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Capillary penetration in cells with periodical corrugations
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In this work we present a theoretical study of the spontaneous capillary flow of a viscous liquid, developed in the gap between a couple of
parallel corrugated plates (corrugated Hele-Shaw cell). The periodical corrugation of the interior walls of the plates is assumed as a sine-like
pattern, transverse to the flow direction. Such a configuration may generate periodical gaps with a structure where zones of maximum and
minimum closing occur. This is a simple idealization of typical micro and nano fabricated gaps used to mould polymers by capillarity. This
model can also be useful to understand the capillary flow in naturally fractured reservoirs. By using lubrication theory we found that a very
peculiar temporal flow is developed which could be of interest in improving our knowledge of this type of moulding.
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En este trabajo presentamos un estudio teórico del flujo capilar espontáneo, de un lı́quido viscoso, desarrollado en el espacio entre un par
de placas paralelas (celda de Hele-Shaw corrugada). La corrugación periodica de las paredes interiores se supone como patrones tipo seno,
transversa a la dirección de flujo. Tal configuración puede generar espacios periódicos con estructuras de máximo y ḿınimo acercamiento
entre ellas. Esta es una idealización simple de los tı́picos espacios micro y nanofabricados usados para moldear polı́meros por capilaridad.
Este modelo también puede seŕutil para entender el flujo capilar en yacimientos naturalmente fracturados. Usando la teorı́a de la lubricacíon
encontramos que se desarrolla un peculiar flujo capilar temporal el cual puede ser de interés para mejorar nuestro conocimiento sobre este
tipo de moldeo.

Descriptores: Feńomenos de flujo a micro y nano escala; efectos capilares; flujo en canales.

PACS: 47.61.-k; 47.55.nb; 47.60.+i

1. Introduction

This work considers the dynamics of the capillary penetra-
tion of a viscous liquid into a corrugated Hele-Shaw cell. By
using this configuration the authors have previously analyzed
the equilibrium height (equilibrium free surface) attained by
a liquid when the corrugation in the cell is assumed to have
a sine-like structure, transverse to the main flow direction,
which is along the vertical direction [1]. The equilibrium
height was reached when the capillary and hydrostatic pres-
sures were balanced.

In our previous work we have argued that this basic con-
figuration allows us to generate complex free surfaces. In this
work we study the dynamic evolution of such free surfaces
and how the equilibrium profiles are reached as a function
of time. This problem completes the study of how a viscous
liquid can spontaneously penetrate, due to the action of the
capillary pressure, vertical, structured two-dimensional chan-
nels. Physically, the characteristic spatial scale where the
capillary pressure acts is of the order of the capillary length,
lc = (σ/ρg)1/2, whereσ is the surface tension,ρ is the liq-
uid density andg is the gravity acceleration. In normal ter-
restrial conditions the capillary length is of the order of a few
millimeters. Thus, our study can be useful in understanding
flows in micro and nano fabricated gaps used to mould poly-
mers by capillarity [2] and in modeling the capillary flows

in naturally fractured reservoirs of oil and gas and flows in
fractured rock aquifers, which are of enormous economical
importance [3].

In modeling thefilm flow developed in the corrugated
Hele-Shaw cell we have used the lubrication theory [4]. By
using this approximation, we can follow the two-dimensional
flow whose main directions are along the vertical direction
and along the direction where the corrugation occurs. Due
to the high non-linearity of the resulting equations we have
solved they numerically. Through the resultant free surfaces
and the times involved in reaching equilibrium, we show that
the geometry imposes strong periodical deformations on the
interface and that the spatially averaged profile,Ĥav, evolves
as a function of time,τ , approximately obeying, for short
times, the Washburn law wherêHav ∝ τ1/2. Incidentally,
this law is valid in spontaneous capillary flows without cor-
rugation and in the absence of gravity.

The division of this work is as follows: in the next section
we derive the governing equations to describe the film flow
in the cell. After that, in Sec. 3 we discuss the numerical
solutions for the spatially averaged profiles and for the time
elapsed to attain the equilibrium height. Finally, in Sec. 4 we
present the main conclusions of this work.
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FIGURE 1. a) Schematic view of the zone invaded by a viscous
liquid (grey zone).H(y, t) denotes the air-liquid interface. b) Gap
between the corrugated walls. The main geometrical parameters of
the corrugation are shown.

FIGURE 2. Local shape of the liquid between plates where contact
angleθ is shown. Here the curvature radiusR and the value of the
pressure on the free surface are defined.

2. Governing equations for spontaneous capil-
lary penetration

Physically, spontaneous capillary penetration of a liquid into
a vertical nano or micro channel, of characteristic sizea, is
due to the capillary pressurepc ∼ σ/a which pulls the liq-
uid up into the capillary. In vertical channels the flow should
be finally stopped at the equilibrium heightH where the hy-
drostatic pressure compensates the capillary pressure [5, 6].
In a Hele-Shaw cell, made of two parallel flat plates close
together, the equilibrium profile is a horizontal flat surface
z = H = constant, wherez is the upward vertical coordi-
nate.

In this work, we assume that the interior walls of the cor-
rugated Hele-Shaw cell have a sine-like corrugation. Our
purpose in this part is to understand how such a corrugation
changes the shape of the liquid free surface. In order to ana-
lyze this problem we assume that the flow in the corrugated
cell is a thin film or lubricated flow, because the maximum
amplitude of the corrugation is so small that it allows the de-
velopment of such a flow. In Fig. 1 we consider the vertical
Hele-Shaw cell with corrugated walls.

Qualitative experiments [1] allow us to observe that the
flow has a free surface as shown in Fig. 1a. For simplicity,
we suppose that each plate has a sine-like corrugation given
by

h(y) = ±w

[
1− (1− δ) cos

2πy

λ

]
, (1)

whereh = wδ is the minimum amplitude of the corrugation,
h = 2w − wδ is the maximum amplitude andλ is the wave-
length of the corrugation. The coordinate system is (x, y, z)
as shown in Fig. 1a and 1b.

Notice that a system of flat parallel plates a distance2w
apart are obtained forδ = 1, and the amplitude of the corru-
gation is maximum forδ = 0. To build the capillary pressure
that yields the motion of the liquid we assume that locally,
across the transversal direction,x, the free surface is made of
sections of spheres with curvatureR = h/ cos θ whereθ is
the contact angle. (See Fig. 2). Then the capillary pressure
in the free surface ispc = pa − σ/R = pa − 2σ cos θ/h(y)
wherepa is the atmospheric pressure andh(y) indicates ex-
plicitly that the separation between plates is a function ofy.

When the liquid advances it does not cross the free sur-
facef(z, y, t) = z −H(y, t) = 0; this is the deep-averaged
kinematic condition which yields an equation for the deep-
averaged free surface,f (see Fig. 1a) in the form

−
∂f
∂t

|∇f |2h = q · n = q · ∇f

|∇f | , (2)

wheren is the unit vector normal to the surface pointing
inside,q is the volume flowrate vector per unit length, and
q = (qy, qz). The simplification of Eq. (2) gives

−∂f

∂t
2h = q · ∇f, (3)

whereqy andqz are, respectively,

qy = − (2h)3

12µ

∂p

∂y
, (4)

qz = − (2h)3

12µ

∂p

∂z
; (5)

hereµ is the dynamic viscosity. In terms of (qy,qz) the mass
conservation can be written as

∂qy

∂y
+

∂qz

∂z
= 0. (6)
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The use of relations (4) and (5) in (6) yields the Reynolds
equation for the pressure

∂

∂y

(
h3 ∂p

∂y

)
+

∂

∂z

(
h3 ∂p

∂z

)
= 0, (7)

which will be solved under the boundary conditions

p = 0 : atz = 0, (8)

p = −2σ cos θ

h(y)
+ ρgH : atz = H(y, t), (9)

p (y, z) = p(y + λ, z). (10)

Equation (8) expresses the condition that the pressurep
is the pressure of the liquid referred to the pressure of the
surrounding gas (pa), Eq. (9) refers to the condition that the
pressure at the free surface is the sum of the capillary pres-
sure plus the hydrostatic pressure and, finally, Eq. (10) is the
condition of periodicity for the pressure.

Given a free surface, Eq. (7) yields the pressure field in
the liquid. The free surface then is advanced by the kinematic
condition [6] which in terms ofH has the form

∂H

∂t
=

h2

3µ

∂p

∂y

∂H

∂y
− h2

3µ

∂p

∂z
. (11)

Coupled Eqs. (7) and (11) need to be solved numerically
because there are no analytical solutions for them. In order to
get such solutions we transform Eqs. (7) and (11) and bound-
ary conditions (8)-(10) into their non-dimensional form. The
adequate dimensionless variables are

Ĥ =
H

ze
, τ =

t

tc
, ξ =

x

w
, η =

y

λ
,

ζ =
z

ze
, ĥ =

h

w
, p̂ =

p

pc
, ze =

σ cos θ

ρgw
. (12)

The quantityze is the equilibrium height attained by the
free surface if the corrugation does not exist. In terms of
these quantities, Eq. (7) for the pressure transforms into the
dimensionless equation

∂

∂η

(
ĥ3 ∂p̂

∂η

)
+

λ

ze

∂

∂ζ

(
ĥ3 ∂p̂

∂ζ

)
= 0, (13)

while Eq. (11) takes the non-dimensional form

∂Ĥ

∂τ
=

ĥ2

3
∂p̂

∂η

∂Ĥ

∂η
− λ

ze

ĥ2

3
∂p̂

∂ζ
, (14)

and the derivation of Eqs. (13) and (14) allows us to establish
thatpc = σ cos θ/w andtc = µλ2/(wσ cos θ). In addition,
Eqs. (13) and (14) will be solved under the dimensionless
boundary conditions

p̂ = 0 : at ζ = 0, (15)

p̂ = Ĥ − 1

ĥ
: at ζ = Ĥ, (16)

p̂(η, ζ) = p̂(η + 1, ζ). (17)

3. Results

The resulting system of partial differential equa-
tions (13)-(14) subjected to the boundary condi-
tions (15)-(17) was solved by using the implicit finite-
differences discretization. A careful analysis of the solutions
as a function of the spatial and temporal meshes allows us
to know that a50 × 50 mesh is adequate to get an accurate
solution. The numerical time step was variable; in the first
stages of the phenomenon the time step was around10−9

and it was increased as the phenomenon advanced. Typical
calculations were made for a total of 20 000 time steps.

FIGURE 3. Free surfaces for several dimensionless timesτ . Here
λ/ze = 0.01 andδ = 0.5.

FIGURE 4. Free surfaces for several dimensionless timesτ . Here
λ/ze = 0.01 andδ = 0.9.
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FIGURE 5. Log-Log plot of the dimensionless averaged heightĤav

as a function of the dimensionless timeτ . In (a) the valueδ = 0.4
implies that the corrugation is stronger than in (b) whereδ = 0.9.

3.1. Free surface evolution

In Figs. 3 and 4 we show the time evolution of the dimension-
less normalized free surface profileŝH/Ĥav as a function of
η for several dimensionless times,τ . Ĥav is the spatially av-
eraged height, reached at timeτ , and is defined as

Ĥav =

1∫

0

Ĥ(η)dη.

Figure 3 shows the transient evolution of the free surface
for λ/ze = 0.01 andδ = 0.5. At short times, the free sur-
face penetrates faster in the zone where plates are more sep-
arated (η = 0.5) and, as time elapses, the free surface in this
zone reduces their speed and finally it is delayed with respect
to the free surface located in zones where plates are closer
(η = 0, 1). This peculiar behavior has been also observed
during the capillary penetration of a viscous liquid between
a couple of vertical plates making a small angle [7] (Tay-
lor’s problem [8]) where initially the free surface of the liq-

uid reaches a maximum height close to the union of the plates
and slowly this maximum advances to the zone of contact of
the plates. Formally, this latter case can be seen as locally
valid for zones whereη = 0, 1. Consequently, the change
in the curvature of the free surface as a time function can be
explained as due to the strong shear stresses that initially are
stronger in the zones where plates are closer. There the shear
stresses overcome the capillary driven force that always pulls
up the free surface.

Figure 4 shows the temporal behavior of the free surface
when corrugation is very smooth (δ = 0.9). As in Fig. 3,
it has been assumed in this plot that the wavelength of the
corrugation is short (λ/ze = 0.01). Another interesting re-
sult is observed from the estimation of the averaged height,
Ĥav, as a time function. This quantity is a measure of how,
on average, the free surface of the liquid advances into the
corrugated cell. In Fig. 5 we observe thatĤav is nearly in-
dependent of factorδ, which is related to the intensity of the

FIGURE 6. Log-log plots ofĤav as a function of the dimension-
less timeτ . (a) corresponds to corrugations of short wavelength
and several amplitudesδ. (b) corresponds to corrugations of large
wavelength for the same values ofδ as in (a).
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corrugation. Moreover, it is observed that the averaged height
depends strongly on the wavelengthλ, i.e., largeλ implies
high Ĥav. Also, in Fig. 5 we indeed note that the dimension-
less time elapsed to attain the respective equilibrium height
(height where the curve transforms into a horizontal line) is
shorter asλ is larger.

3.2. Times to attain the equilibrium height

At short times the log-log plot of̂Hav vs τ , in Fig. 5, yields
for all cases the power laŵHav ∝ τ0.4837, i.e., this behav-
ior is very similar to that found in the capillary penetration
of viscous liquids into Hele-Shaw cells without corrugation
where at short timeŝHav ∝ τ1/2. This result is known as the
Washburn law and it is also valid for capillary penetration in
pipes and Hele-Shaw cells in the absence of gravity [9].

By the way, Fig. 6 shows very important results related
also to the averaged height but now when the wavelength
is maintained constant. In Fig. 6a we plot̂Hav vs τ for
λ/ze = 0.01 and several values ofδ. These cases corre-
spond to corrugated cells where the separation between max-
ima is very short. Conversely, in Fig. 6b is shown the plot for
λ/ze = 10, which means that the separation between maxima
is large. The main conclusion derived from plots in Fig. 6a
is that the free surface, for short wavelengths, and strong cor-
rugation (δ = 0.4), attains an averaged equilibrium height
lower than that corresponding to the case of smooth corruga-
tion, whenδ = 0.9. Consequently, the time needed to attain
this height is lower (around an order of magnitude) for the
case of strong corrugation than that corresponding to smooth
corrugation and equal wavelength. It means that periodical
strong corrugation, of short wavelength, encourages the liq-
uid to saturate the cell faster than the saturation of a cell cor-
rugated with a smooth corrugation. Moreover, the volumes of
saturation are different and are higher in a smooth cell. Sur-
prisingly, when the wavelength is large (Fig. 6b) those effects
are not observed.

4. Conclusions

In this work we have presented a simple model for analyz-
ing the dynamics of the spontaneous capillary penetration of
a liquid into periodically corrugated Hele-Shaw cells. These
types of cells are similar to those occurring, for instance, in
molding of polymer in continuous networks of nano and mi-
cro channels [2]. The model of corrugated cells also can be of
importance to model flow in fractures during the enhanced oil
recovery by the method of imbibition, where a liquid or gas
is displaced capillary by an other liquid [3]. In this context,
an important result is that despite the corrugation and under
the gravity field, the spatially averaged height,Ĥav, very ap-
proximately obeys the Washburn law,i.e., Ĥav ∝ τ1/2.

By the way, the set of partial differential equations were
derived using the lubrication approximation valid for a film
flow developed in the corrugated cells. The partial differen-
tial equations were solved using the implicit finite-difference
method. As a result a very detailed spatial and temporal de-
scription of the free surface was achieved.

We have found that the curvature of the free surface
evolves in a complex way as the liquid penetrates into the
cell. The time evolution of the averaged free surface shows
how the wavelength,λ, and the corrugation factor,δ, deter-
mine different ways of capillary penetration or evolution of
the averaged height̂Hav. These mechanisms could be of in-
terest in the modeling of spontaneous capillary penetration in
complex channels that can be approximated by our model of
periodically corrugated Hele-Shaw cells.
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Treviño,Phys. Lett. A324(2004) 14.

Rev. Mex. F́ıs. 55 (6) (2009) 467–471


