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1. Introduction

In a critique to Newtonian mechanics, Mach proposed that
inertial forces should have a dynamical rather than a kinemat-
ical origin (for a deeper discussion on the subject of Mach’s
principle see Ref. 1 and references therein).

Notice that any locally Minkowskian metric in the kine-
matics of the description of spacetime will introduce a no-
tion of inertial forces at a microscopic level [2]. With this in
mind, we will explore the dynamical origin of inertial forces,
studying the dynamics of the affine connection of a manifold
with torsion. For this end, we use the most general power-
counting renormalizable action that includes only the gauge
connection associated with diffeomorphisms invariance.

During the last years an increasing amount of alternative
theories of gravity have been built and tested. Yet, Gen-
eral Relativity (GR) has proven to be the most successful
theory of gravity. Still, it is not as successful as we may
wish [3–5]. Part of the problem is that the standard quan-
tization procedure cannot be applied properly on GR. More-
over, not only it is not renormalizable, but there are problems
with the choice of variables to be quantized and the choice
of the Hilbert space to be used. Although we dare not to say
anything against metric spacetimes, to sum over all possible
field configurations of the metric seems to be wrong, as this
would imply summing Euclidean and Minkowski like contri-
butions to the transition amplitudes on equal terms. Addition-
ally, we might also consider the difficulties of quantizing non-
polynomial field theories, and more specifically square roots
of the metric that appears in the Hamiltonian in an ADM for-
mulation of GR.

In order to bypass some of these issues, several ap-
proaches have been designed that use the connection as a fun-
damental field. For instance, a well-known example comes
from the context of Cartan formulations of gravity, [6] using

the relation between the Weitzenböck and Levi-Civita con-
nections it is possible to obtain an equivalent Lagrangian to
the one by Einstein and Hilbert, as a function of the torsion
field. This approach is known as Teleparallel Gravity (see
Ref. 7 to 9 and references within).

Furthermore, another alternative description of GR devel-
oped initially by Ashtekar uses the spin connection as the fun-
damental field and the frame field turns out to be its canon-
ically conjugated momentum. In the context of Loop Quan-
tum Gravity (LQG), using Ashtekar connection, a success-
ful quantization program has been achieved [10,11]. Origi-
nally, this approach towards quantum gravity addressed the
concerns of the quantization of non-polynomial functions of
the gravitational field, but later on it turned out that diffeo-
morphisms symmetry would not show up when the quantum
operators were not of the correct density weight, which forces
one to reintroduce the squared root [12]. Some strength
of this quantization program lie within a theorem by H.
Sahlmannet al. in Ref. 13 that states the only diffeomor-
phisms invariant Hilbert space that supports the Heisenberg
algebra, for the connection and its associated momentum, is
the one of LQG. In spite of its success, LQG has not advanced
enough to conclude that its low energy effective description
is GR. Currently, there is no clue about the LQG effective
description at other scales, nor its continuum spacetime limit
either. Therefore, we cannot conclude that the search for a
fundamental theory of gravitational interactions has ended.
On the contrary, there are increasingly many alternatives to
the usual metric description of gravity and they all must be
tested against experiments and observations [14].

In this article we study a power-counting renormalizable,
diffeomorphism invariant model consisting solely of an affine
connection (with torsion). We expect this model may over-
come the uniqueness theorem about diffeomorphism invari-
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ant theories of connections, since we have no fundamental
metric field to quantize. The earliest model that argues a de-
scription of gravitational interaction in terms of connections
as fundamental fields was presented by Eddington [15], for
an spacetime with positive cosmological constant. He pro-
posed the square root of the determinant of the Ricci tensor
as the gravitational Lagrangian.

It has also being emphasized the character of GR as
a gauge theory in order to address the issues of quan-
tization and regularization, as in LQG. Authors like N.
Popławski [16] and K. Krasnov [17] have advanced the road
towards a pure connection gravity theory.

The article is organized as follows: In Sec. 2 we analyse
the more general “gravitational” theory built with the affine
connection and power-counting renormalizable. In Sec. 3
we study the four-dimensional model, built under the same
precepts than before. Additionally, we found solutions to
the equations of motion assuming a static, homogeneous and
isotropic background, and show that in the non-relativistic
limit of the theory the gravitational potential is Newtonian.

Finally, in Sec. 4 we briefly discuss the reaching conse-
quences of the model.

2. Warming up: The three-dimensional case

Formally, the curvature of a manifold is defined through the
commutator of covariant derivatives under diffeomorphims,
∇̂µ, but for general choice of the connection,Γ̂µ

νλ, there is
an extra contribution given by its antisymmetric part in the
lower indices,Tµ

νλ = 2Γ̂µ
[νλ]. Therefore, the commutator

of the covariant derivatives acting on a vector,V ρ, yields,
[
∇̂µ, ∇̂ν

]
V ρ = R̂µν

ρ
λV λ − T ρ

µν∇ρV
ρ. (1)

Note thatT ρ
µν is a nine-dimensional tensor representation

under diffeomorphisms.
In order to build topological invariants of density one, we

can use the skew-symmetric Levi-Civita tensorεµ1µ2...µn in
n-dimensional space(-time).

With these ingredients, in a three-dimensional space we
write an action

S[Γ] =
∫

d3x

{
R̂µ1µ2

ρ
µ3T

σ
µ4µ5

∑

π∈Z5

Cπδ
µπ(1)
ρ δ

µπ(2)
σ εµπ(3)µπ(4)µπ(5)

+ T ρ
µ1µ2T

σ
µ3µ4T

τ
µ5µ6

∑

π∈Z6

Dπδ
µπ(1)
ρ δ

µπ(2)
σ δ

µπ(3)
τ εµπ(4)µπ(5)µπ(6)

+ T ρ
µ1µ2∇̂µ3T

σ
µ4µ5

∑

π∈Z5

Eπδ
µπ(1)
ρ δ

µπ(2)
σ εµπ(3)µπ(4)µπ(5)

}
, (2)

where all possible permutations ofn elementsπ ∈ Zn have
been included in the sums with different constantsCπ, Dπ

andEπ for permutation.
The torsion field can be decomposed into invariant ten-

sors respecting the symmetry,

Tσ
µν = εµνρT

σρ + A[µδσ
ν], (3)

with a symmetricTσρ of density weightw = 1, and
Aµ = T ν

µν is the trace part of the more arbitraryTσ
µν .

The affine connection can be decomposed into its sym-
metric and antisymmetric parts,

Γ̂λ
µρ = Γλ

(µρ) + εµρσTλσ + A[µδλ
ρ], (4)

whereεµρσ has been introduced, and it is related to the skew
symmetricεµρσ through the identityελµνερστ=3!δλ

[ρδ
µ
σδν

τ ].

Therefore, the curvature tensor can be expressed as

R̂µν
σ

ρ = Rµν
σ

ρ − 2ερα[µ∇ν]T
σα + ∂[µAν]δ

σ
ρ + δσ

[µ∇ν]Aρ

+ εµνκTκσAρ − δσ
[µεν]ραTαβAβ +

1
2
δσ
[µAν]Aρ

− 2εαβ[µεν]ρδT
σαT βδ, (5)

where∇ρ andRµν
λ

ρ are the covariant derivative and curva-
ture associated to the symmetric part of the connection. No-
tice that Bianchi identity, obtained asεµνλRµν

ρ
λ = 0, leads

us to the following

εµνρR̂µν
λ

ρ = 4∇ρT
ρλ + 2εµνλ∂µAν − 4TλρAρ. (6)

From the previous action and adding two possible Chern-
Simons terms we get (up to boundary terms)

S[Γ, T, A] =
∫

d3x

(
B1Rµν

µ
ρT

νρ + B2ε
µνρRµν

σ
σAρ + B3ε

µνρAµ∂νAρ + B4T
µν∇µAν

+ B5T
µνAµAν + B6 det(Tµν) + B7ε

µνλ
(
Γσ

µρ∂νΓρ
λσ +

2
3
Γτ

µρΓρ
νσΓσ

λτ

)
+ B8ε

µνρΓσ
µσ∂νΓτ

ρτ

)
, (7)

with Bi the coupling constants.
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At this point, it is useful to introduce what we have called
the “Eddington’s trick” [15]. First of all, notice that in the
usual Einstein–Hilbert action the variation of the action with
respect to the Ricci tensor yields an inverse metric density.
Thus, a sort of dual theory could be obtained by identifying
the tensor density obtained from the variation of the action
with respect to the symmetric part of Ricci tensor with the
inverse metric density (see Ref. 15 and 16)

δ

δR(µν)
S[Γ] =⇒ √

ggµν . (8)

Noticing that in the first term, the variation respect to the
Ricci tensor yields toTµν , it can be argued that in a standard
theory of gravity this tensor density corresponds to

√
ggµν .

Therefore, Eq. (7) reveals a one to one correspondence with
general relativity nonminimally coupled to theAµ field,

S[g, Γ, A]=
∫

d3x

(√
g
(
B1R+B4∇µAµ+B5AµAµ + B6

)

+ B2ε
µνρRµν

σ
σAρ + B3ε

µνρAµ∂νAρ

+ B7ε
µνλ

(
Γσ

µρ∂νΓρ
λσ +

2
3
Γτ

µρΓρ
νσΓσ

λτ

)

+ B8ε
µνρΓσ

µσ∂νΓτ
ρτ

)
(9)

Thus, an interesting sector of the theory corresponds to the
space of non-degeneratedTµν .

3. Four-dimensional metricless (and torsion-
ful) action

Following the precepts already stated, we start by defining an
irreducible representation decomposition for the full connec-
tion field

Γ̂µ
ρσ = Γµ

ρσ +Tµ
ρσ = Γµ

ρσ +ερσλκTµ,λκ+A[ρδ
µ
ν], (10)

whereΓµ
ρσ denotes a forty-dimensional symmetric connec-

tion, Aµ is a four-dimensional vector field that gives trace
to the antisymmetric part of the full connection, andTµ,λκ

is a twenty-dimensional Curtright field (see Ref. 18) that
is defined through the symmetry of its indices: antisym-
metric in the last two indices, and it has a cyclic prop-
erty Tµ,λκ + Tλ,κµ + Tκ,µλ = 0. In other words that
T [µ,λ]κ = (1/2)Tκ,λµ, just as for the Riemmann tensor
Rµ[ν

α
λ] = (1/2)Rλν

α
µ. Notice that due to its symmetries,

the contractionερσλκTµ,λκ is traceless.
Additionally, since no metric is present the epsilon sym-

bols are not related by lowering or raising their indices, but
instead one demands that

εδηλκεµνρσ = 4!δδ
[µδη

νδλ
ρδ

κ
σ].

One can write all the combinations of fields that would
presumably be renormalizable with these three independent
fields —up to a boundary term—,

S[Γ, T, A] =
∫

d4x

[
B1Rµν

µ
ρT

ν,αβT ρ,γδεαβγδ

+ B2

(
Rµν

σ
ρ +

2
3
δσ

[µRν]λ
λ

ρ

)
T β,µνT ρ,γδεσβγδ

+ B3Rµν
µ

ρT
(ν,ρ)σAσ

+ B4

(
Rµν

σ
ρ +

2
3
δσ

[µRν]λ
λ

ρ

)

×
(
T ρ,µνAσ − 1

4
δρ
σTκ,µνAκ

)
+ B5Rµν

ρ
ρT

σ,µνAσ

+ C1Rµν
µ

ρ∇σT (ν,ρ)σ + C2Rµν
ρ
ρ∇σTσ,µν

+ D1T
α,µνT β,ρσ∇γT (λ,κ)γεβµνλεαρσκ

+ D2T
α,µνTλ,βγ∇λT δ,ρσεαβγδεµνρσ

+ D3T
µ,αβTλ,νγ∇λT δ,ρσεαβγδεµνρσ

+ D4T
λ,µνTκ,ρσ∇(λAκ)εµνρσ

+ D5T
λ,µν∇[λTκ,ρσAκ]εµνρσ

+ D6T
λ,µνAν∇(λAµ) + D7T

λ,µνAλ∇[µAν]

+ E1∇(ρT
ρ,µν∇σ)T

σ,λκεµνλκ

+ E2∇(λTλ,µν∇µ)Aν

+ Tα,βγT δ,ηκTλ,µνT ρ,στ
(
Λ1εβγηκεαρµνεδλστ

+ Λ2εβληκεγρµνεαδστ

)

+ Λ3T
ρ,αβT γ,µνTλ,στAτ εαβγλεµνρσ

+ Λ4T
η,αβTκ,γδAηAκεαβγδ

]
, (11)

where the termsB2 andB4 contain a traceless contribution
of the curvature. In this case, the induced “inverse metric
density” [see Eq. (8)] is

ḡµν ≡ √
ggµν = B1T

µ,λκT ν,ρσελκρσ

+ B3T
(µ,ν)λAλ + C1∇λT (µ,ν)λ. (12)

Symmetric solution to the equations of motion

In four dimensions there is no obvious equivalence of
Eq. (11) with GR, specially due to the lack of a fundamen-
tal metric field in the given model. However, both models are
explicitly invariant under diffeomorphisms, and even if their
structures and number of degrees of freedom differ, the ac-
tion in Eq. (11) provides a context where parallel transport of
particle’s velocities on a purely torsional background is non-
trivial.

Here, we wish to stablish the model’s non-relativistic
(Newtonian) limit for the “geodesic” deviation of “inertial”
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observers at rest with respect to a static, isotropic, homoge-
neous and spatially flat background within the context pro-
vided by Eq. (11). In order to properly analyse the model, we
propose the following decomposition of the fields

Aµ = δ0
µA + aµ, (13)

Tµ,νρ = δµ
mδνρ

m0T + tµ,νρ, (14)

and

Γλ
µν = Eδλ

0 δm
µ δm

ν + Fδλ
mδm

(µδ0
ν)

+ Gδλ
0 δ0

µδ0
ν + γλ

µν , (15)

whereδµν
λκ = δµ

λδν
κ − δµ

κδν
λ.

In order to make perturbation theory we will expand
around a static, isotropic and homogeneous solution of the

equations of motion, because these are characteristic of the
observable universe.

The induced metric in Eq. (12) on the background is

√−ggµν =
(

B3A +
1
2
C1F

)
Tδµ

mδν
m

− 3C1ETδµ
0 δν

0 , (16)

while the Ricci curvature tensor calculated from Eq. (15) is

Rµν =
1
2
EFδm

µ δm
ν − 3

4
F 2δ0

µδ0
ν . (17)

Therefore, whether the four-dimensional Eddington’s
metric structure is Riemannian or pseudo-Riemannian will
depend exclusively on the values of the parameters of the ac-
tion in Eq. (11) and the signs of the components of the con-
nection field. The first order perturbations of the action yields

δS=
((

(B3+
8
3

B4+
1
2

E2)A+4C1F−2 C1G
)
E+8 (−D1 + 2 D2+D3)T 2

)
TδΓm

0m +
(

(
1
2

B3 +
4
3

B4 +
1
4

E2)AF

+ (B3 − 4
3

B4 − 1
2

E2)AG + C1F
2 − C1FG−D6A

2

)
TδΓ0m

m +
((

− (
1
2

B3 +
4
3

B4 +
1
4

E2)AF

+ (−B3 +
4
3

B4 +
1
2

E2)AG− C1F
2 + C1FG + D6A

2
)
E +

(
12 (D1 − 2 D2 −D3)F + 24 L3A

)
T 2

)
δTm

0m

+
(

(3B3 − 4 B4 − 3
2

E2)A− 3 C1F

)
ETδΓ0

00 +
(

3
(
− 2 D6A + (

1
2

B3 +
4
3

B4 +
1
4

E2)F

+(B3−4
3

B4−1
2

E2)G
)
E−24 L3T

2

)
TδA0=0, (18)

and we are most interested in solutions to the connection field
whose contribution to the parallel transport equation of a test
particle’s velocity is that of a free particle, at least at the low
velocity regime

ẍi+2Fẋ0ẋi = 0, and ẍ0+E (ẋi)2+G (ẋ0)2 = 0, (19)

which we can achieve by settingF = G = 0 andE 6= 0 since
(ẋi)2 is already second order in the velocities. Thus, looking
again at the equations of motion we can find a nontrivial so-
lution if we set all coupling constants to zero butB3 6= 0,
B4 = − 3

2B3, C1 6= 0 andE2 = 6B3.
Additionally, we can incorporate perturbative inhomoge-

neous sources to the connection field equations and check on
how these fluctuations affect motion. For this, we consider a
matter’s action, whose dependence on the affine connection
can be almost arbitrary. However, we will presume that it will
depend only on the barred metric in Eq. (12)

SMatter = SMatter[ḡµν ].

Thus, a non-moving matter point particle at the origin of the
reference frame will contribute to the equations of motion for
the gravitational field through the componentḡ00 following
the symmetries of the matter source

δSMatter = C1

(
− 1

2
(δΓ0

mn)Tδmn − 1
2
(δT 00m)ıpm

+
1
2
(δTm0n)Eδmn

)∂LMatter

∂ḡ00
. (20)

Scalar modes and Newtonian limit

In order to obtain the non-relativistic limit,i.e., the Newto-
nian potential, one performs the scalar mode perturbative ex-
pansion. One proceeds by substituting the connection and
torsion components by their scalar perturbation decomposi-
tion,

aµ → δ0
µa + δm

µ ∂maL, (21)

tµ,νρ → δµ
mδνρ

n0

(
tδmn + ∂m∂ntL

)
+ δµ

0 δνρ
m0∂

mcL

+
(
δµ
0 δνρ

mn − δµ
mδνρ

n0

)
εmnp∂pb

+ δµ
mδν

nδρ
p

(
εnpq∂q∂

md1 + (δmn∂p − δmp∂n)d2

)
(22)
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and

γλ
µν → δλ

0 δ0
µδ0

νu + δλ
mδ0

µδ0
ν∂mvL + 2δλ

0 δ0
(µδm

ν)∂mwL + δλ
0 δm

µ δn
ν

(
xδmn + ∂m∂nxL

)

+ 2δλ
mδ0

(µδn
ν)

(
y1δ

m
n + εmp

n∂py2 + ∂m∂nyL

)
+ δλ

mδn
µδp

ν

(
δnp∂

mz1 + (δm
n∂p + δm

p∂n)z2

+ (εmq
n∂p + εmq

p∂n)∂qz3 + ∂m∂n∂pzL

)
, (23)

where the scalar fields identified with the sub-index “L” correspond to longitudinal degrees of freedom. Vector and tensor
perturbations are left for further investigations of the structure of the model.

The first order perturbative expansion of the equations of motion around the already described background in momentum
space withp0 = 0 is given by

δS=
(
−2Ed2+t−p2tL+TwL+3Tz1+2Tz2−Tp2zL

)
6B3p

2 δA0 +
(
− Ep2d2 +

1
2
p2t− 1

2
p4tL − 1

2
Tp2wL − 6ETy1

+ 2ETp2yL +
3
2
Tp2z1 + Tp2z2 − 1

2
Tp2p2zL

)
C1 δΓ0

00 +
(

6B3a− 1
2
C1u + 2C1EvL +

1
2
C1y1

−3
2
C1p

2yL

)
T ıpm δΓ0

0m + C1Tp2vL δmn δΓ0
mn +

(
− p2cL + 2EEd2 + 4Et− 2Ep2tL + 2ETwL + 3Tx

− Tp2xL − 10ETz2 + 2ETp2zL

)
C1ıpm δΓm

00 +
(

Ep2d2 +
1
2
p2t− 1

2
p4tL − 2ETu− 1

2
Tp2wL + 8ETy1

− 2ETp2yL +
1
2
Tp2z1 + Tp2z2 − 1

2
Tp4zL

)
C1 δm

n δΓn
0m +

(
− 4Ed2 − t + p2tL + 2TwL − 2ETyL − 2Tz1

+ Tp2zL

)
C1pnpm δΓn

0m − 6ETy2C1ıp
pεnp

m δΓn
0m +

(
6B3Ta + C1p

2d2 +
1
2
C1Tu + C1ETvL − 1

2
C1Ty1

+
1
2
C1Tp2yL

)
ıpm δnp δΓm

np +
(
− 3EvL + y1 − p2yL

)
C1T ıpn δm

p δΓm
np +

(
− d2 + TyL

)
C1ıpmpnpp δΓm

np

×+vLC1p
2ıpm δT 00m − vLC1Ep2 δmn δTm0n +

(
− 6B3a− 1

2
C1u− C1EvL − 1

2
C1y1 − 1

2
C1p

2yL

)

× pmpn δTm0n +
(

6B3Ea +
1
2
C1Eu− C1EEvL +

1
2
C1Ey1 − 3

2
C1Ep2yL − C1p

2z1

)
ıpm δnp δTnmp, (24)

which we will add to the variations of the action of the matter
from Eq. (20) and setδStotal = 0.

Solutions to this set of equations are in general a highly
difficult problem that concerns twenty equations of motion
with twenty scalar fields to be fixed. Yet, knowledge of the
value of some of these scalars does not necessarily help to
determine how geodesics are affected. For this, we only need
γi

00 andγ0
00 as these provide the first order contributions to

the equations

ẍi + γi
00(ẋ0)2 = 0, and ẍ0 + γ0

00(ẋ0)2 = 0. (25)

From Eq. (25) we can conclude that we need only know
γi

00 = ∂ivL, which we obtain in Fourier space to be

vL =
1
2

∂LMatter

∂ḡ00

1
p2

. (26)

In position space,

vL =
1
8π

∂LMatter

∂ḡ00

1
|~x| (27)

is the usual Newtonian potential for a massive far off source.

4. Discussion

In this paper we have proposed novel model of gravitational
interactions with full diffeomorphisms invariance as the main
guiding principle, whose fundamental field is an affine con-
nection and no metric field is assumed (nor needed). Surpris-
ingly, in four dimensions, it upholds the correct Newtonian
limit, supporting the suspicions that it may describe some
aspects of gravitational physics that have not been exposed
yet. Still, the model is alien for anyone accustomed to met-
ric spacetimes or their extensions, specially since no local
Lorentz structure is present. We also argue that in the ab-
sence of fundamental inertial structure, it becomes a natural
playground to test the full reaches of Mach’s Principle.

Additionally, within the model, all coupling constants
turn out to be dimensionless, a property that has been re-
lated to scale invariance and conformally invariant theories
(see Refs. 19 and 20). In fact, renormalization is intimately
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related to the scaling properties of a model and it may be
worth to study the quantization and renormalizability of this
model. In doing so, we believe the lack of metric may allow
the model to bypass the uniqueness of the diffeomorphisms
invariant Hilbert space stated in Ref. 13.

Sticking to the classical theory, the analysis of the cos-
mological implications is needed. In cosmology there are
important aspects with unsatisfactory explanations, such as
those related to the matter content of the Universe (in par-
ticular the dark energy sector), or the large scale structure
formationi. Additionally, other formal aspects of the model
remain unknown, such as the proper number of propagating
degrees of freedom, and whether or not a duality exists be-
tween our model and one of the well-known metric models
(say for example Hǒrava-Lifshitz gravity [23,24]).

We also believe that almost every aspect related to cou-
pling gravity to matter fields can be extrapolated to couplings
with the affine connection without making reference to a fun-
damental metric or a local Lorentz symmetry. This could
be done rewriting the affine connection in terms of a local
GL(4) connectionωµ

a
b, relating the two of them through

use of a frame fieldea
µ and its inverseeµ

a

ωµ
a

b = ea
λeν

b Γλ
µν − eν

b ∂µea
ν , (28)

wherea and b are indices in the defining representation of
the local groupGL(4). In particular,GL(4) = R+ × SL(4)
and usingSL(4) ' SO(3, 3), we can define spinorial repre-
sentations for the diffeomorphisms group, eventually we will
be able to define an action forSO(3, 3) spinors in four di-
mensions (check Appendix A).

Appendix

A. Matter Fields

The Dirac equation relies on the localSO(3, 1) Lorentz sym-
metry for everything. The aim of this section is to describe
the inclusion of Dirac spinor without a local Lorentz symme-
try in four dimensions.

Dirac spinors are the fields that transform under repre-
sentation of the local symmetry group that corresponds to the
double cover of the original symmetry. We are interested in
the representations of the diffeomorphisms group, that could
be associated to the local symmetry generated by the semi-
simple Lie groupSL(4,R) in four dimensions. This notion
is unusual because typically one would think ofSO(3, 1) as
the local symmetry, and its double cover would generally be
called the spin groupSpin(3, 1). Instead, we realize that
the local symmetry we have got,SL(4,R) is equivalent to
SO(3, 3) and the fundamental six dimensional representation

of this group corresponds to the space of4×4 antisymmetric
matrix representation ofSL(4,R). In terms of their invari-
ant tensors, it is easy to see their correspondence. Consider
a vector with componentsvA = (1/

√
2)(F 01 − F 23, F 02 −

F 31, F 03−F 12, F 01 + F 23, F 02 + F 31, F 03 + F 12), where
F ab is an antisymmetric tensor representation ofSL(4). A
diagonal metricηAB = diag(−,−,−, +, +,+) allows us to
compute inner products, and~v · ~v is

~v · ~v = 2
(

F 01F 23 + F 02F 31 + F 03F 12

)

=
1
4
εabcdF

abF cd. (A.1)

Thus, in order to considerSL(4,R) double cover we will use
the Clifford algebraCl3,3 defined by

[ΓA, ΓB ] = 2ηAB (A.2)

and redefine

ΓA → 1√
2
(γ01 − γ23, γ02 − γ31, γ03 − γ12, γ01

+ γ23, γ02 + γ31, γ03 + γ12) (A.3)

to rewrite the Clifford algebra in Eq. (A.2) as

{
γab, γcd

}
= 2εabcd, (A.4)

whereγab are antisymmetric ina ↔ b, 8× 8 complex matri-
ces andηAB is basicallyεabcd in a different basis.

Thus, several topological scalars can be added to the La-
grangian density

LΨ = g1Ψ̄γabe
a
µeb

νTλ,µν∇λΨ

+ g2Ψ̄γabe
a
µeb

νελκµνAκ∇λΨ

+ g3Ψ̄γabe
a
µeb

ν∇λTλ,µνΨ

+ g4Ψ̄γabe
a
µeb

νελκµν∇λAκΨ. (A.5)
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i. There is a controversy between the experimental results ob-
tained by BICEP2 [21] and Planck [22] in the respect of their
interpretation associated with inflation.

1. H. Lichtenegger and B. Mashhoon,Mach’s principle(2004).

2. D.W. Sciama, Rev. Mod. Phys.36 (1964) 463.

3. A. De Felice and Sh. Tsujikawa,Living Rev. Rel.13 (2010) 3.

4. S. Capozziello and M. De Laurentis,Phys. Rep.509 (2011)
167–321.

5. C. Kiefer,ISRN Math. Phys.(2013) 509316.

6. G.J. Olmo,Int. J. Mod. Phys. D20 (2011) 413–462.

7. J.W. Maluf,Annalen Phys.525(2013) 339.

8. R. Aldrovandi and J. Geraldo Pereira.Teleparallel Gravity, vol-
ume 173 ofFundamental Theories of Physics(Springer, 2013).

9. J.C. Baez and D.K. Wise,Teleparallel Gravity as a Higher
Gauge Theory, (2012).

10. A. Ashtekar and J. Lewandowski,Class. Quant. Grav.21
(2004) R53.

11. Th. Thiemann, In Approaches to Fundamental Physics,
(Springer, 2007). p. 185–263.

12. T. Thiemann,Class. Quant. Grav.15 (1998) 839.

13. J. Lewandowski, A. Okolow, H. Sahlmann, and Th. Thiemann,
Commun. Math. Phys.267(2006) 703.

14. E. Berti, E. Barausse, V. Cardoso, L. Gualtieri, P. Pani,et al.
Testing General Relativity with Present and Future Astrophysi-
cal Observations(2015).

15. A.S. Eddington.The mathematical theory of relativity(Cam-
bridge University Press, 1923).

16. N.J. Popławski,Gen. Rel. Grav.46 (2014) 1625.

17. K. Krasnov,Phys. Rev. Lett.106(2011) 251103.

18. Th. Curtright,Phys. Lett. B165(1985) 304.

19. D. Buchholz and K. Fredenhagen,J. Math. Phys.18 (1977)
1107.

20. J. Maldacena,Einstein Gravity from Conformal Gravity.
(2011).

21. P.A.R. Adeet al. Phys. Rev. Lett.112(2014) 241101.

22. R. Adamet al. Planck intermediate results. XXX. The angular
power spectrum of polarized dust emission at intermediate and
high Galactic latitudes. (2014).
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