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Nano-channels filling flow of arbitrary cross-sections
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The filling kinetics of liquids in straight nano-channels of arbitrary cross-sections is discussed. We assume that the capillary force induces a
fluid flow in channels characterized by their compactn€ss; P2 /A, whereP is the perimeter and is the cross-sectional area. Analytical
expressions for the distance between the capillary meniscus and the capillary aget function of the elapsed timeare given for several

typical cross-sections. The comparison between our theoretical predictions and a set of reported data for a complex nano-channel [A. Han
J. Colloid Interface. Sci. 293 (2006) 151] allows us to conclude that the model describes well the filling kinetics.

Keywords: Micro and nano- scale flow phenomena; capillary effects; flow in channels.

Se discute la cietica del llenado déduidos en nano canales de sécciransversal arbitraria. Suponemos que la fuerza capilar induce un
flujo de fluido en canales caracterizados por su compacidad, P? /A, dondeP es el peimetro y A es elarea de la secdh transversal.
Expresiones angicas para la distancia entre el menisco y la entrada del capitzmo una fundn del tiempo transcurrida, son dadas
para varias secciones tranversalgichs. La comparagn entre nuestras prediccioneérieas y un conjunto de datos reportados para un
canal complejo [A. Han, J. Colloid Interface Sci. 293 (2006) 151] nos permite concluir que el modelo describe bigticka da llenado.

Descriptores:Ferbmenos de flujo a micro y nano escala; efectos capilares; flujo en canales.

PACS: 47.61.-k; 47.55.nb; 47.60.+i

1. Introduction dius is substituted with aad hochydraulic radius that takes
into account the geometry of the channel [1-4]. Models using
In recent years the study of the capillary penetration of lig-this approximation give very accurate results for non angular
uids into narrow capillaries becomes a renewed topic of retubes [9] but commonly fail for angulated capillaries [1]. In
search in science because a fine knowledge of the capillaitpe present work we use an alternative approach where the
flow in micro and nano channels under complex operatioruse of the hydraulic radius is explicitly avoided.
conditions is critical in microfluidic of biology, medicine The aim of this work is to present a theoretical study of
and technology, among others. For instance, filling flowthe capillary penetration into single, straight channels when
driven by surface tension is used to make micro and nan@on circular cross-sections are assumed. Specifically, we will
structures by micromoulding and nanomoulding in capillar-analyze the capillary flow in straight cylinders of elliptical
ies (MIMIC and NAMIC) and very complex microstructures and rectangular cross-sections which are of interest and util-
can be formed under these procedures [1-5]. Micromouldity in many applications. Our start point is the formulation
ing and nanomoulding in capillaries are techniques capablef a motion equation which takes into account the frictional
of generating microstructures of polymers, inorganic saltsforce as a function of the friction facter, when a constant,
and sol-gel materials on substrates of completely differeninitial pressurep;,, is present. As will be seen later this term
materials. is important because channels of different cross sections have
To our knowledge, the quasi-steady capillary flow devel-different frictional factors. In particular, we show that in hor-
oped in cilindrical capillary tubes, was described a centuryizontal, angulated channels it is possible to found simple ana-
ago assuming a Poiseuille flow [6-8]. It means that the flowlytical correlations for the front of penetration of liquid,as
velocity, u, obeys the formula o (32/@ (Ap/L) whereR a function of the time elapsed during the penetratioguch
is the inner radius of the tubg, is dynamic viscosity of the ~correlations involve the friction factar as a linear function
liquid andAp is the pressure drop along the lengthSuch  of the compactnes§; = P? /A, whereP is the inner perime-
a flow obeys the conditions postulated in the Poiseuille’s lawter of the channel andl is its cross-sectional area. Com-
these are: an incompresible newtonian flow, occurring at #actness is a fundamental concept used in the area of pattern
low Reynolds number, through a distance that is substantiallyecognition which is a method very useful in industrial appli-
longer than its diameter. Typically, in the Poiseuille flow, andcations to characterize geometrically an object.
consequently in the description of the capillary penetration, By the way, the study of the capillary penetration in micro
when the cross-section of the tube is not circular, the inner raand nano-channels is receiving now increasing attention due
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to its relevance to fundamental questions regarding fluid bewhere, again, it is explicitly introduced the capillary cross-

havior at spatial scales where surface forces dominate ovesection through the explicit dependence@manda. Equa-

the body forces. The analysis of phenomena in this limittion (6) is a generalization of the well-known Washburn law

is essential to extend our knowledge about this type of fluidvhich is valid for circular channels [8]. Moreover, for more

flows [10]. complex cross-sections, recently has been found a relation-
To reach all these goals in next Section we derive the moship betweern and C' [15] which will be discussed in the

tion equation for the capillary penetration in straight chan-next section.

nels, after, in Sec. 3 we formulate the Poiseuille flow for

straight channels of arbitrary cross-sections in a dimensi0r13 Fluid flow in non circular cross-sections
less form, it let us to define the friction factar, to compute ’

the linear relation betweem and the compactnessand the |t js obvious that the hydraulic resistance tesnshould be
dependence dfon o(C). Using this latter formula, in Sec. 4 gitferent for different geometries. The basis to build the ex-
we make a comparison between our model and that relatgglicit dependence of(C) is that the flow developed dur-
to the use of the hydraulic radius, for an actual flow devel-ing the capillary penetration is a Poiseuille fidve., a one-
oped in an irregular nano-channel [4], in order to show thegimensional flow. Under these circumstances it is possible to

goodness of our method. Finally, in Sec. 5 we give the maifintroduce the dimensionless hydraulic resistance as
conclusions of this work.

= Thia ™
2. Capillary penetration in capillary channels hid
by definition, the hydraulic resistanég,;, is given by
The main assumption in our treatment is that a Poiseuille flow
occurs in horizontal capillary channels during the capillary Rpig = %7 8)
penetration because in this type of problems the Reynolds Q

number is low [11]. So, the resulting motion equation for the
capillary penetration, where an initial presspyg is present,
has the form [12,13]

in this expressio\p is the pressure drop along the channel
and Q@ is the volume flow rate of fluid in the channel. Ad-
ditionally, through a dimensional analysis one found that the
hydraulic resistance should be a quantity of the form

" pL
heref, is the capillary force, and,, is the frictional viscous Ry = Az 9)
force. The explicit form of each term is given by

Apin‘i’faffu:(), (1)

whereL is the distance penetrated by the liquid afdin a

fy = Pocos, fu = auwl, 2) general way, is the cross-sectional area of the channel
whereo is the surface tensior, is the angle of contacty A= /dajdy’ (10)
is the dimensionless hydraulic resistance terns, the mean 5
velocity of the flow and is the position of the fluid front. The
inclusion of the capillary force in the form where(2 is the inner contour of the channel. Thus, using (8)
and (9) in Eq. (7), we found that
fo = Pocosf 3 £
. a=———. (11)
has been used successfully by several authors for simple ge- (uL/Ap) Q

ometries (cross-sections) [12,13]. The substitution of each

. . ; . .. Due to the flow in the channel obeys a Poiseuille flow
term yields the differential equation for the front positidn, y

whose velocity is

dl v =u(z,y)e., (12)
Apin, + PocosO — apul— = 0. 4) ) ) ) )
dt wheree, is the unit vector along the flow direction, we have
Now, if we use the compactness dimensionless paraméhat the motion equation is
ter [14] 52 92 A
P2 = 4 = __=p 1
o - (W +ay2)u<x,y> > 13)
Which is a way to characterize the cross-sectional area, thehe knowledge of the velocity field(x, %) in the solution of
solution of Eq. (4) has the form Eqg. (13) allows us to give the hydraulic resistance in the form
2 A?
2 (PTP + Po cos 9) a= . (14)
_ pL
I = o t (6) (%) J e pydady
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The introduction of the non dimensional variables «© g,
¢=x/D,n =y/D andv = u/u., whereD is a characteristic
size of the cross-section, yields 751
D? A
ue = — 2P (15) .
w L
and the Poiseuille Eq. (13) is transformed in 501
v 0%
oe T T~ (16) =
Finally, the friction factor is 254
15 20 25 30 35 40
(ﬂf dfdn> .
(17) FIGURE 1. Plot of the friction factora as a function of the com-
vd{dn ' pactnesg” for elliptic (O) and rectangular{) cross-sections.
Q*
In this later expressiof* is the dimensionless contour, the ©F Using .
integrals involve only dimensionless parameters and conse- = @e__- _ 1/e, (23)
quently the friction factor depends only on the cross-section b (b/a)
shape but does not depend on the size of the channel. In thiee new form ofx is given by
next section we will give the corresponding valueshofor
several cross-sections. a(y) =4n(y+y7h). (24)
3.1. Circular channel The compactness involves elliptic integrals whose sim-
plest form is
In this caseD = R, whereR is the radius of the circular
channel, thug = /R, n = y/R and we found that for this /2 2
case the_ dimensionless velocity resulting of the solution of C(v) = *W / de\/l (- ysin20 | . (25)
Eqg. (16) is )
v=g (16, (18)

The relationship betweem andC', C(«), or conversely,
a(C) is obtained from the substitution ¢f«) obtained from
Eq. (24) and introducing it in Eqg. (25). It yields [15]

(77)2 . 2

= = 8. 19
) § " ) Cla) = % /d@\/a— Va2 —(8m)?cosf | . (26)
0

Finally, from Eg. (5) it is easy to evaluate the compact-
ness, such evaluation yields

where¢ = /&2 + n? is the dimensionless radial coordinate
and the corresponding friction factor derived from Egs. (17)
and (18) is

The function C(«) is obtained by expanding’(«)

2
C = (27732) = 4n, (20) (.Eq. (26))_aroundx = 8w, and after, solving fotv as a func-
TR tionof C, i.e,,
however in this case andC are not explicitly relatedi.e., 3 3
C'is a constant. a(C) = §C — gt @ ([C - 47r]2) . (27)
3.2. Elliptic channel In Fig. 1 we plot this linear functio® () for elliptical

cross-sections (symbdD). In this same plot we also show
the plot for rectangular cross-sections (synmbpl The intro-
duction of Eq. (27) in EqQ. (6) allows us to give an expression

For elliptic channels, of major semi-axisand minor semi-
axis b, is possible found the velocity from Eq. (16), in the

form €2 ) N\ 2 for the front of the capillary penetratiaiy as a function of
- e (O] 2
hereD = a, £ = z/a, n = y/bande = b/a < 1. From [ = 3 (P2pin +PCacos0)t' (28)
Eq. (17) and the velocity field (21), the friction coefficient 4(C? =nC)p
now s 2.2 This equation is the Washburn law for an elliptic channel. In
a=—F3—=dn <6 + ) (22)  asubsequent section we will applied this result in the analysis
4(14-€%) of the filling flow of a nano-channel.
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FIGURE 2. Scanning by SEM of the cross-section of a nano-

channel [4]. The black zone at the middle part has a size g g re 3. Plot of{ vst: continuous line corresponds to the Wash-
w=900 nm and height = 50 nm. burn law using the hydraulic radiug; (Eq. (32));] experimental
data from Haret al [4]; O elliptic cross-section using Eq. (28) and

dashed line rectangular nano-channel with= 900 nm and height
3.3. Rectangular channels h = 50 nm Eq. (31).

If the channel now has a rectangular cross-section of height _
2w and width2h with w # h, the aspectratiois = w/h>1.  of the channel wasv = 900 nm and the mean height
Obviously, P = 2(w + h), A = wh and the solution of » = 50 nm. For water, the surface tensiorvis= 0.072 N/m,

Eg. (16),i.e., the velocity, is [15] the dynamic viscosity, = 1 centipoise and the contact angle
0 = 68° and in the experiments there is no an initial pressure,
4 00 1 cosh (%) ie., Pin = 0.
p] 123:5 n3 |7 cosh (@) sin (nm7) , (29) In Fig. 3 we plot several curves to describe the evolution
n=1,3,5,...

of the front of water/, as a function of time¢. The curve
in this relationshipD = h, ¢ = z/h , n = y/h and the ~Made with symbol§] corresponds to the experimental data,

friction factora now is [15] the dashed line was made by assuming that the capillary is
effectively a rectangular channel of width = 900 nm and
a(C) ~ %O _ 65 +0 ([C _ 18]2) . (30) heighth = 50 nm and compactneﬁ =80.22. In this'case

7 3 we used the Eq. (31) to determine such a evolution. The

The plot of this later equation is given also in Fig. 1 Plot made with symbolg) was made by assuming that the
gular channels under an initial pressprg is derived simply @ = w/2 = 500 nm, b = h/2 = 25 nm and compactness

by using Eq. (30) in Eq. (6), it yields C = 114.75 (Eqg. (28)). Finall)_/, the continuous line corre-
sponds to the Washburn law given for a rectangular channel,
I 42 (P2p;,, + PCo cos ) (1) this law goes like
N (66C2 — 455C) p
Notice the substantial algebraic difference between this [ — Ryocost . (32)
last equation and that derived for elliptic channels (Eq. (28)). 2u ’
4. A comparison with a nano-channel flow whereRy = A/P = 2(w + h)/wh is the hydraulic radius.

Han et al. [4] have studied experimentally the kinetics of Itis clear that the better approximation to the experimen-
the capillary penetration of various liquids that fill nano- tal data is that given by the dashed line which corresponds to
channels. Although, as can be seen in Fig. 2, the crosghe assumption that the cross-section of the channel is a rect-
section of a typical nano-channel is very complex, Han angle. The worst approximation is that given by the Wash-
al. have assumed that such channel has a rectangular crogsirn law based on the hydraulic radius but it is comprehen-
section along its axis. Here we are interested in their resultsible because it is a very simple correlation. Surprisingly, in
reported for filling flow with deionized water. In such exper- this case the flow in an elliptic nano-channel is more resistive
iments the position of the liquid meniscus was followed andthan the flow in the rectangular channel with similar dimen-
its evolution was found as proportional to the square root okions, the reason for this behavior is the very high value of
time,l ~ v/t, which is the Washburn law [8,11]. The width the compactness for the elliptic channel.
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5. Conclusions the nano-channels were prepared because the contact angle
is very sensitive to changes in the properties of the materi-

Through the use of a one-dimensional motion equation, thadls. Other possible error involved in such a difference could

includes the friction facton(C'), has been modeled the capil- be due to the corners of the channels becaqse there the flgw

lary penetration into channels of complex cross-sections. A§an be very slow due the shear stresses which compete with

a particular case, this model was used to describe the Cayje capillary force. More studies along this line are now con-

illary penetration into nano-channels. Our calculations in gducted.

narrow nano-channel show that actually the capillary pene-

tration is modulated by the competition between friction andacknowledgements

the capillary driven force and both of them are critically de-
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