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We describe the basic mechanisms responsible for nuclear bulk properties and shell formation incorporated in the Duflo Zuker models. The
emphasis is put on explaining why functionals of the occupancies can be so efficient in accounting for data with minimal computational
effort.
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Se discuten los mecanismos que son responsables para la propiedades nucleares globales y la formación de capas en los modelos Duflo-
Zuker. Se enfatiza la importancia de funcionales de las ocupancias para describir los datos experimentales con un esfuerzo computacional
mı́nimo.

Descriptores:Enerǵıas de amarre y masas.
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It is commonly asserted that whenever shell model (SM)
calculations become untractable—i.e.,mostly everywhere in
the periodic table—they should be replaced by mean field
(MF), or better, density functional theory (DFT) treatments.
The implicit (and unstated) assumption is that MF or DFT
must in some sense be equivalent to SM—i.e., to solving the
Schr̈odinger equation—but much simpler. The Duflo Zuker
mass model [1] occupies a special position:

• It is not a MF.

• It is not a DFT but a functional of orbital occupancies.

• It follows explicitly the steps involved in solving the
Schr̈odinger equation.

• It is computationally trivial when compared with other
mass models, and gives much better agreement with
measured values.

• It is almost universally claimed that the model is in-
comprehensible, which has retarded its acceptance.

Let me try to make it comprehensible by steps. First
we look at Fig. 1 which shows experimental binding en-
ergies [4] subtracted from the Bethe Weizsäcker liquid
drop (LD) form in Eq. (1) with a subtle modification:
A reasonable fit to the data with root-mean-square devia-
tion of some 2.5 MeV is achieved with a “pairing energy”
Vp=5.15[mod(N, 2)+mod(Z, 2)]A−1/3; which means that
the information coming from any of the four mass sheets
(even-even, even-odd, odd-even and odd) is basically the
same; hence from now on, we examine only even-even nu-
clei. ThenVp becomes irrelevant: The subtle modification
is to replace it by a shift of−A1/3 MeV. It is seen that the
result is to displace the whole energy patterns so as to make

the shell effects practically definite positive, thus defining a
convenient “baseline”.

E(LD) = 15.5A− 17.8A2/3 − 28.6
4T (T + 1)

A

+ 40.2
4T (T + 1)

A4/3
− .7Z(Z − 1)

A1/3
− VP , (1)

It only remains to read Fig. 1 to have a good mass formula
as a sum of a macroscopic baseline plus shell effects repre-
sented by quadratic, cubic and quartic terms in the number
of active protons and neutrons in spaces defined by magic
numbers, basically 28, 50, 82 and 126. This was achieved
with great success by Jean Duflo [2] under a slightly different
guise from the one described here. In a companion paper [3]
it was shown that it should be possible to derive microscopi-
cally something quite close to Duflo’s formula.

FIGURE 1. (Color online) Shell effects (BE(exp)-E(LD)) along iso-
tope and isotone lines (latter displaced by -14 MeV).Only even-
even shown. PLEASE READ TEXT CAREFULLY.
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There were serious problems though: no clearcut defini-
tion of the baseline, need to postulate the magic numbers as
well as the transition points between spherical and deformed
regions. (The latter show as flat patterns at the bottom of the
parabolas in Fig. 1. All these problems were solved in Ref. 1,
and it is convenient to make a list of what are the injunctions
defining this work

• Separate LD from shell effects.

• Separate deformed from spherical.

• Separate Hartree Fock (HF) from correlations.

• Be very careful about scaling;i.e. recognize what goes
asA, A2/3,A1/3, A0,A−1/3. In particular

• Be uncompromising about LD principles:

1. Pairing scales asA−1/3, NOT A−1/2 [5]

2. Coulomb is inZ(Z − 1). NOT Z2 [6]

3. Symmetry is inT (T + 1), NOT (N − Z)2 [7]

4. Shell effects scale asA1/3.

Now we proceed as we would in solving the Schrödinger
equation, and define a good unperturbed, monopole, Hamil-
tonian. We refer to Ref. 7 for details and arguments on the
matter. Here, it is sufficient to know that we start with a set
of matrix elements in an isospin coupling scheme

W JT
rstu = V JT

rstu − δrtδsuV T
rs. (2)

from which we have extracted centroids

V T
rs =

∑
J V JT

rsrs[J ](1− (−1)J+T δrs)
(2jr + 1)(2js + 1 + δrs(−1)T )

(3)

In the neutron-proton (np) scheme each orbitr goes into
two rn and rp and the centroids can be obtained through
(x, y = n or p, x 6= y)

Vrxsy =
1
2

[
V1

rs

(
1− δrs

2jr + 1

)

+V 0
rs

(
1 +

δrs

2jr + 1

)]
(4)

Vrxsx = V 1
rs.

The monopole Hamiltonian is then a quadratic form in num-
ber operatorsmrx

Hd
m = Kd +

1
2

∑
rx,sy

Vrxsymrx(msy − δrxsyδxy) (5)

FIGURE 2. Ground state energies per particle (except for6Li) ob-
tained from Eq. (5) (Coulomb included schematically) by filling
lowest oscillator orbits.

where we have added the kinetic energy. Fig. 2 shows some
binding energies obtained from Eq. (5) using aVlow k poten-
tial [8]. At low density (i.e., low ~ω) the interaction behaves
as a contactδ force and the energies go as(~ω)3/2. At high
density the interaction behaves as a constant, the kinetic en-
ergy dominates, and the system saturates, but at totally wrong
places: the right saturation minima should come around the
standard value~ω ≈ 40A−1/3 ≈ 6 − 15 MeV. In this range
the energy is linear in~ω. When nocore SM calculations are
performed [9] the gain in energy is substantial but the patterns
in the figure are preserved. Therefore better calculations do
not lead to saturation which has to be enforced artificially
through use of the correct~ω, as done in SM work. In the
future it would be better to do it through three-body forces as
explained in Ref. 7 (around pag. 436).

The master terms

Now we invoke the general factorization property [5]

∑
x,y

VxyZx · Zy =
∑

µ

Eµ(
∑

k

Zkfkµ)2 (6)

and apply it to Eq. (5), or its equivalent in isospin formal-
ism, soZ are operatorsZ ≡ m,T . By diagonalizing realistic
monopole centroids over many oscillator shells one finds that
the strong isoscalar and isovector collective—master—terms
that overwhelm all others are of the form

Vd0 = E0

(∑
p

mp√
Dp

)2

,Vd1 = E1

(∑
p

Tp√
Dp

)2

(7)

where Dp=(p + 1)(p + 2) is the degeneracy of the ma-
jor harmonic oscillator (HO) shell of principal quantum
number p. Setting ET =~ωVT , using Boole’s notation
p(3)=p(p− 1)(p− 2), and summing up to the Fermi shellpf

Rev. Mex. F́ıs. S54 (3) (2008) 129–135



SHELL FORMATION AND NUCLEAR MASSES 131

we obtain asymptotic estimates

∑
p

mp =
pf∑

p=0

2Dp = A =
2(pf + 3)(3)

3
. (8)

Kd =
~ω
2

∑
p

mp(p + 3/2)

=⇒ ~ω
4

(pf + 3)(3)(pf + 2) (9)

〈r2〉= ~
AMω

∑
p

mp(p + 3/2) =⇒ 3~
4Mω

(pf + 2) (10)

Vd0~ωV0

(∑
p

mp√
Dp

)2

=⇒ ~ωV0[pf (pf + 4)]2 (11)

Showing thatVd0 andKd go as A, as they should. A more
careful recent fit to the master terms reveals that in Eq. (7)
the denominators are better approximated by

1/
√

Dp −→ 1/
√

Dp − α/Dp,

leading asymptotically to surface terms. It is impossible to

overestimate what is achieved by the master terms: they sim-
ply account for the four LD main terms in Eq. (1), and they
produce strong magicity effects at the HO closures.

The S operators and the monopole contribution

The problem we must face next is to erase most of the HO
closures and turn them into extruder-intruder (EI) ones as ex-
plained schematically in Fig. 3. TheDp levels in HO shellp
are split in two groups: the largest subshellj(p) ≡ p> with

FIGURE 3. HO and EI closures

FIGURE 4. Schematic single particle spectrum above132Sn. rp is
the set of orbits in shellp excluding the largest. For the upper shells
the labell is used forj = l + 1/2

j=p + 1/2, Dp=2(p + 1), and the rest r(p) with
Drp=p(p+1). The largest shellj(p) is extruded from
major shell p and intrudes in major shellp−1. Clearly
mp=mrp+mp> , and we must suplement the master term
with others containing operators other thanmp. The natu-
ral choice is

Sp = (pmp> − 2mrp) =
Drpmp> −Dp>mrp

(p + 1)
, (12)

which vanishes at HO closures. Similar terms can be con-
structed for the isospin operatorsSTp.

By now we are ready to propose a schematic monopole
contribution made of all possible symmetric quadratics in
mp, Sp, Tp, STp.

Spherical correlations

To this we must add the effect of spherical correlations.
In Ref. 3 it is shown how to invoke perturbation theory
or coupled cluster theory and average to obtain the corre-
sponding estimates, as in the following example, involving
a quadrupole-quadrupole np interaction in the EI spaces (any
other multipole would do; number operatos defined at bottom
of Fig. 3)

〈Heff
m 〉 = χC〈nz|qπ · qνqπ · qν |nz〉

= χC〈z|qπ · qπ|z〉〈n|qν · qν |n〉 (13)

Upon averaging this four-body operator must go as
nπ(Dπ−nπ)nν(Dν−nν), as dictated by vanishing at empty
and closed shells. Note the extreme generality of this argu-
ment, that only relies on the possibility of performing aver-
ages.
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TABLE I. B(E2) ↑ in e2b2 compared with experiment.

N Nd Sm Gd Dy
92 4.47 4.51 4.55 4.58

2.6(7) 4.36(5) 4.64(5) 4.66(5)
94 4.68 4.72 4.76 4.80

5.02(5) 5.06(4)
96 4.90 4.95 4.99 5.03

5.25(6) 5.28(15)
98 5.13 5.18 5.22 5.26

5.60(5)

Deformation

In DZ for each nucleus two calculations are performed and
the lowest kept. We have just described the ingredients of the
spherical case. Deformation is associated with the promotion
of four neutrons and four protons to the next major shell. The
loss of monopole energy is upset by the gain in quadrupole
coherence of the form in Eq. (13). This mechanism, vin-
dicated by the very good description of masses in deformed

FIGURE 5. Two neutron separation energies forZ=88-100
for frdm(rmsd=621 keV) and dz(31p, rmsd=338 keV), and
etfsi(rmsd=703 keV) and dz(10p, rmsd=524 keV). frdm displaced
up by 8 MeV.

regions has been later confirmed by the accurate estimate of
quadrupole moments. The story is told in Ref. 7 (around
page 464) from which we borrow Fig. 4 showing the orbits
being filled above132Sn. Starting at around Nd (Z=60), as
the first neutron shell aboveN=82 (f7/2) fills, spherical so-
lutions dominate up toN=90 where rotational motion sets in.
Using SU3-like arguments the intrinsic quadrupole moments
andB(E2) rates can be estimated as

Q0 = 56eπ+(76+4n)eν , B(E2) ↑= 10−5A2/3Q2
0 (14)

for N=90 + 2n and effective chargeseπ=1.4, eν=0.6. Re-
sults are given in Table I. (The152Nd value has now been
remeasured...).

The DZ strategy. Three body and surface terms

By now we have obeyed all the injunctions mentioned ear-
lier and we can define the strategy to construct a general
monopole functional. It amounts to enumerate all concep-
tually acceptable terms and then select through numerical fits
the indispensable ones,

FIGURE 6. Two neutron separation energies and binding energies
related to LD in Eq. (1) for frdm and dz(31p, displaced down by
30 and 15 MeV respectively).
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1 Strict monopole terms: quadratics in number opera-
tors.

2 Correlation terms: quadratics, cubics and quartics.
Note that quadratics have the same form for monopole
and correlation.

3 Surface terms associated to each of the above,i.e., ,
each operatorΓ becomesΓ(1−aA−1/3), with a ≈ 5
for most operators, which means they change sign at
A ≈ 100.

4 The fits demand an anomalous cubic term
nπ(Dπ−nπ)(Dπ−2nπ)+nν(Dν−nν)(Dν−2nν)
that scales asA, i.e., , it violates the injunction that
shell effects should scale asA1/3

The number of possible contributions consistent with this
enumeration is very large and we have settled for two stan-
dard versions:

dz31p A 31 parameter variant of the pub-
lished 28 parameter fit [1] both to the 1993 data [10].
For the 2003 data [11] dz31p yields rmsd=338 keV
(2035 nuclei). Fortran code available on request (some
400 lines).

dz10p The 10 parameter version, rmsd=524 keV
to the 2003 data. Fortran code available at Ref. 4.

Figures 5 compares dz31p and dz10p with the fi-
nite range droplet model (frdm [12], about 30 parameters,
rmsd=521 keV) and extended Thomas Fermi mean field cal-
culations (etfsi, about 10 parameters [13], and references
therein; rmsd=703 keV). TheZ=88 − 100, N=110 − 190
range has the advantage of including some measured values
and reaching the putativeN=184 EI closure.

Three remarks

• The indications ofN=184 magicity are almost absent
for dz31p, very marginal for frdm and fairly clear for
dz10p and etfsi.

• The dz patterns are smooth: beyondN=126 magic-
ity, one detects only some anecdotic effects in the
N=160− 170 range.

• The frdm and etfsi patterns are agitated: many things
happen in places were nothing happens in dz.

Figure 6 collects predictions for some 8000 nuclei.
Globally the two neutron separation energies for frdm and

dz31p are quite similar but again systematically more abrupt
in frdm. Worth noting: drip lines are very much the same for
both models.

The LD subtracted binding energies are probably the
most revealing: The qualitative similarity is striking, espe-
cially for the heavier regions about which nothing is known.

The strong dz unbinding for states beyond the drip-lines
is suspicious. Difficult to decide whether the hint is interest-
ing or misleading.

FIGURE 7. Evolution of (cs± 1 ) spectra from40Ca to48Ca

As mentioned, the dz “philosophy” was declared at first
to be incomprehensible. It is only when the 2003 mass data
were published that the predictive power of the approach be-
gan to be recognized [15] and dz was accepted as one of
the three standards alongside frdm and etfsi (later hfb [13]).
There is no point in deciding which is better but it is clear
that frdm and etfsi produce too many shell effects that are not
there, while dz may be too smooth and miss shell effects that
are there. However, I would like to postulate the following

The only fundamental shell effects are related to
the appearance and disappearance of EI closures.
All other magicity effects are miscellaneous [3]

Blunt as this statement may sound it only amounts to a
reading of Fig. 1.

The monopole Hamiltonian and the EI prob-
lem [14]

Realistic interactions provide a crucial hint: the master terms.
They give no hint about the HO to EI transition: they do
not produce EI magicity [8]. Hence, it has to be “invented”;
dz31p (dz10p) produce the transition in a complicated (sim-
pler) way. No way to know which is the right one (if any). If
now we remember that one of the dz injunctions is to separate
monopole (HF) from correlation (SM) we note that dz can-
not possibly do it, because the biggest effects are quadratic
and—as noted—there is no way to know their originwhen
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fitting masses. So here we try a more fundamental approach:
define autonomously the monopole Hamiltonian. This was
attempted quite successfully in Ref. 14, which we shall refer
to as dz2. The idea is to separate cleanly LD from shell ef-
fects, and then characterize the latter by the particle and hole
spectra on closed shells, a set we callcs± 1 . The separation
is achieved by the—master minus four times kinetic— com-
bination in Eq. (15) which produces the basic HO magicity,
but vanishes to orderA andA2/3. The mechanism to produce
cs± 1 spectra is illustrated in Fig. 7,

1 On HO closures (40Ca in this case) anl · s + l · l one
body term produces the right spectrum. The assump-
tion is borne out by realistic forces [8]

2 The evolution to EI closures is driven by thef7/2 or-
bit through four types of two body “drift” terms in
Eq. (16): intra-shell neutron proton (zni), cross-shell
neutron proton (znc), intra-shell nn or pp (ffi), cross-
shell nn or pp (ffc). For example, in going from41Ca
to 49Ca the original (basicallyl · s) spectrum must be
modified so as to leave unchanged the upper levels (r3)
and depress the3> i.e., f7/2 orbit. In other words the
ffi term must contain an operator of the formm3>S3

[see Eq. (12)].

W − 4K =

(∑
p

mp√
Dp

)2

− 2
∑

p

mp(p + 3/2) (15)

Hs
m =W − 4K + l · s + l · l

+ 2b drift terms (16)

A six parameter fit to some 90cs ± 1 levels
yields rmsd=200 keV. The neutron and pro-
ton gaps (2BE(N, Z)−BE(N+1, Z)−BE(N−1, Z),
2BE(N, Z)−BE(N, Z+1)−BE(N, Z−1)), though not in-
cluded in the fit, are also accurately reproduced [14]. Fig. 8
illustrates how the evolution takes place inN=Z nuclei:

FIGURE 8. The different contributions of Eq. (15) forN=Z

FIGURE 9. LD referred energies of Sn isotopes compared to
monopole predictions. Both even and oddN shown for the latter.

a) W − 4K produces huge HO effects;

b) l · s + l · l very much erase the HO magicity;

c) It is the drift terms that eventually drive the EI closures.

Equation 16, collects all the terms. It is worth noting that
the drift terms that play such a crucial role in generating EI
magicity are small: EI closures may be spectacular but they
are fragile.

Though by construction the monopole Hamiltonian in
Eq. (16) is free of terms that go asA andA2/3, to compare
with data we have to correct forA1/3 effects (apparent in
Fig. 8 for example). Similarly we expect the need of cor-
rections to the symmetryi.e., , T (T+1) terms. When this is
done we find what is shown in Fig. 9 for the Sn isotopes (the
oddN points could be ignored).

The agreement is quite satisfactory, BUT we have omit-
ted the most interesting: once theA1/3 and T (T+1) cor-
rections are made the agreement is obtained by reducing the
shell effects by a VERY substantial 2.5 factor. This is truly
significant, as it stresses the need to separate strict mean field
(MF, Hm in Eq. (16) from correlation effects subsumed in
the 2.5 factor. Even if MF may mock such effects globally,
it cannot help letting some shell effects to smuggle through,
as is the case of theN=64 closure in Fig. 9, and as made
evident in Figs. 5 and 6. The prevalent idea that the pairing
force is what is needed to go beyond MF. This is not so: a SM
calculation cannot be mocked simply as MF plus pairing.

Figure 9 is also useful in explaining why dz works. The
explanation comes in two steps:

a) By construction, dz cannot produce subshell effects as
theN=64 closure.

b) Even when correlations have erased such effects, there
remains a trace of subshell structure as made evident
by the experimental pattern for the Sn isotopes that is
not a symmetric parabola around the minimum.

This is where the strange cubic and surface terms come in:
They mock such effects quite well. We do not know why but
it is worth understanding it.
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