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In light of the relation of the shell model and the cluster model, the concepts of localized and shell-model-like clusters are discussed. They
are interpreted as different phases of clusterization, which may be characterized by quasi-dynamical symmetries, and are connected by a
phase-transition.
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En la b́usqueda de la relación entre el modelo de capas y el modelo de cúmulos, los conceptos de cúmulo localizado y ćumulo tipo modelo
de capas son discutidos. Estos son interpretados como diferentes fases de clusterización, las cuales pueden ser caracterizadas por simetrı́as
cuasi-dińamicas, y están conectadas por una transición de fase.

Descriptores:Modelos de ćumulos; modelos con base en la teorı́a de grupos.

PACS: 21.60.Gx; 21.60.Fw

1. Introduction

The history of cluster studies is as long as that of nuclear
structure. It was largely inspired by the analogy with molec-
ular physics. In many articles cluster states and molecule-like
states are used as synonyms. Though molecules themselves
may have different features, usually one has in mind the phys-
ical picture of a rigid molecule. The experimental signature
for such a structure can be that of a rotational band with al-
ternating parities and following an exactL(L + 1) energy
sequence, whereL stands for the angular momentum (of an
even-even nucleus).

On the other hand the shell model became the most
widely used theory of nuclear structure. Finding the cluster
states among those of the shell model is also a long-standing
task. They may or may not be simply connected to each other.
When this relation is simple, we speak about shell-model-like
clusters. The experimental signature of this kind of cluster
structure is that the bands of positive and negative parities

are separated, due to the fact that between the major shells of
different parities there is a considerable energy gap.

Some authors apply the name of cluster state only for the
structure of the rigid molecule type, while others (including
ourselves) speak both about localized and shell-model-like
clusters. A major argument in favour of this latter vocabu-
lary is provided by the definition of the cluster state by its
experimental observability. This is what we follow here, too.
In particular a state is called cluster state if its wave-function
largely overlaps with that of a reaction channel [1]. In light of
this criterium the existence of localized and shell-model-like
clusters turns out to be natural. On the other hand identifying
the clusterization only with the rigid molecule like structure,
and consider all the others as shell model states, could result
in much bigger difference between two shell model states
than that between a shell model and a cluster state (e.g. in
terms of cluster spectroscopic factor).

A question of utmost interest is, of course, whether or not
the extreme limits of the shell-like and rigid molecule-like
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clusters are observed experimentally. The first case seems to
be easier. In light nuclei the SU(3) symmetry is known to
be approximately valid,i.e. the wave-function of some real
nuclear state is dominated by a single SU(3) basis state. Fur-
thermore, for such a basis state the shell model and cluster
model state may have a very large overlap. Thus, several nu-
clear states with approximately good SU(3) symmetry can be
considered not only as a good shell-model state, but at the
same time as good cluster model state, too.

The observation of pure rigid molecule-like state is a
more delicate question. A band in the18O was reported to
follow this sequence [2], which is associated to the14O+4He
rigid binary structure. Later studies [3], however, showed that
other band assignments are also possible (and can classify
more cluster-bands). Some well-known states of the12C has
been associated to a triangle structure [4], but this interpreta-
tion is not unicvocal either; several authors claim that some
of the states have different nature [5]. More recently new
candidates showed up for the rigid structure from among the
non-alpha-like nuclei. There the extra neutrons are thought to
stabilize the molecular structure, via the ”covalent binding”
(by occupying molecular orbitals). The10Be [6], and14C [7]
nuclei are considered as example for this phenomenon.

The best-known example of20Ne, showing several well-
developed16O+4He cluster bands [8] does not show a com-
plete degeneracy of bands with positive and negative pari-
ties, but there is a tendency of approaching each other (for
the bands of inversion doublets). Thus the overall quali-
tative picture suggests a transitional character between the
rigid molecule and the shell-like nature (although the specific
bands are not uniformly mixed).

In what follows first we review very briefly some as-
pects of the interrelation between the shell model and the
cluster model, and discuss a few important consequences.
Then we present the results of a recent schematic study in
the framework of algebraic (phenomenologic and semimicro-
scopic) cluster models, aiming at the investigation of phases
and phase transitions. A short comparison with the recent
microscopic calculations along a similar line is also made.
Finally some conclusions are drawn.

2. Shell model versus cluster model

2.1. Historical background

2.1.1. Basic relations

The relation of the cluster model to the shell model was es-
tablished by Wildermuth and Kanellopoulos [9], who have
shown that in the harmonic oscillator approximation the
Hamiltonians of the two models can be rewritten into each
other exactly:

HSM = HC1 + HC2 + HR (1)

whereHCi is the internal shell-model Hamiltonian of theith
cluster, whileHR is the Hamiltonian of their relative mo-

tion. Here we have written the relation for a binary cluster-
configuration, for the sake of simplicity, and supposed that
the center of mass motion is already separated. As a conse-
quence, the wave function of one of them can be expressed
as a linear combination of those wave functions of the other,
which belong to the same energy.

The connection between the shell model and the
quadrupole collective model was revealed by Elliott [10],
who derived the rotational bands from the set of the shell-
model states by picking up a definite SU(3) symmetry. Based
on these results the SU(3) symmetry was used for interrelat-
ing the cluster states and quadrupole deformation, too [11].

This symmetry played an important role in many other
works illuminating the connection between the two models
(seee.g. Ref. 12). The transformations of the SU(3) group
and that of the permutation group commute with each other,
therefore, all the states belonging to a definite SU(3) irre-
ducible representation (irrep) behave in the same way under
the action of the antisymmetrizer operator [13]. The combi-
nation of this fact with the relation of the Hamiltonians results
in an U(3) selection rule:

[n1n2n3] = [n(c1)
1 n
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2 n

(c1)
3 ]

⊗ [n(c2)
1 n

(c2)
2 n

(c2)
3 ]⊗ [n(r)

1 00] (2)

which says that a binary cluster-configuration character-
ized by the internal cluster-structure of[n(c1)

1 n
(c1)
2 n

(c1)
3 ] and

[n(c2)
1 n

(c2)
2 n

(c2)
3 ], and by the relative motion of[n(r)

1 00], is
allowed in the parent state of[n1n2n3] if and only if among
the triple products on the right hand side the[n1n2n3] values
are present. The⊗ symbol indicates direct product.

The U(3) basis turned out to be very useful also in the
calculation of the cluster spectroscopic factors both on the
microscopic [14] and on the semimicroscopic level [15].

2.1.2. More general interactions

It is important to note that the U(3) connection of the clus-
ter model states to those of the shell model (and via this path
also to those of the collective model) is valid for more general
interactions, too. Therefore, the same relation may hold for
realistic cases as well, not only for the simple example of the
harmonic oscillator.E.g. the (algebraic) quadrupole opera-
tor, which plays a crucial role in the description of the struc-
ture of light nuclei [10], can be split up into internal cluster
and relative contributions in the same way, like the oscilla-
tor Hamiltonian. This problem was discussed more in detail
in Ref. 16. The key point of the relation is that the energy
eigenvectors can be symmetric (i.e. transform according to
a definite irrep) even in cases when the Hamiltonian is not
symmetric (scalar). This special dynamical breaking of the
symmetry describes a more general situation, than the exact
symmetry (e.g. that of the harmonic oscillator) [17].
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2.1.3. Deformed oscillators

The deformed harmonic oscillator is known to explain the
stability of the superdeformed (ratio of axes 2:1:1), and hy-
perdeformed (3:1:1), etc. shapes. As it was noticed by
Rae [18], based on the decomposition of the deformed magic
numbers, it also indicates the appearance of clusterization
in these states. This observation, which was extended to
more realistic models, too establishes the interrelation of
the shape isomers and cluster configurations via their shell-
model-correspondence.

From the viewpoint of the symmetry-based relation of the
different model states (or from the viewpoint of the corre-
sponding mathematical background) the work of Rosensteel
and Draayer [19] illuminates the situation: they have shown
that the symmetry algebra of any (three dimensional) har-
monic oscillator Hamiltonian with commensurate frequen-
cies is that of U(3). (See also [20].)

2.1.4. Quasi-dynamical symmetries

The validity of the U(3) symmetry, as discussed so far is
limited in mass number, energy, etc. to the regions, where
the relative importance of the symmetry-breaking interac-
tions, like spin-orbit and pairing is small. It turned out,
however, that in some sense the U(3) symmetry may sur-
vive even in cases when the symmetry-breaking interactions
are so strong, that the leading-representation-approximation
is not valid,i.e. the nuclear states are not dominated by a sin-
gle U(3) basis states, rather they are superpositions of many
basis states belonging to different U(3) irreps [21]:

ψαKJM = ΣξλµCαξλµKφξλµKJM , (3)

where φξλµKJM is a basis vector for an SU(3) irrep,
andξ stands for all the quantum numbers not belonging to
the SU(3) group [22]. Please, note that theCαξλµK coef-
ficients of the linear combination are independent ofJM ,
i.e. within a band the contribution of different SU(3) basis
states are the same. (This is called adiabatic coupling be-
tween the single-particle and collective degrees of freedom.)
In particular the matrix elements of the SU(3) generators be-
tween these states may approximate the matrix elements of
an exact representation. In such a case we speak about an ap-
proximate embedded representation, and related to it, about
an approximate quasidynamical or effective SU(3) symme-
try. The states of Eq. (3) with differentJ-s are said to form a
soft SU(3) band.

The quasi-dynamical symmetry describes a situation,
when neither the (Hamiltonian) operator, nor its eigenvectors
are symmetric, yet the symmetry acts [17]. Obviously this
very general concept enlarges the territory of the applicabil-
ity of symmetry considerations very much.

2.2. Recent applications

In this subsection we consider some aspects of the shape-
stability, based on the simple (cylindrically symmetric)

FIGURE 1. Absolute value of the deformation of the28Si nucleus
from the simple Nilsson-model.

Nilsson-model, and the relation of these shapes to cluster
configurations, based on the U(3) selection rule.

2.2.1. Shape-stability

The determination of the effective (or average)λ andµ values
can be carried out by applying the asymptotic Nilsson states
due to the fact that these states serve as intrinsic states for
the soft SU(3) bands of Eq. (3) [22]. This procedure which
was invented originally for large prolate deformation can
be generalized for oblate shape and for small deformation,
too, by expanding the Nilsson-orbitals in terms of asymptotic
states [23]. Theλ andµ quantum numbers are uniquely re-
lated to theβ andγ quadrupole shape-parameters [24]:

β2 =
16π

5N2
0

(λ2 + µ2 + λµ), γ = arctan

( √
3µ

2λ + µ

)
(4)

whereN0 is the number of oscillator quanta, including the
zero-point contribution.

We have investigated, how the effective SU(3) symmetry
content, and related to that the deformation of the nucleus,
changes as a function of the input-parameter ofβ. A typical
result is shown in Fig. 1. The stair-like functional form can
be understood as the influence of the crossings of the single-
partical Nilsson-orbitals on the shape of the many-body sys-
tem. It is interesting to note that the location of the symmetry,
or shape-stability regions resemble to that of the local energy-
minima of the Nilsson-Strutinsky calculations [25]. An inter-
esting question is: what kind of clusterizations are allowed in
these states.

2.2.2. Deformation and clusterization

In order to study the deformation-dependence we have in-
vestigated the appearance of cluster-configurations in the
ground, superdeformed and hyperdeformed states of some
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nuclei. The first two (at least in some cases) are known ex-
perimentally, the hyperdeformed states were predicted theo-
retically.

The main motivation of these studies was that in addi-
tion to taking into account the energetic preferences of differ-
ent cluster-configurations we tried to incorporate the conse-
quences of the exclusion principle as well. This latter one is
done by the application of the real or quasi-dynamicalSU(3)
symmetry for light and heavy nuclei, respectively, as men-
tioned above. In this way the effect of the Pauli-principle
is handled only approximately, of course, but in a micro-
scopic and well-controlled way, and its results can be tested
by comparing with those of the fully microscopic calcula-
tions, where they are available. The forbiddenness of the
cluster-configurations are characterized quantitatively. The
deformation of the clusters (and parent nuclei) are taken into
account, and no constraint is applied for their relative orien-
tation.

The energetic preference of the clusterization is mea-
sured by the binding-energy difference (combined with the
no-dipole constraint) of [26], on the one side, and in some
cases with the more detailed double-folding potential energy
of the dinuclear system model [27] on the other side. This
latter quantity is determined both for the usual pole-to-pole
configuration, and for the one, which is preferred by the se-
lection rule.

We have considered the possible binary configurations for
the 36Ar, 40Ca and252Cf nuclei, [28,29], and some ternary
configurations [30] for the36Ar and252Cf.

The main conclusion of these calculations can be sum-
marized as follows. The preference of the exclusion princi-
ple and the energy-calculation do not necessarily coincide.
Therefore, we think that when searching for the most proba-
ble cluster-configuration(s), one has to take into account not
only the energetic circumstances, but the exclusion principle,
too. It also turned out that sometimes the same clusterization
can be present both in the ground and in the superdeformed,
as well as in the hyperdeformed state. The difference between
them is the spatial arrangement of the deformed clusters.

3. Phases and phase transitions

3.1. The algebraic method

Phases and phase-transitions are usually investigated in sys-
tems with very large numbers of degrees of freedom. More
recently, however, much interest has been concentrated on the
phase-transitions in finite quantum systemse.g. atomic nu-
clei [31,32]. Algebraic models seem to be especially useful
for this kind of studies. In these models one usually consid-
ers finite number (N ) of particles, but it is possible to go to
the largeN limit, where real phase-transitions can take place.
For finiteN it can be investigated, whether or not some less
robust changes survive. As a control parameter one has the
relative weight of the Hamiltonians belonging to the differ-
ent dynamical symmetries (analytically solvable limits). The

energy-minimum is investigated as a function of the control
parameter, and the degree of its derivative showing discon-
tinuity (in the largeN limit) defines the order of the phase-
transition.

More recently a conjecture was made [33] that the phases
(bounded by the real dynamical symmetries and the phase-
transitions in the phase-diagram) can be characterized by a
quasi-dynamical symmetry. If it is so then the situation re-
sembles to that of the phase-transitions in Landau’s theory,
where the different phases are characterized by different sym-
metries [34]. These questions were investigated thoroughly
concerning the quadrupole collective motion.

3.2. Cluster models

In Ref. 35 we have investigated the problem of phases and
phase-transitions from the viewpoint of clusterization (i.e.
dipole collectivity). We have concentrated on the relative
motion of binary cluster systems. There are two relevant
algebra-chains of the relative motion [36, 37], one containing
U(3), and the other containing O(4). Their physical content
are the following. From the collective motion viewpoint U(3)
corresponds to a soft vibrator, while O(4) describes a rigid
rotor. From the microscopic viewpoint U(3) corresponds
to shell-model-like clusters, while O(4) describes localized
clusters.

We have investigated binary cluster systems (with zero,
one and two open-shell clusters) both in a phenomenologic
and in a semimicroscopic model (in order to study the in-
fluence of the Pauli-principle on the question of phase-
transition).

Concerning the geometrical picture associated to the two
dynamical symmetries we should note the difference between
the phenomenologic and the semimicroscopic model. In the
former case the U(3) limit has a spherical equilibrium shape,
but in the latter one does not. This is because there is a fi-
nite (non-zero) distance between the two clusters due to the
Pauli-principle. Therefore, the difference between the local-
ized and the shell-like clusterization is not so much the finite
equilibrium distance (this is the case in both limits), rather
their tendency for melting in the liquid of the shell-model
states.

It turned out that phase transition takes place at a critical
point both in the phenomenologic and in the semimicroscopic
model in the largeN limit. For finite systems the transition
is smoothed out somewhat, but still observable. (The larger
the model space the more abrupt the transition is.)

Another interesting finding was that in both models the
quasi-dynamical U(3) symmetry proved to be valid between
the endpoint of the real dynamical symmetry and the critical
point; i.e. throughout the whole phase.

3.3. Microscopic studies of phases

The localized (rigid rotor, O(4)) and the shell-like (soft vibra-
tor, U(3)) cluster phases show very remarkable similarities to
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the “solid” and ”liquid” phases discussed in some recent mi-
croscopic cluster studies [6,32]. In these investigations the
crystal-like structure, is considered as a solid phase, while
the shell-like structure has the liquid properties. The driving
force taking the system from one phase to the other is the
spin-orbit. It is absent in the cluster-picture, but it becomes
important when a cluster breaks up.

Microscopic calculations also indicate the appearance
of some loosely bound alpha-condensate, in which alpha-
particles occupy the same0s state (apart from some cor-
rection due to the antisymmetrization effect). The oscilla-
tor parameter of this state is very different from that of the
single-nucleon states. This kind of state is associated to the
gas phase. The best experimental candidate for this phase is
the0+

2 state of12C. Four-alpha state is also considered in16O,
around the break-up threshold [5]. Furthermore, it seems that
alpha-condensate can develop in heavier nuclei, too, around
a core [32].

4. Summary and outlook

In this contribution we have discussed some aspects of the
localized and shell-model-like clusterization. Their relation

raises several interesting open questions. One of the most ex-
citing ones is how much they can be interpreted as two differ-
ent phases of the finite nuclear matter. There are remarkable
signs pointing at this direction, both from schematic alge-
braic model calculations, and from microscopic studies. If it
turns out to be correct, then the different phases of the cluster-
ized nuclear matter appear in energy closer to each other than
the phases of the nucleonic matter. It seems to be very chal-
lenging, to try to explore this problem from both sides: by
putting the algebraic calculations on a more realistic ground
on the one hand, and by transferring the quantitative meth-
ods of phase-transitions to the microscopic level on the other
hand.
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