

)
0 0




δ2(x− y).

(B.3)
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Thus, we obtain the following Dirac’s brackets for the zero mode

{A(0)
i (x), Πj

(0)(y)}D =
(

δj
i − ∂j∂i

∇2

)
δ2(x− y),

{Bij
(0)(x), Π(0)

kl (y)}D = 0

{A(0)
i (x), A(0)

j (y))}D = 0

{Πi
(0)(x), Πj

(0)(y)}D = 0

{Bij
(0)(x), Πk

(0)(y)}D = 2
(
δk

j∂i − δk
i∂j

)
δ2(x− y),

{Bij
(0)(x), B0k

(0)(x)}D = −2
(
δk

j∂i − δk
i∂j

)
δ2(x− y),

{A(0)
i (x), B0j

(0)(x)}D = −
(

δj
i − ∂j∂i

∇2

)
δ2(x− y). (B.4)

Observe that the Dirac brackets among the fieldsA
(0)
i , Πj

(0) are those knew for Maxwell theory [24].
Now we calculate Dirac’s brackets for the excited modes of the MaxwellBF -like theory. By working with the following fixed
gauge∂iA

(n)
i ≈ 0 andΠ3

(n) + n
RA

(n)
0 ≈ 0, we obtain the following set of second class constraints

χ̃(n) = ∂iA
(n)
i ≈ 0,

χ0
(n) = Π0

(n) ≈ 0,

χ̃3
(n) = Π3

(n) +
n

R
A

(n)
0 ≈ 0,

χ(n) = ∂iΠi
(n) +

n

R
Π3

(n) ≈ 0,

χ
(n)
0j = Π(n)

0j ≈ 0,

χ
(n)
ij = Π(n)

ij ≈ 0,

χi
(n) = Πi

(n) + B0i
(n) ≈ 0,

χ̃
(n)
ij =

1
2

(
B

(n)
ij − F

(n)
ij

)
≈ 0,

χ
(n)
03 = Π(n)

03 ≈ 0,

χ
(n)
i3 = Π(n)

i3 ≈ 0,

χ3
(n) = Π3

(n) + B03
(n) ≈ 0,

χ̃
(n)
i3 =

1
2

(
B

(n)
i3 −

(
∂iA

(n)
3 +

n

R
A

(n)
i

))
≈ 0. (B.5)

Thus, we obtain the following matrix whose entries are given by the Poisson brackets between these second class constraints,
obtaining

G
(n)
αν =




χ̃(n) χ0
(n) χ̃3

(n) χ(n) χ
(n)
0k

χ
(n)
kl

χk
(n) χ̃

(n)
kl

χ
(n)
03 χ

(n)
k3 χ3

(n) χ̃
(n)
k3

χ̃(n) 0 0 0 −∇2 0 0 ∂k 0 0 0 0 0
χ0
(n) 0 0 − n

R
0 0 0 0 0 0 0 0 0

χ̃3
(n) 0 n

R
0 0 0 0 0 0 0 0 0 1

2 ∂k

χ(n) ∇2 0 0 0 0 0 0 0 0 0 0 0

χ
(n)
0i

0 0 0 0 0 0 − 1
2 δi

k 0 0 0 0 0

χ
(n)
ij

0 0 0 0 0 0 0 − 1
4

(
δi

kδj
l − δi

lδj
k

)
0 0 0 0

χi
(n) −∂i 0 0 0 1

2 δi
k 0 0 1

2

(
δi

l∂k − δi
k∂l

)
0 0 0 n

2R
δi

k

χ̃
(n)
ij

0 0 0 0 0 1
4

(
δi

kδj
l − δi

lδj
k

)
− 1

2

(
δk

j∂i − δk
i∂j

)
0 0 0 0 0

χ
(n)
03 0 0 0 0 0 0 0 0 0 0 − 1

2 0

χ
(n)
i3 0 0 0 0 0 0 0 0 0 0 0 − 1

4 δi
k

χ3
(n) 0 0 0 0 0 0 0 0 1

2 0 0 1
2 ∂k

χ̃
(n)
i3 0 0 − 1

2 ∂i 0 0 0 − n
2R

δi
k 0 0 1

4 δi
k − 1

2 ∂i 0




δ
2(x − y).

(B.6)
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Hence, the inverse matrix is given by

G
(n)−1
αν =




χ̃(n) χ0
(n) χ̃3

(n) χ(n) χ
(n)
0k

χ
(n)
kl

χk
(n) χ̃

(n)
kl

χ
(n)
03 χ

(n)
k3 χ3

(n) χ̃
(n)
k3

χ̃(n) 0 0 0 1
∇2 0 0 0 0 0 0 0 0

χ0
(n) 0 0 R

n
0 0 0 0 0 0 2R

n
∂k 0 0

χ̃3
(n) 0 −R

n
0 0 0 0 0 0 0 0 0 0

χ(n) − 1
∇2 0 0 0 −2

∂k
∇2 0 0 0 0 0 0 0

χ
(n)
0i

0 0 0 2
∂k
∇2 0 4

(
δi

l∂k − δi
k∂l

)
2δi

k 0 0
4nδi

k
R

0 0

χ
(n)
ij

0 0 0 0 −4
(

δk
j∂i − δk

i∂j

)
0 0 4

(
δi

kδj
l − δi

lδj
k

)
0 0 0 0

χi
(n) 0 0 0 0 −2δi

k 0 0 0 0 0 0 0

χ̃
(n)
ij

0 0 0 0 0 −4
(

δi
kδj

l − δi
lδj

k

)
0 0 0 0 0 0

χ
(n)
03 0 0 0 0 0 0 0 0 0 4∂k 2 0

χ
(n)
i3 0 − 2R

n
∂i 0 0 − 4nδi

k
R

0 0 0 −4∂i 0 0 4δi
k

χ3
(n) 0 0 0 0 0 0 0 0 −2 0 0 0

χ̃
(n)
i3 0 0 0 0 0 0 0 0 0 −4δi

k 0 0




δ
2(x − y).

(B.7)

In this manner, the Dirac brackets for the excited modes are given by

{A(n)
i (x),Πj

(n)(y)}D =
(

δj
i − ∂i∂j

∇2

)
δ2(x− y),

{A(n)
3 (x),Πi

(n)(y)}D =
n

R
∂i

(
δ2(x− y)
∇2

)

{A(n)
3 (x),Π3

(n)(y)}D = δ2(x− y),

{Bij
(n)(x),Π(n)

kl (y)}D = 0,

{Bij
(n)(x),Πk

(n)(y)}D = 2
(
δk

j∂i − δk
i∂j

)
δ2(x− y),

{Bij
(n)(x), B0k

(n)(x)}D = −2
(
δk

j∂i − δk
i∂j

)
δ2(x− y),

{Bi3
(n)(x), B03

(n)(x)}D = −∂iδ
2(x− y),

{Bi3
(n)(x),Πj

(n)(y)}D =
n

R
δi

jδ
2(x− y),

{Bi3
(n)(x),Π3

(n)(y)}D = ∂iδ
2(x− y),

{A(n)
i (x), B0j

(n)(x)}D = −
(

δj
i − ∂j∂i

∇2

)
δ2(x− y),

{A(n)
3 (x), B03

(n)(x)}D = δ2(x− y). (B.8)
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