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In light of the relation of the shell model and the cluster model, the concepts of localized and shell-model-like clusters are discussed. They
are interpreted as different phases of clusterization, which may be characterized by quasi-dynamical symmetries, and are connected by a
phase-transition.

Keywords: Cluster models; models based on group theory.

En la Hisqueda de la relamn entre el modelo de capas y el modelo @mualos, los conceptos déimulo localizado y Gmulo tipo modelo
de capas son discutidos. Estos son interpretados como diferentes fases de cluistelézacuales pueden ser caracterizadas por $asetr
cuasi-diramicas, y esin conectadas por una tranéitide fase.

Descriptores:Modelos de @Gmulos; modelos con base en la faate grupos.

PACS: 21.60.Gx; 21.60.Fw

1. Introduction are separated, due to the fact that between the major shells of
different parities there is a considerable energy gap.

The history of cluster studies is as long as that of nuclear Some authors apply the name of cluster state only for the
structure. It was largely inspired by the analogy with molec-structure of the rigid molecule type, while others (including
ular physics. In many articles cluster states and molecule-likeurselves) speak both about localized and shell-model-like
states are used as synonyms. Though molecules themsehasasters. A major argument in favour of this latter vocabu-
may have different features, usually one has in mind the phydary is provided by the definition of the cluster state by its
ical picture of a rigid molecule. The experimental signatureexperimental observability. This is what we follow here, too.
for such a structure can be that of a rotational band with alin particular a state is called cluster state if its wave-function
ternating parities and following an exaE{L + 1) energy largely overlaps with that of a reaction channel [1]. In light of
sequence, wherb stands for the angular momentum (of an this criterium the existence of localized and shell-model-like
even-even nucleus). clusters turns out to be natural. On the other hand identifying

On the other hand the shell model became the modhe clusterization only with the rigid molecule like structure,
widely used theory of nuclear structure. Finding the clustelf'ind consid_er all the others as shell model states, could result
states among those of the shell model is also a long-standirl Much bigger difference between two shell model states
task. They may or may not be simply connected to each othefl@n that between a shell model and a cluster st (n
When this relation is simple, we speak about shell-model-likd€ms of cluster spectroscopic factor).
clusters. The experimental signature of this kind of cluster A question of utmost interest is, of course, whether or not
structure is that the bands of positive and negative paritiethe extreme limits of the shell-like and rigid molecule-like
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clusters are observed experimentally. The first case seemstion. Here we have written the relation for a binary cluster-
be easier. In light nuclei the SU(3) symmetry is known toconfiguration, for the sake of simplicity, and supposed that
be approximately validi.e. the wave-function of some real the center of mass motion is already separated. As a conse-
nuclear state is dominated by a single SU(3) basis state. Fuguence, the wave function of one of them can be expressed
thermore, for such a basis state the shell model and clustas a linear combination of those wave functions of the other,
model state may have a very large overlap. Thus, several nuvhich belong to the same energy.

clear states with approximately good SU(3) symmetry canbe The connection between the shell model and the
considered not only as a good shell-model state, but at thguadrupole collective model was revealed by Elliott [10],
same time as good cluster model state, too. who derived the rotational bands from the set of the shell-
The observation of pure rigid molecule-like state is amodel states by picking up a definite SU(3) symmetry. Based
more delicate question. A band in thtO was reported t0  on these results the SU(3) symmetry was used for interrelat-
follow this sequence [2], which is associated to th@+'He  ing the cluster states and quadrupole deformation, too [11].
rigid binary structure. Later studies [3], however, showed that This symmetry played an important role in many other

other bland a§5|ggmegts are aIIISE possible (an?lé:qaer;] classiirks illuminating the connection between the two models
more cluster-bands). Some well-known states ofti@has (seee.g. Ref. 12). The transformations of the SU(3) group
been associated to a triangle structure [4], but this interpretas 4 v2t of the permutation group commute with each other,
tion is not unicvocal either; several authors claim that SOM& arefore. all the states belonging to a definite SU(3) irre-
of th_e states have different na_tu_re [5]. More recently NeWgucible representation (irrep) behave in the same way under
candidates showed up for the rigid structure from among thﬂqe action of the antisymmetrizer operator [13]. The combi-

non-alpha-like nuclei. There the extra neu’t’rons are th.oughtfﬂation of this fact with the relation of the Hamiltonians results
stabilize the molecular structure, via the "covalent binding in an U(3) selection rule:

(by occupying molecular orbitals). TH&Be [6], and'*C [7]
nuclei are considered as example for this phenomenon. (1)
The best-known example 8fNe, showing several well- [ninans] = [ny™'n
developed®O+*He cluster baqu [8] qus not show a com- ® [ng@)nécz)nécz)] ® [nY)OO] @
plete degeneracy of bands with positive and negative pari-
ties, but there is a tendency of approaching each other (for , , )
the bands of inversion doublets). Thus the overall quali-Wh'Ch says that a binary cIuster—conl‘llg);u[zpalt)lor&l)character-
tative picture suggests a transitional character between tHged by the internal cluster-structure o ng™ nf)] and
rigid molecule and the shell-like nature (although the specifidn§02)n502)nécz)], and by the relative motion df.{"00], is
bands are not uniformly mixed). allowed in the parent state ¢f,n2ons] if and only if among
In what follows first we review very briefly some as- the triple products on the right hand side thensn;| values
pects of the interrelation between the shell model and th@re present. The symbol indicates direct product.
cluster model, and discuss a few important consequences. The U(3) basis turned out to be very useful also in the
Then we present the results of a recent schematic study icalculation of the cluster spectroscopic factors both on the
the framework of algebraic (phenomenologic and semimicromicroscopic [14] and on the semimicroscopic level [15].
scopic) cluster models, aiming at the investigation of phases
and phase transitions. A short comparison with the recent
microscopic calculations along a similar line is also made2.1.2. More general interactions
Finally some conclusions are drawn.

5]

It is important to note that the U(3) connection of the clus-

2. Shell model versus cluster model ter model states to those of the shell model (and via this path
also to those of the collective model) is valid for more general

2.1. Historical background interactions, too. Therefore, the same relation may hold for
realistic cases as well, not only for the simple example of the

2.1.1. Basic relations harmonic oscillator.E.g. the (algebraic) quadrupole opera-

The relation of the cluster model to the shell model was eszor’ which plays a crucial role in the description of the struc-

i . ture of light nuclei [10], can be split up into internal cluster
tablished by .W|Idermuth an.d Kan_ellopoulos [9].’ wh.o haVeand relative contributions in the same way, like the oscilla-
shown that in the harmonic oscillator approximation the

Hamiltonians of the two models can be rewritten into eachtOr Hamiltonian. This prpblem was di;cus;ed more in detail
] in Ref. 16. The key point of the relation is that the energy
other exacily: eigenvectors can be symmetrice( transform according to
Hsy = He, + He, + Hr (1) @ definite irrep) even in cases when the Hamiltonian is not
symmetric (scalar). This special dynamical breaking of the
whereH, is the internal shell-model Hamiltonian of tia ~ symmetry describes a more general situation, than the exact

cluster, while Hg is the Hamiltonian of their relative mo- symmetry €.g.that of the harmonic oscillator) [17].
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2.1.3. Deformed oscillators

The deformed harmonic oscillator is known to explain the
stability of the superdeformed (ratio of axes 2:1:1), and hy-
perdeformed (3:1:1), etc. shapes. As it was noticed by
Rae [18], based on the decomposition of the deformed magic
numbers, it also indicates the appearance of clusterization
in these states. This observation, which was extended to,
more realistic models, too establishes the interrelation of
the shape isomers and cluster configurations via their shell-
model-correspondence.

From the viewpoint of the symmetry-based relation of the
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different model states (or from the viewpoint of the corre-
sponding mathematical background) the work of Rosensteel ~ **F | | | |
and Draayer [19] illuminates the situation: they have shown
that the symmetry algebra of any (three dimensional) har-
monic oscillator Hamiltonian with commensurate frequen_FlGURE 1. Absolute value of the deformation of tR&Si nucleus
cies is that of U(3). (See also [20].) from the simple Nilsson-model.
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Nilsson-model, and the relation of these shapes to cluster
configurations, based on the U(3) selection rule.

The validity of the U(3) symmetry, as discussed so far is

limited in mass number, energy, etc. to the regions, wherg 5 1 Shape-stability

the relative importance of the symmetry-breaking interac-

tions, like spin-orbit and pairing is small. It turned out, The determination of the effective (or averagendy values
however, that in some sense the U(3) symmetry may Sulcan be carried out by applying the asymptotic Nilsson states
vive even in cases when the symmetry-breaking interactiongye to the fact that these states serve as intrinsic states for
are so strong, that the leading-representation-approximatiope soft SU(3) bands of Eq. (3) [22]. This procedure which
iS not Valid,i.e. the nuclear states are not dominated by a Sinwas invented Origina”y for |arge pro'ate deformation can
gle U(3) basis states, rather they are superpositions of mamnye generalized for oblate shape and for small deformation,
basis states belonging to different U(3) irreps [21]: too, by expanding the Nilsson-orbitals in terms of asymptotic
states [23]. The\ andp quantum numbers are uniquely re-
lated to the3 and~ quadrupole shape-parameters [24]:

167 \/gu
2= (Nt = arct 4
Ié] 5Ng( + p” 4+ Au), v =arctan Dt (4)

2.1.4. Quasi-dynamical symmetries

®3)

where ¢¢x,xom IS @ basis vector for an SU(3) irrep,
and ¢ stands for all the quantum numbers not belonging to
the SU(3) group [22]. Please, note that gy, x coef-
ficients of the linear combination are independent/af,

i.e. within a band the contribution of different SU(3) basis where N, is the number of oscillator quanta, including the
states are the same. (This is called adiabatic coupling bez'ero—point contribution.

tween the single-particle and collective degrees of freedom.) We have investigated, how the effective SU(3) symmetry

In particular the matrix elements of the SU(3) generators beéﬁntent, and related to that the deformation of the nucleus,

tween these states may approximate the matrix elements Q anges as a function of the input-parametes.oA typical
an exact representation. In such a case we speak about an s, t'is shown in Fig. 1. The stair-like functional form can

proximate embedded representation, and related to it, abopl, \,,qerstood as the influence of the crossings of the single-

an approximate quasidynamical or effective SU(3) symme, , i) Nilsson-orbitals on the shape of the many-body sys-

try. The states of Eq. (3) with differedts are said to form a tem. Itis interesting to note that the location of the symmetry,
soft SU(3) band. ) ) .. _..__orshape-stability regions resemble to that of the local energy-
The quasi-dynamical symmetry describes a situationp,inima of the Nilsson-Strutinsky calculations [25]. An inter-

when neither the (Hamiltonian) operator, nor its eigenvectorgging question is: what kind of clusterizations are allowed in
are symmetric, yet the symmetry acts [17]. Obviously th'Sthese states

very general concept enlarges the territory of the applicabil-
ity of symmetry considerations very much.

Yarim = BexpCoaernK PeruK IM s

2.2.2. Deformation and clusterization

2.2. Recent applications ) .
In order to study the deformation-dependence we have in-
In this subsection we consider some aspects of the shapeestigated the appearance of cluster-configurations in the

stability, based on the simple (cylindrically symmetric) ground, superdeformed and hyperdeformed states of some
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nuclei. The first two (at least in some cases) are known exenergy-minimum is investigated as a function of the control
perimentally, the hyperdeformed states were predicted theg@arameter, and the degree of its derivative showing discon-
retically. tinuity (in the largeN limit) defines the order of the phase-

The main motivation of these studies was that in additransition.
tion to taking into account the energetic preferences of differ-  More recently a conjecture was made [33] that the phases
ent cluster-configurations we tried to incorporate the consefbounded by the real dynamical symmetries and the phase-
guences of the exclusion principle as well. This latter one igransitions in the phase-diagram) can be characterized by a
done by the application of the real or quasi-dynamif@(3)  quasi-dynamical symmetry. If it is so then the situation re-
symmetry for light and heavy nuclei, respectively, as mensembles to that of the phase-transitions in Landau’s theory,
tioned above. In this way the effect of the Pauli-principle where the different phases are characterized by different sym-
is handled only approximately, of course, but in a micro-metries [34]. These questions were investigated thoroughly
scopic and well-controlled way, and its results can be testedoncerning the quadrupole collective motion.
by comparing with those of the fully microscopic calcula-
tions, where they are available. The forbiddenness of th8.2. Cluster models
cluster-configurations are characterized quantitatively. The
deformation of the clusters (and parent nuclei) are taken int&1 Ref. 35 we have investigated the problem of phases and
account, and no constraint is applied for their relative orienfhase-transitions from the viewpoint of clusterizatidowe. (
tation. dipole collectivity). We have concentrated on the relative

The energetic preference of the clusterization is meamotion of binary cluster systems. There are two relevant
sured by the binding-energy difference (combined with thealgebra-chains of the relative motion [36, 37], one containing
no-dipole constraint) of [26], on the one side, and in som&J(3), and the other containing O(4). Their physical content
cases with the more detailed double-folding potential energgre the following. From the collective motion viewpoint U(3)
of the dinuclear system model [27] on the other side. Thiscorresponds to a soft vibrator, while O(4) describes a rigid
latter quantity is determined both for the usual pole-to-pole/otor. From the microscopic viewpoint U(3) corresponds
configuration, and for the one, which is preferred by the seto shell-model-like clusters, while O(4) describes localized
lection rule. clusters.

We have considered the possible binary configurations for We have investigated binary cluster systems (with zero,
the 36Ar, 4°Ca and?52Cf nuclei, [28,29], and some ternary one and two open-shell clusters) both in a phenomenologic
configurations [30] for théSAr and252Cf. and in a semimicroscopic model (in order to study the in-

The main conclusion of these calculations can be sumfluence of the Pauli-principle on the question of phase-
marized as follows. The preference of the exclusion princitransition).
ple and the energy-calculation do not necessarily coincide. Concerning the geometrical picture associated to the two
Therefore, we think that when searching for the most probadynamical symmetries we should note the difference between
ble cluster-configuration(s), one has to take into account ndhe phenomenologic and the semimicroscopic model. In the
only the energetic circumstances, but the exclusion principleformer case the U(3) limit has a spherical equilibrium shape,
too. It also turned out that sometimes the same clusterizatioput in the latter one does not. This is because there is a fi-
can be present both in the ground and in the superdeformedite (non-zero) distance between the two clusters due to the
as well as in the hyperdeformed state. The difference betwedpauli-principle. Therefore, the difference between the local-
them is the spatial arrangement of the deformed clusters. ized and the shell-like clusterization is not so much the finite
equilibrium distance (this is the case in both limits), rather
their tendency for melting in the liquid of the shell-model
states.

It turned out that phase transition takes place at a critical
point both in the phenomenologic and in the semimicroscopic
Phases and phase-transitions are usually investigated in sy®odel in the largeV limit. For finite systems the transition
tems with very large numbers of degrees of freedom. Mords smoothed out somewhat, but still observable. (The larger
recently, however, much interest has been concentrated on thige model space the more abrupt the transition is.)
phase-transitions in finite quantum systeeng. atomic nu- Another interesting finding was that in both models the
clei [31,32]. Algebraic models seem to be especially usefuhuasi-dynamical U(3) symmetry proved to be valid between
for this kind of studies. In these models one usually considthe endpoint of the real dynamical symmetry and the critical
ers finite number ) of particles, but it is possible to go to point;i.e. throughout the whole phase.
the largeN limit, where real phase-transitions can take place.

For finite V it can be investigated, whether or not some less3.3. Microscopic studies of phases

robust changes survive. As a control parameter one has the

relative weight of the Hamiltonians belonging to the differ- The localized (rigid rotor, O(4)) and the shell-like (soft vibra-
ent dynamical symmetries (analytically solvable limits). Thetor, U(3)) cluster phases show very remarkable similarities to

3. Phases and phase transitions

3.1. The algebraic method
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the “solid” and "liquid” phases discussed in some recent mi+aises several interesting open questions. One of the most ex-

croscopic cluster studies [6,32]. In these investigations theiting ones is how much they can be interpreted as two differ-

crystal-like structure, is considered as a solid phase, whilent phases of the finite nuclear matter. There are remarkable

the shell-like structure has the liquid properties. The drivingsigns pointing at this direction, both from schematic alge-

force taking the system from one phase to the other is thbraic model calculations, and from microscopic studies. If it

spin-orbit. It is absent in the cluster-picture, but it becomedurns out to be correct, then the different phases of the cluster-

important when a cluster breaks up. ized nuclear matter appear in energy closer to each other than
Microscopic calculations also indicate the appearancéhe phases of the nucleonic matter. It seems to be very chal-

of some loosely bound alpha-condensate, in which alphaenging, to try to explore this problem from both sides: by

particles occupy the sanigs state (apart from some cor- putting the algebraic calculations on a more realistic ground

rection due to the antisymmetrization effect). The oscilla-on the one hand, and by transferring the quantitative meth-

tor parameter of this state is very different from that of theods of phase-transitions to the microscopic level on the other

single-nucleon states. This kind of state is associated to thieand.

gas phase. The best experimental candidate for this phase is

the07 state oft2C. Four-alpha state is also considere4i@,

around the break-up threshold [5]. Furthermore, it seems that

alpha-condensate can develop in heavier nuclei, too, arouricknowledgments

a core [32].
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4. Summary and outlook
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