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In this contribution we propose a new fractional differential equation to describe the mechanical oscillations of a simple system. In particular,
we analyze the systems mass-spring and spring-damper. The order of the derivatives is0 < γ ≤ 1. In order to be consistent with the physical
equation a new parameterσ is introduced. This parameter characterizes the existence of fractional structures in the system. A relation
between the fractional order time derivativeγ and the new parameterσ is found. Due to this relation the solutions of the corresponding
fractional differential equations are given in terms of the Mittag-Leffler function depending only on the parameterγ. The classical cases are
recovered by taking the limit whenγ = 1.
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En esta contribución se propone una nueva ecuación diferencial fraccionaria que describe las oscilaciones mecánicas de un sistema simple.
En particular, se analizan los sistemas masa-resorte y resorte-amortiguador. El orden de las derivadas es0 < γ ≤ 1. Para mantener la
consistencia con la ecuación f́ısica se introduce un nuevo parámetroσ. Este paŕametro caracteriza la existencia de estructuras fraccionarias
en el sistema. Se muestra que existe una relación entre el orden de la derivada fraccionariaγ y el nuevo paŕametroσ. Debido a esta relación
las soluciones de las correspondientes ecuaciones diferenciales fraccionarias estan dadas en terminos de la función de Mittag-Leffler, cuyas
soluciones dependen solo del orden fraccionarioγ. Los casos clásicos son recuperados en el lı́mite cuandoγ = 1.

Descriptores: Calculo fraccionario; oscilaciones mecanicas; derivada de caputo; estructuras fraccionarias.
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1. Introduction

Although the application of Fractional Calculus (FC) has at-
tracted interest of researches in recent decades, it has a long
history when the derivative of order0.5 has been described by
Leibniz in a letter to L’Hospital in1695. A reviewing paper
on applications and the formalism can be found in [1]. FC, in-
volving derivatives and integrals of non-integer order, is his-
torically the first generalization of the classical calculus [2-5].
Many physical phenomena have “intrinsic” fractional order
description, hence, FC is necessary in order to explain them.
In many applications FC provides a more accurate model of
physical systems than ordinary calculus do. Since its success
in the description of anomalous diffusion [6], non-integer
order calculus, both in one dimension and in multidimen-
sional space, has become an important tool in many areas
of physics, mechanics, chemistry, engineering, finances and
bioengineering [7-10]. Fundamental physical considerations
in favor of the use of models based on derivatives of non-
integer order are given in [11-13]. Another large field which
requires the use of FC is the theory of fractals [14]. Frac-
tional derivatives provide an excellent instrument for the de-
scription of memory and hereditary properties of various ma-
terials and processes [15]. This is the main advantage of FC

in comparison with the classical integer-order models, in
which such effects are in fact neglected.

In a paper of Ryabov it is discussed the fractional os-
cillator equation involving fractional time derivatives of the
Riemann-Liouville type [16]. Naber in [17], studied the
linearly damped oscillator equation, written as a fractional
derivative in the Caputo representation. The solution is
found analytically and a comparison with the ordinary lin-
early damped oscillator is made. In [18] was considered the
fractional oscillator, being a generalization of the conven-
tional linear oscillator, in the framework of fractional calcu-
lus. It is interpreted as an ensemble of ordinary harmonic
oscillators governed by a stochastic time arrow. Despite in-
troducing the fractional time derivatives the cases mentioned
above seem to be justified, there is no clear understanding of
the basic reason for fractional derivation in physics. There-
fore, it is interesting to analyze a simple physical system and
try to understand their fully behavior given by a fractional
differential equation.

The aim of this work is to give a simple alternative to
construct fractional differential equations for physical sys-
tems. In particular, we analyze the systems mass-spring and
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spring-damper in terms of the fractional derivative of the Ca-
puto type. The analytical solutions are given in terms of the
Mittag-Leffler function depending on the parameterγ.

2. Fractional oscillator system

We propose a simple alternative procedure for constructing
the fractional differential equation for the fractional oscilla-
tor system. To do that, we replace the ordinary time derivative
operator by the fractional one in the following way:

d

dt
→ dγ

dtγ
, 0 < γ ≤ 1 (1)

It can be seen that (1) is not quite right, from a physical point
of view, because the time derivative operatord/dt has dimen-
sion of inverse secondss−1, while the fractional time deriva-
tive operatordγ/dtγ has,s−γ . In order to be consistent with
the time dimensionality we introduce the new parameterσ in
the following way

[ 1
σ1−γ

dγ

dtγ

]
=

1
s
. 0 < γ ≤ 1 (2)

whereγ is an arbitrary parameter which represents the order
of the derivative. In the caseγ = 1 the expression (2) be-
comes an ordinary derivative operatord/dt. In this way (2) is
dimensionally consistent if and only if the new parameterσ,
has dimension of time[σ] = s. Then, we have a simple proce-
dure to construct fractional differential equations. It consists
in the following; in an ordinary differential equation replace
the ordinary derivative by the following fractional derivative
operator

d

dt
→ 1

σ1−γ

dγ

dtγ
, 0 < γ ≤ 1. (3)

The expression (3) is a time derivative in the usual sense,
because its dimension iss−1. The parameterσ (auxiliary
parameter) represents thefractional time componentsin the
system. This non-local time is calledthe cosmic time[19].
Another physical and geometrical interpretation of the frac-
tional operators is given in [20].

To analyze the dynamical behavior of a fractional sys-
tem it is necessary to use an appropriate definition of frac-
tional derivative. In fact, the definition of the fractional
order derivative is not unique and there exist several defi-
nitions, including: Gr̈unwald-Letnikov, Riemann-Liouville,
Weyl, Riesz and the Caputo representation. In the Caputo
case, the derivative of a constant is zero and we can define,
properly, the initial conditions for the fractional differential
equations which can be handled by using an analogy with
the classical case (ordinary derivative). Caputo derivative im-
plies a memory effect by means of a convolution between the
integer order derivative and a power of time. For this reason,
in this paper we prefer to use the Caputo fractional derivative.

The Caputo fractional derivative for a function of time,
f(t), is defined as follows [5]

C
0 Dγ

t f(t) =
1

Γ(n− γ)

t∫

0

f (n)(η)
(t− η)γ−n+1

dη, (4)

wheren = 1, 2, . . . ∈ N andn−1 < γ ≤ n. We consider the
casen = 1, i.e., in the integrand there is only a first deriva-
tive. In this case,0 < γ ≤ 1, is the order of the fractional
derivative.

The Caputo derivative operator satisfies the following re-
lations

C
0 Dγ

t [f(t) + g(t)] = C
0 Dγ

t f(t) + C
0 Dγ

t g(t),

C
0 Dγ

t c = 0, where c is constant. (5)

For example, in the casef(t) = tk, wherek is arbitrary
number and0 < γ ≤ 1 we have the following expression for
the fractional derivative operation,

C
0 Dγ

t tk =
kΓ(k)

Γ(k + 1− γ)
tk−γ , (0 < γ ≤ 1) (6)

whereΓ(k) andΓ(k + 1 − γ) are the Gamma functions. If
γ = 1 the expression (6) yields the ordinary derivative

C
0 D1

t tk =
dtk

dt
= ktk−1. (7)

During the recent years the Mittag-Leffler function has
caused extensive interest among physicist due to its role
played in describing realistic physical systems with memory
and delay. The Mittag-Leffler function is defined by the se-
ries expansion as

Ea(t) =
∞∑

m=0

tm

Γ(am + 1)
, (a > 0), (8)

whereΓ(·) is the Gamma function. Whena = 1, from (8)
we have

E1(t) =
∞∑

m=0

tm

Γ(m + 1)
=

∞∑
m=0

tm

m!
= et. (9)

Therefore, the Mittag-Leffler function is a generalization of
the exponential function.

Now, we can write a fractional differential equation cor-
responding to the mechanical system, Fig. 1, in the following
way

m

σ2(1−γ)

d2γx(t)
dt2γ

+
β

σ1−γ

dγx(t)
dtγ

+ kx(t) = 0,

0 < γ ≤ 1 (10)

wherem is the mass, measured inKg, β is the damped co-
efficient, measured inN · s/m andk is the spring constant,
measured inN/m [5].
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FIGURE 1. Damped oscillator.

From Eq. (10) we obtain the particular cases: when

1. β = 0

m

σ2(1−γ)

d2γx(t)
dt2γ

+ kx(t) = 0, 0 < γ ≤ 1 (11)

and

2. m = 0

β

σ1−γ

dγx(t)
dtγ

+ kx(t) = 0, 0 < γ ≤ 1, (12)

Equation (11) may be written as follows

d2γx

dt2γ
+ ω2x(t) = 0, (13)

where

ω2 =
kσ2(1−γ)

m
= ω2

0σ2(1−γ), (14)

is the angular frequency for different values ofγ, and
ω2

0=k/m is the fundamental frequency of the system (i.e,
whenγ = 1). The solution for the Eq. (13) withx(0) = x0

andẋ(0) = 0 as the initial conditions, is given by

x(t) = x0E2γ

{
− ω2t2γ

}
, (15)

where

E2γ

{
− ω2t2γ

}
=

∞∑
n=0

(
− ω2t2γ

)n

Γ(2γn + 1)
, (16)

is the Mittag-Leffler function.
In the caseγ = 1 from (14) we haveω2 = ω2

0 = k/m
and (15) becomes hyperbolic cosine

E2

{
− k

m
t2

}
= ch

(√
− k

m
t2

)
= ch

(
i

√
k

m
t

)

= ch(iω0t) = cos ω0t. (17)

Then in the caseγ = 1 the solution of the Eq. (13) is a peri-
odic function given by

x(t) = x0cosω0t. (18)

Expression (18) is the well known solution for the case of
integer differential Eq. (11) withγ = 1.

Note that the parameterγ, which characterizes the frac-
tional order time derivative can be related to theσ parame-
ter, which characterizes the existence, in the system, of frac-
tional structures (components that show an intermediate be-
havior between a system conservative (spring) and dissipa-
tive (damper)). For example, for the system described by the
fractional equation (11), we can write the relation

γ =
σ√
m
k

= σω0, 0 < σ ≤
√

m

k
. (19)

FIGURE 2. Mass-Spring system,γ = 1, γ = 0.75, γ = 0.5 and
γ = 0.25.

FIGURE 3. Mass-Spring system,γ = 1, γ = 0.96, γ = 0.92 and
γ = 0.8.
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FIGURE 4. Damper-Spring system,γ = 1, γ = 0.75, γ = 0.5 and
γ = 0.25.

FIGURE 5. Damper-Spring system,γ = 1, γ = 0.96, γ = 0.92

andγ = 0.8.

Then, the magnitudeδ = 1 − γ characterizes the exis-
tence of fractional structures in the system. It is easy to see
that, whenγ = 1, equivalentlyσ = 1/ω0 =

√
m/k, the

value ofδ is zero, which means that in the system there are
no fractional structures. However, in the interval0 < γ < 1,
δ grows and tends to unity, fractional structures appear in the
mechanical system.

Taking into account the expression (19), the solution (15)
of the Eq. (11) can be rewritten throughγ by

x(t̃) = x0E2γ

{
− γ2(1−γ)t̃2γ

}
, (20)

wheret̃ = tω0 is a dimensionless parameter. Plots for differ-
ent values ofγ are shown in the Fig. 2 and 3.

As we can see from (20), the displacement of the frac-
tional oscillator is essentially described by the Mittag-Leffler
function

E2γ

{
− γ2(1−γ)t̃2γ

}
.

Also it is proved that, ifγ is less than 1 the displacement
shows the behavior of a damped harmonic oscillator. The

damping of fractional oscillator is intrinsic to the equation of
motion and not by introducing an additional force as in the
case of an ordinary damping harmonic oscillator. The frac-
tional oscillator should be considered as an ensemble average
of harmonic oscillators.

On the other hand, solution of the Eq. (12) is given by

x̃(t) = x̃0Eγ

{
− kσ1−γ

β
tγ

}
, (21)

whereEγ{} is the Mittag-Leffler function defined above.
For the caseγ = 1, the expression (21) becomes

x̃(t) = x̃0e
− k

β t, (22)

which is the well-known solution for the integer differential
Eq. (12). In this case the relation betweenγ andσ is given
by

γ =
k

β
σ, 0 < σ ≤ k

β
. (23)

The solution (21) of the fractional Eq. (12), taking into ac-
count the relation (23), may be written as follows

x̃(t̃) = x̃0Eγ

{
− γ(1−γ)t̃γ

}
, (24)

wheret̃ = k
β t is a dimensionless parameter. Figures 4 and 5,

show the solution of (24) for different values ofγ.

3. Conclusion

In this work we have proposed a new fractional differential
equation of order0 < γ ≤ 1 to describe the mechanical
oscillations of a simple system. In particular, we analyze
the systems mass-spring and spring-damper. In order to be
consistent with the physical equation the new parameterσ
is introduced. The proposed equation gives a new universal
behavior for the oscillating systems, Eqs. (20) and (24), for
equal value of the magnitude,δ = 1 − γ characterizing the
existence of the fractional structures on the system. We also
found that there is a relation betweenγ andσ depending on
the system studied, see the Eqs. (19) and (23). The analytical
solutions are given in terms of the Mittag-Leffler function.
They depend on the parameterγ and preserve physical units
in the system parameters. The classical cases are recovered
by taking the limit whenγ = 1.

The general case of the Eq. (10) with respect to the pa-
rameterγ and the classification of fractional systems depend-
ing on the magnitudeδ will be made in a future paper.

We hope that this way of dealing with fractional differen-
tial equations can help us to understand better the behavior of
the fractional order systems.
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