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A polynomial model of purely affine gravity

O. Castillo-Felisola®, A. Skirzewskf
“Centro Cienifico Tecnobgico de Valparso,
Casilla 110-V, Valparéso, Chile.
e-mail: o.castillo.felisola@gmail.com
®Departamento de Bica, Universidad &cnica Federico Santa
Maria, Casilla 110-V, Valpareso, Chile.
¢Centro de fsica Fundamental, Universidad de los Andes,
5101 Merida, Venezuela.
e-mail: askirz@gmail.com

Received 17 February 2015; accepted 24 August 2015

We present a purely affine gravitational model in four dimensions built up entirely on the bases of full diffeomorphism invariance, and power-
counting renormalizability. We show that its non-relativistic limit around a homogeneous and isotropic spacetime yields to a Newtonian
gravity.
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1. Introduction the relation between the Weitzestk and Levi-Civita con-
- _ _ nections it is possible to obtain an equivalent Lagrangian to
In a critique to Newtonian mechanics, Mach proposed thathe one by Einstein and Hilbert, as a function of the torsion

inertial forces should have a dynamical rather than a kinemafield. This approach is known as Teleparallel Gravity (see
ical origin (for a deeper discussion on the subject of Mach'sRef. 7 to 9 and references within).

principle see Ref. 1 and references therein).

Notice that any locally Minkowskian metric in the kine-
matics of the description of spacetime will introduce a no-
tion of inertial forces at a microscopic level [2]. With this in
mind, we will explore the dynamical origin of inertial forces,
studying the dynamics of the affine connection of a manifol

Furthermore, another alternative description of GR devel-
oped initially by Ashtekar uses the spin connection as the fun-
damental field and the frame field turns out to be its canon-
ically conjugated momentum. In the context of Loop Quan-
dtum Gravity (LQG), using Ashtekar connection, a success-

with torsion. For this end, we use the most general power]fUI quan_tization program has been achieve_d [10.11]. Origi-
counting renormalizable action that includes only the gaugé‘a”y' this approach tO_W&.“dS quantum grawt)_/ addre;sed the
connection associated with diffeomorphisms invariance. concerns of the quantization of non-polynomial functions of

During the last years an increasing amount of alternativéhe gravitational field, but later on it turned out that diffeo-

theories of gravity have been built and tested. Yet, Gen—morphisms symmetry would not show up when the quantum

eral Relativity (GR) has proven to be the most successfu?perators were not of the correct density weight, which forces

theory of gravity. Still, it is not as successful as we mayo??h'?o remtrgdu;:e the square;_d roFi:].[lZ].thSome s;rer:_?th
wish [3-5]. Part of the problem is that the standard quan-O IS quantization program fie within a theorém Dy H.
Sahimanret al. in Ref. 13 that states the only diffeomor-

tization procedure cannot be applied properly on GR. More="". ) . . .
over, not only it is not renormalizable, but there are problemé)hlsms invariant Hilbert space that suppqrts the Helsenberg
Igebra, for the connection and its associated momentum, is

with the choice of variables to be quantized and the choic ) .
of the Hilbert space to be used. Although we dare not to sa%e one of LQG. In spite of its success, LQG has not advanced

anything against metric spacetimes, to sum over all possibl nough to conclude that its low energy effective description

field configurations of the metric seems to be wrong, as thi&® GR. Currently, there is no clue about the LQG effective

would imply summing Euclidean and Minkowski like contri- description at other scales, nor its continuum spacetime limit

butions to the transition amplitudes on equal terms. Addition—e'ther' Therefore, we cannot conclude that the search for a

ally, we might also consider the difficulties of quantizing non_fundamental theory of gravitational interactions has ended.

polynomial field theories, and more specifically square rootsp n the contrary, there are increasingly many alternatives to

of the metric that appears in the Hamiltonian in an ADM for- the usual ’T‘et“c despription of gravity aqd they all must be
mulation of GR. tested against experiments and observations [14].

In order to bypass some of these issues, several ap- In this article we study a power-counting renormalizable,
proaches have been designed that use the connection as a fdiffeomorphism invariant model consisting solely of an affine
damental field. For instance, a well-known example comegonnection (with torsion). We expect this model may over-
from the context of Cartan formulations of gravity, [6] using come the uniqueness theorem about diffeomorphism invari-
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ant theories of connections, since we have no fundament&linally, in Sec. 4 we briefly discuss the reaching conse-
metric field to quantize. The earliest model that argues a deguences of the model.
scription of gravitational interaction in terms of connections

as fundamental fields was presented by Eddington [15], foi Warming up: The three-dimensional case
an spacetime with positive cosmological constant. He pro-"" )

posed the square root of the determinant of the Ricci tensqtormally, the curvature of a manifold is defined through the

as the gravitational Lagrangian. commutator of covariant derivatives under diffeomorphims,
It has also being emphasized the character of GR ag/ , but for general choice of the connectidrt., », there is

a gauge theory in order to address the issues of quarm extra contribution given by its antisymmetric part in the

tization and regularization, as in LQG Authors like N. lower indiceS’Tﬂl’/\ — 212‘#[”)\]_ Therefore, the commutator

Poptawski [16] and K. Krasnov [17] have advanced the roachf the covariant derivatives acting on a vectsr, yields,
towards a pure connection gravity theory.

The article is organized as follows: In Sec. 2 we analyse W#, @V] VP =R, \VN-T",,V, V" 1)
the more general “gravitational” theory built with the affine
connection and power-counting renormalizable. In Sec. dNote thatT”,,, is a nine-dimensional tensor representation
we study the four-dimensional model, built under the sameunder diffeomorphisms.
precepts than before. Additionally, we found solutions to  In order to build topological invariants of density one, we
the equations of motion assuming a static, homogeneous am@n use the skew-symmetric Levi-Civita tengtr#2---#» in
isotropic background, and show that in the non-relativistich-dimensional space(-time).
limit of the theory the gravitational potential is Newtonian. With these ingredients, in a three-dimensional space we
| write an action

_ 3 > o K (1) M (2) . 5
S[F] o / d {R/huzpusT Hapts E , C‘fr5P O ehtr@Hnnlin(e)

TELs

P o T § K (1) sHm(2) sHm(3) pr(a) M (5)Hr(6
+T #1M2T M3H4T K56 Dﬂ(sl’ 05 or ehr i@ Hn®
wEZg

- § : K1) shm(2) _pin - .
+TPH1142VMSTUM4M5 EW5P 50 6# @ Hma bt (5)}v (2)

TELs

where all possible permutations ofelementsr € Z,, have
been included in the sums with different constafits D, LI'herefore, the curvature tensor can be expressed as
and &, for permutation. .

The torsion field can be decomposed into invariant ten-2.v” p = Ruw”p — 2€50[, Vi) T7 + 01, Ay)0p + 07,V Ap

sors respecting the symmetry, 1
+ €T Ap — 07,60 T Ay + 00 Au Ao
TUN,, = ENVpTap + A[#égl,], (3)

. . . . - 2605[MGV]96TMT£67 ®)
with a symmetricT?? of density weightw = 1, and
A, =17, is the trace part of the more arbitrdfy ,,,,. whereV, andR,,,*, are the covariant derivative and curva-

The affine connection can be decomposed into its symture associated to the symmetric part of the connection. No-

metric and antisymmetric parts, tice that Bianchi identity, obtained a8"*R,,,”, = 0, leads

.5 N o \ us to the following
P =T (up) + €upe T + Ayd” ), 4) R
_ o PR, = AV, TP + 229, A, — AT A,.  (6)
wheree,, ., has been introduced, and it is related to the skew
symmetrice#* through the identity**”¢,,,=3!6*(,646%.  From the previous action and adding two possible Chern-
| Simons terms we get (up to boundary terms)

ST, T, A] = / d% (BlRW“pT"p + Boe"PR,,% y A, + Bse"P A0, A, + ByTHV A,

2
+ BsT" A, A, + Bg det(T") + Bre (raupayrpw T gry,,rﬂwrm) + Bgewrawayrfm), @)

with B; the coupling constants.
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At this point, it is useful to introduce what we have called

_ 4
the “Eddington’s trick” [15]. First of all, notice that in the SI0.T, A] = / d'z

usual Einstein—Hilbert action the variation of the action with

respect to the Ricci tensor yields an inverse metric density.
Thus, a sort of dual theory could be obtained by identifying

the tensor density obtained from the variation of the action
with respect to the symmetric part of Ricci tensor with the

inverse metric density (see Ref. 15 and 16)

5
OR ()

ST = Vgg"". (8)

Noticing that in the first term, the variation respect to the
Ricci tensor yields t@#*, it can be argued that in a standard
theory of gravity this tensor density corresponds, @g"”.
Therefore, Eq. (7) reveals a one to one correspondence with
general relativity nonminimally coupled to thg, field,

S[g,T, A= /d% <\/§(BlR+B4V”A#+B5AHA" n Bﬁ)
+ Boe'"P Ry 7 g A, + B3P A0, A,

2
+ 376#1/)\ (Fgupaurp)\a + gFTMprVO'FU)\T)

+ Bse“"pl“"w@yI‘TpT> 9)

Thus, an interesting sector of the theory corresponds to the
space of non-degeneratéd”.

3. Four-dimensional metricless (and torsion-
ful) action

Following the precepts already stated, we start by defining an
irreducible representation decomposition for the full connec-
tion field

B RW“pT”’aﬂTp’wGaﬁya

+ B, (R,w"p n §6U[MR,,] Qp) R KLI
+ BSRWMPT(V,/))UAU

+ By (R,w”p + %5"@31/],\/\;))

X (TPWAU - iégT"”“’A,{) + BsR,,," , T A,
+ C1R,, M VTP 4 CoR,,,P N o TOH

+ Dy TP TP TV ey €pon

+ Dy TP TAPYN TP € 56,0 por

+ D3TH BTN I \TOP €5 5€ s por

+ DyTMTEPON (A €pvpor

+ DsTMN (\T%P7 A, € por

+ DT A,V 3\ A,y + DiTM ANV |, A,

+ E1V (TP N oy T7 €

+ E;VOTMY A,

+ TP MY TPOT (N €4 p€apuvEsror

+ A2 €8\nK€ypuv 6(16177')

+ ABTPJXﬂT’Y#Ll/T)\,UTATEaﬂvkeul’po

+ AT OPT AL Ayeaps | (11)

where the termd3, and B, contain a traceless contribution

Dl =T +TH = T"  +e TN+ Ar 6% (10 of th(_a curvature. In t_his case, the induced “inverse metric
P P P po T EpoA 00> (10) density” [see Eq. (8)] is

whereI'*,, denotes a forty-dimensional symmetric connec-
tion, A, is a four-dimensional vector field that gives trace
to the antisymmetric part of the full connection, afid*"

is a twenty-dimensional Curtright field (see Ref. 18) that
is defined through the symmetry of its indices: antisym-
metric in the last two indices, and it has a cyclic prop-

g =./99"" = BlT“’)‘K’TV’p%MpU
4 ByTA AL 4+ Oy TN, (12)

erty THA® 4 TARk 4 TRiA = (. In other words that Symmetric solution to the equations of motion

TR — (1/2)T% M, just as for the Riemmann tensor

RN = (1/2)Rx,“ .. Notice that due to its symmetries, | four dimensions there is no obvious equivalence of

the contractiorcp(,MT“v*“ is traceless.

Eqg. (11) with GR, specially due to the lack of a fundamen-

Additionally, since no metric is present the epsilon sym-ta| metric field in the given model. However, both models are
bols are not related by lowering or raising their indices, butexplicitly invariant under diffeomorphisms, and even if their
instead one demands that structures and number of degrees of freedom differ, the ac-
tion in EQ. (11) provides a context where parallel transport of
particle’s velocities on a purely torsional background is non-

One can write all the combinations of fields that would trivial.
presumably be renormalizable with these three independent Here, we wish to stablish the model’s non-relativistic
fields —up to a boundary term—, (Newtonian) limit for the “geodesic” deviation of “inertial”

€ pg = A16°,07,67 16" ).
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observers at rest with respect to a static, isotropic, homogesquations of motion, because these are characteristic of the
neous and spatially flat background within the context pro-observable universe.

vided by Eq. (11). In order to properly analyse the model, we  The induced metric in Eq. (12) on the background is
propose the following decomposition of the fields

1
— 2 g— _ o SV
A, = 62/1 +ay, (13) vV—g9" = (BgA + 2ClF) Tk oy,
THYP = 61,00 T + 477, (14) — 3CLET6!5Y, (16)
and while the Ricci curvature tensor calculated from Eq. (15) is
A _ A gmsm A gm0
+ GOYoR60 + 7 s (15)

Therefore, whether the four-dimensional Eddington’s
whered}” = 8467 — 615%. metric structure is Riemannian or pseudo-Riemannian will

In order to make perturbation theory we will expand depend exclusively on the values of the parameters of the ac-
around a static, isotropic and homogeneous solution of théon in Eqg. (11) and the signs of the components of the con-
| nection field. The first order perturbations of the action yields

8 1 1 4 1
55= (((Bg+3 B4+5 E2)A+4 C1F-2 CIG) E+8(—D;1 +2 D2+D3)T2>T6F"L om + <(2 Bs + 3 B, + 1 Ey)AF

4 1 1 4 1
+ (B3 — 3 By — 5 Ey)AG + C1 F? — C1FG — D6A2)T5F0m m + (( - (5 B3 + 3 By + 1 Ey)AF

1 1
+(=By+ 5 Bi+ 5 E))AG — C1F? + CF G + D6A2>E + (12 (D1 — 2Dy — D3)F + 24 LgA)Tz) 8T, O

1 4 1
+ ((333 — 4By — gEQ)A_301F>ET§FOOO+ (3(—2D6A+(2B3+3B4+4E2)F
41 ,
+(Bg—§B4—§EQ)G) E—24 LyT? | T Ay=0, (18)

and we are most interested in solutions to the connection field
whose contribution to the parallel transport equation of a teét
particle’s velocity is that of a free particle, at least at the low
velocity regime

1 1
0SMatter = C1 ( - 5(6F07rm)T5mn - 5(6T00m)zpm

e 00 _ =0 )2 0\2 _ 1, mon oL
FH2Fi ' =0, and Z°+FE (2')°+G (¢")° =0, (19) + 5(5T 0 )E5mn) 3g§éter' (20)
which we can achieve by settifdg= G = 0 andE # 0 since

()% is already second order in the velocities. Thus, looking o
again at the equations of motion we can find a nontrivial soScalar modes and Newtonian limit

lution if we set all coupling constants to zero i # 0, _ o
By = —3B3,C1 #0andE; = 6Bs. In order to obtain the non-relativistic limit,e., the Newto-

Additionally, we can incorporate perturbative inhomoge-”ia” potential, one performs the scalar mode perturbative ex-
neous sources to the connection field equations and check @@nsion. One proceeds by substituting the connection and
how these fluctuations affect motion. For this, we consider 40rsion components by their scalar perturbation decomposi-
matter’s action, whose dependence on the affine connectid#":
can be almost arbitrary. However, we will presume that it will

depend only on the barred metric in Eq. (12) ay — 0pa+ 6, Omar, (21)
Smatter = Swmatter[g""]- P — 08,000 (wmn + 3m3ntL) + 04 0, 0™ e

Thus, a non-moving matter point particle at the origin of the
reference frame will contribute to the equations of motion for ~ + (
the gravitational field through the componegiif following

the symmetries of the matter source + 01,0,,0p <€"pq3q5md1 + (6™"0" — 5mp5")d2) (22)

slove. — s 5”P)emm’8pb

0Ymn m“n0
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and
T = B38050u + 6),60500 ™ or, + 2660 SO, + 535 (xamn + 8m8nxL)

(k

+ 261?168163) (yl(smn + "R 0py2 + 6m8nyL) + 6, 0768 (6npamzl + (0" n0p + 0" p0n) 22

mYu v
+(€M,0, + €™,0,)0, 23 + amana,,zL) , (23)

where the scalar fields identified with the sub-index “L’ correspond to longitudinal degrees of freedom. Vector and tensor
perturbations are left for further investigations of the structure of the model.

The first order perturbative expansion of the equations of motion around the already described background in momentum
space withpy = 0 is given by

1 1 1
(5S:(—2Ed2+t—p2tL+TwL—|—3Tz1—|—2Tz2—Tp2zL>6ng2 0Ao + < — Ep*dy + §p2t — §p4tL — §Tp2wL —6ETy,

3 1 1 1
+2ETp?y;, + §Tp221 +Tp°z — QTPQPQZL) C1 6T + (633a - §C’1u +2C1Evg, + icllh
3
—2C’1p2yL)Tme 6T, + C1Tp?vr, 6™ 610, + ( —p*cr + 2EEdy + 4Et — 2Ep®t; + 2ETwy, + 3Tx
2 2 m 2 Iy L4 L 9
—Tp“xy, — 10ET 29 + 2ETD zL)Clzpm 600 + | Ep°ds + ip t— ip tr, —2ETu — §Tp wr, + 8ETy,
1 1 , ,
= 2ETp?y, + 5Tp* 21 + Tp*z = 2Tp4zL> Cy 6™ 0T om + ( —4Edy — t + p*ty, + 2Twy, — 2ETy;, — 2T
1 1
+ Tp2ZL) Clpnpm (;Fn()m — GETyzcllPPanm 51—\n()m + <6B5T(l + Clp2d2 + iclTu + ClETUL - iclTyl
1
+ 201Tp2yL> Wi 8" Ty + (= BEvr + 1 = pPyr ) T 6 0Ty + (= do + Typ ) Cropp™p? 6T

1 1 1
X +vrC1p%upm 0T™ — v CLED? Symp 6T + (— 6Bsa — 5clu — C1Ev; — 501% - 201p2yL)

1 1 3
X PP 0T 4 (GBgEa + iClEu — C1EEv;, + iClEyl — iclEPQyL — Clp221>zpm Onp OT"™P, (24)

which we will add to the variations of the action of the matter

from Eq. (20) and setSial = 0. !
Solutions to this set of equations are in general a highiyd.  Discussion

difficult problem that concerns twenty equations of motion

with twenty scalar fields to be fixed. Yet, knowledge of the In this paper we have proposed novel model of gravitational

value of some of these scalars does not necessarily help tateractions with full diffeomorphisms invariance as the main

determine how geodesics are affected. For this, we only neeguiding principle, whose fundamental field is an affine con-

700 andyy as these provide the first order contributions tonection and no metric field is assumed (nor needed). Surpris-

the equations ingly, in four dimensions, it upholds the correct Newtonian
i . . limit, supporting the suspicions that it may describe some
B4 9'00(3°)* =0, and i° +9°0(2%)* = 0. (25) aspects of gravitational physics that have not been exposed

From Eg. (25) we can conclude that we need only knowyet. Still, the model is alien for anyone accustomed to met-

~ioo = 0%, which we obtain in Fourier space to be ric spacetimes or their extensions, specially since no local
1 0Latter 1 Lorentz structure is present. We also argue that in the ab-
UL =g 9990 2’ (26)  sence of fundamental inertial structure, it becomes a natural

playground to test the full reaches of Mach'’s Principle.

Additionally, within the model, all coupling constants

- 1 OLmateer 1. (27)  turn out to be dimensionless, a property that has been re-
8 9g*° |z lated to scale invariance and conformally invariant theories

is the usual Newtonian potential for a massive far off source(see Refs. 19 and 20). In fact, renormalization is intimately

In position space,

vL
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related to the scaling properties of a model and it may bef this group corresponds to the space of4 antisymmetric
worth to study the quantization and renormalizability of thismatrix representation a§L(4,R). In terms of their invari-
model. In doing so, we believe the lack of metric may allowant tensors, it is easy to see their correspondence. Consider
the model to bypass the uniqueness of the diffeomorphisma vector with components? = (1/y/2)(F° — 23 02 —
invariant Hilbert space stated in Ref. 13. F31 p03 — pi2 Ol 4 p23 po02 4 p3l po3 4 pl2) where
Sticking to the classical theory, the analysis of the cos-F" is an antisymmetric tensor representationSdf(4). A
mological implications is needed. In cosmology there arediagonal metrio)4p = diag(—, —, —, +, +, +) allows us to
important aspects with unsatisfactory explanations, such asompute inner products, and v is
those related to the matter content of the Universe (in par-

ticular the dark energy sector), or the large scale structure 7 0= 2<F°1F23 L p02pBl F°3F12>
formatiort. Additionally, other formal aspects of the model

remain unknown, such as the proper number of propagating 1 b ed

degrees of freedom, and whether or not a duality exists be- = 7 CabeaT T (A1)
tween our model and one of the well-known metric models

(say for example Hi@va-Lifshitz gravity [23,24]). Thus, in order to considefL(4, R) double cover we will use

We also believe that almost every aspect related to couthe Clifford algebraCl; ; defined by
pling gravity to matter fields can be extrapolated to couplings
with the affine connection without making reference to a fun- [Ca,TB] = 2nap (A-2)
damental metric or a local Lorentz symmetry. This could

be done rewriting the affine connection in terms of a Iocaland redefine

GL(4) connectionw, %, relating the two of them through r 1
use of a frame field® and its inverse: AT ﬁ(%)l ~ 723,702 7 731,703 712,701
w, "y = eSey T, — ey e, (28) + 723,702 + V31, Y03 + 712) (A.3)

wherea andb are indices in the defining representation of to rewrite the Clifford algebra in Eq. (A.2) as
the local groug5L(4). In particular,GL(4) = R, x SL(4)
and usingSL(4) ~ SO(3, 3), we can define spinorial repre- {Vab, Yed} = 2€abeas (A.4)
sentations for the diffeomorphisms group, eventually we will
be able to define an action f&fO(3,3) spinors in four di-  Wherey,;, are antisymmetric i < b, 8 x 8 complex matri-
mensions (check Appendix A). ces and) 4 g is basicallye,;.4 in a different basis.

Thus, several topological scalars can be added to the La-
Appendix grangian density
A. Matter Fields Lw = 9 Waee, THVT

. . . + gQ\II’YabeZegEAKHVA/{v)\\IJ
The Dirac equation relies on the loca (3, 1) Lorentz sym-

metry for everything. The aim of this section is to describe + gg‘il’yabGZGZ;VAT)"“V\I/
the inclusion of Dirac spinor without a local Lorentz symme-
try in four dimensions.

Dirac spinors are the fields that transform under repre-
sentation of the local symmetry group that corresponds to tha\cknowledgments
double cover of the original symmetry. We are interested in
the representations of the diffeomorphisms group, that couldiVe thank to J. Zanelli for fruitful discussions, and also to
be associated to the local symmetry generated by the sentk. Peeters for helpful advises in the manipulation of the
simple Lie groupSL(4,R) in four dimensions. This notion software CADABRA [25-27], which was used extensively
is unusual because typically one would think§¥(3,1) as  to achieve the results presented in this paper. Addition-
the local symmetry, and its double cover would generally beally, we thank the developers of the mathematical software
called the spin grougpin(3,1). Instead, we realize that SAGE [28], used to achieve several manipulations. This work
the local symmetry we have go$Z(4,R) is equivalent to was partially supported by CONICYT (Chile) under grant
S0(3, 3) and the fundamental six dimensional representatiorNo. 79140040.

+ g@i’vabeZegeM“”V)\AKW. (A.5)
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There is a controversy between the experimental results obt5.

tained by BICEP2 [21] and Planck [22] in the respect of their
interpretation associated with inflation.
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