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The authors, together with A. del Campo, developed an alternative method for determining the Feynman propagator [1] for a non-relativistic
problem. One started with the time dependent Schroedinger equation for the problem. Carried out a Laplace transform with respect to time
to get the equation for the energy dependent Green function and derived it explicitly. We then carried out the inverse Laplace transform in
the energy to get Feynman propagator. In this paper we carry out the same programme for a relativistic problem associated with the one
dimensional Dirac equation of a free particle and the Dirac oscillator proposed by Moshinsky and Szczepaniak [2] twenty years ago.
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Los autores desarrollaron, junto con A. del Campo, un método alternativo para determinar el propagador de Feynman para un problema
norelativista. El método consiste en la evaluación de la transformada de Laplace con respecto al tiempo para derivar la ecuación para la
función de Green dependiente de energı́a. Se obtiene el propagador de Feynman usando la transformada inversa de Laplace de la función de
Green. En este artı́culo llevamos a cabo el mismo programa para un problema relativista asociado a la ecuación de Dirac en una dimensión
de una partı́cula libre y el oscilador de Dirac propuesto hace veinte años por Moshinsky and Szczepaniak [2].

Descriptores:Propagador de Feynman; oscilador de Dirac; funciones de Green relativistas.

PACS: 03.65.-w; 03.65.Pm; 03.65.Ge

1. Introduction

The Feynman propagator K(x, t, x′, t′) is the operator that
takes the wave function from the point x′, t′, to x, t and in
one dimension is given by the expression [3]

ψ̄(x, t) =
∫

ψ̄(x′, t′)K(x, t, x′, t′)dx′ (1)

Feynman invented a procedure by which K(x, t, x′, t′) could
be evaluated summing the actions between the time depen-
dent paths that relate x to x′.

In this paper we shall use the procedure indicated in the
abstract for a time dependent relativistic equation in one di-
mension of the form [2]

i~
∂ψ̄

∂t
= [αc(p + imωxβ) + mc2β]ψ̄ (2)

where the wave function ψ̄ has two components

ψ̄ =
(

ψ1

ψ2

)
(3)

p, x are respectively the momenta and coordinate, t is the
time, m the mass of the particle, c the velocity of light and
α, β the 2×2 matrices

α=
(

0 1
1 0

)
, β=

(
1 0
0 −1

)
. (4)

Before proceeding with the program outlined in the ab-
stract we firs want to understand what are the problems de-
scribed by Eq. (2). For this purpose we make the usual sub-
stitution

ψ̄ → ψ̄ exp(−iEt/~) (5)

where E is the energy and write it in components as

(E −mc2)ψ1 = c(p− imωx)ψ2 (6)

(E + mc2)ψ2 = c(p + imωx)ψ1 (7)

Substituting ψ2 of (7) in (6) and dividing everything by 2mc2

we get

(E2 −m2c4)
2mc2

ψ1 =
[(

p2

2m
+

1
2
ω2x2

)
+
~ω
2

]
ψ1 (8)

which is the Dirac oscillator equation [2] but also the free
particle relativistic equation if ω = 0.
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2. The equation for the Green function of our
problem

From here on we suppress the t′ in our propagator writing
it as K(x, x′, t). We shall call Ḡ(x, x′, s) the Laplace trans-
form of the propagator i.e.

Ḡ(x, x′, s) ≡
∞∫

0

e−stK(x, x′, t)dt (9)

From the appearance in (1) it is clear thatK(x, x′, t) is a 2×2
matrix and it must satisfy Eq. (2) so the Laplace transform of
it also vanishes and we thus have

∞∫

0

e−st

{
i~

∂

∂t
− αc(p + imωxβ)−mc2β

}

×K(x, x′, t)dt = 0 (10)

As the integral is respect to time it does not affect the opera-
tors p and x while the firs term in time becomes

i~
∞∫

0

e−st

[
∂

∂t
K(x, x′, t)

]
dt

= i~
∞∫

0

∂

∂t

[
e−stK(x, x′, t)

]
dt + i~sḠ(x, x′, s) (11)

The firs integral on the right hand side of (11) is
[
e−stK(x, x′, t)

]t=∞

t=0

= −K(x, x′, 0) = −δ(x− x′) (12)

as required from (1) at t = 0, while the second term in the
right hand side of (11) comes from (9). To obtain K(x, x′, t)
we use the inverse Laplace transform [4]

K(x, x′.t) =
1

2πi

λ+i∞∫

λ−i∞

Ḡ(x, x′, s)estds (13)

where the integration takes place along a line in the complex
plane s parallel to the imaginary axis and at a distance λ from
it so that all singularities of Ḡ(x, x′, s) in the s plane are on
the left of it.

To have a more transparent notation rather than the s
plane we shall consider an energy variable E proportional
to it through the relation [1]

E=i~s or s=− i(E/~) (14)

and defin G(x, x′, E) by

G(x, x′, E) = Ḡ(x, x′,−iE/~)

=

∞∫

0

K(x, x′, t)ei(E/~)tdt (15)

which has the property of being symmetric under exchange
of x and x′

G(x, x′, E) = G(x′, x, E) (16)

From (9) and (10) G(x, x′, E) satisfie the equation
[(

E −mc2β)− αc(p + imωxβ

)]

× G(x, x′, E)− i~δ(x− x′) = 0 (17)

and as from (4) α, β are 2×2 matrices so is G(x, x′, E) i.e.

G =
(

G11 G12

G21 G22

)
(18)

The Eq. (18) in components can be written as

(E −mc2)G11 − c(p + imωx)G21 = i~δ(x− x′) (19)

(E + mc2)G21 − c(p− imωx)G11 = 0 (20)

(E −mc2)G12 − c(p + imωx)G22 = 0 (21)

(E + mc2)G22 − c(p− imωx)G12 = i~δ(x− x′) (22)

From equations (20), (21) we have that

G21 = (E + mc2)−1c(p− imωx)G11 (23)

G12 = (E −mc2)−1c(p + imωx)G22 (24)

and substituting these values in (19), (22) and eliminating the
denominators we have the equations

[
(E2 −m2c4)− c2(p2 + m2ω2x2)−mc2~ω

]
G11

= i~(E + mc2)δ(x− x′),
[
(E2 −m2c4)− c2(p2 + m2ω2x2) + mc2~ω

]
G22

= i~(E −mc2)δ(x− x′) (25)

Dividing the Eq. (25) by 2mc2 and definin

ε± =
E2 −m2c4

2mc2
± ~ω

2
(26)

we can write them as

ε±Gii =
(
− ~2

2m

d2

dx2
+

1
2
mω2x2

)
Gii

+
i~

2mc2
(E ±mc2)δ(x− x′) (27)

where when i = 1 we have the upper sign + and when i = 2
we have the lower sign −.
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Once we solve for the Gii, i=1, 2 in Eq. (27) the
G12, G21 can be obtained from them using Eqs. (23), (24)
and we have all the components of the Green function
G(x, x′, E).

The propagator K(x, x′, t) is also 2×2 matrix given by
the inverse Laplace transform (13) where instead of an in-
tegration with respect to s is convenient to express it as in-
tegration with respect to the energy E related as in (14)
s = −i(E/~) that give us then the expression

Kij(x, x′, t) =
1

2π~

i~λ+∞∫

i~λ−∞

e−iEt/~Gij(x, x′, E)dE (28)

where the integration takes place in a line in the complex en-
ergy plane parallel to the real axis and a distance ~λ from it
with all the singularities of G(x, x′, E) below this line.

In the next sections we shall consider firs the inte-
gral (28) for the free particle i.e.when ω = 0 and then in
the following section the general case of the Dirac oscillator
i.e.ω 6= 0.

3. The propagator of the free relativistic Dirac
particle

As mentioned in the previous section for the free relativistic
particle the Green function is given by (27) when ω = 0 and
thus its equation is

εGii(x)=− ~
2

2m

d2

dx2
Gii+

i~
2mc2

(E±mc2)δ(x− x′) (29)

where there are no ± sign for ε as ω is 0 in (26), but i contin-
ues to have the values 1,2 associated with the ± sign on the
right hand of (29). Multiplying (29) by (−2m/~2) we get

(
d2

dx2
+

2mε

~2

)
Gii =

i

~c2
(E ±mc2)δ(x− x′) (30)

When x 6= x′ the equation reduces to
(

d2

dx2
+ k2

)
Gii = 0 where k2 =

2mε

~2
(31)

Thus two independent solutions of (31) are

uE(x) = e±ikx (32)

and using the result (19) of Ref. 1, we can represent the Green
function of our problem as an ordered product of the two so-
lutions in (32), together with the reciprocal of their Wron-
skian and the additional factor appearing in the r.h.s. of (30)
to get

Gii(x, x′, E)

= −2m

~2

1
2ik

i~
2mc2

(E ±mc2) exp
[
ik|x− x′|

]
(33)

as the inverse of the Wronskian of the two independent solu-
tions exp(±ikx) of (32) is (2ik)−1.

As ε = (E2−m2c4)(2mc2)−1 we see from the definitio
of k2 in (31) that

k =

√
2mε

~2
=
√

E2 −m2c4

~c
(34)

Using then the Eq. (28) for the propagator Kii(x, x′, t) but
expressing the Gii(x, x′, E) in the integrand only in terms of
E we get

Kii(x, x′, t) =
i

4π~c

i~λ+∞∫

i~λ−∞

e−iEt/~
√

E2 −m2c4

× (E ±mc2) exp

[
i

(√
E2 −m2c4

~c

)
|x− x′|

]
dE (35)

This integral looks very complex both for the square root and
the possibility ± sign in front of it. It is possible though to
eliminate this difficult by introducing the variables

ξ = (mc2)−1(E +
√

E2 −m2c4)

ξ−1 = (mc2)−1(E −
√

E2 −m2c4) (36)

as ξξ−1 = 1. This implies that

E =
1
2
mc2(ξ + ξ−1),

√
E2 −m2c4 =

1
2
mc2(ξ − ξ−1) (37)

from which we obtain

dE =
1
2
mc2(1− ξ−2)dξ (38)

and we can express Eq. (35) in the form

Kii(x, x′, t) =
mc

2π~

∫

C

(ξ2 − 1 + 2ξ)
ξ

× exp
[
(uξ − vξ−1)

]
dξ (39)

where

u ≡ 1
2
mc2

[ |x− x′|
~c

− t

~

]
,

v ≡ 1
2
mc2

[ |x− x′|
~c

+
t

~

]
. (40)

The contour C corresponds to the variable ξ and if
E>mc2, ξ=(mc2)−1(E +

√
E2 −m2c4) is real but if

E<mc2, ξ=(mc2)−1(E + i
√

m2c4 − E2) and it is a circle
in the complex plane of ξ of radius mc2. The contour C in
the ξ plane is given in the Fig. 1.

The integrand in (39) has a term (1/ξ) that diverges only
at ξ = 0, but ξ−1 appears in the exponential and gives ∞
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at ξ = 0 so the term ξ−1 exp(vξ−1) goes to 0 when ξ = 0.
Thus the circle in Fig. 1 can be reduced to the point ξ = 0
and as the functions are analytic in the upper half plane we
just have to consider separately the integrals

∞∫

0

and
0∫

−∞

associated with integration of the positive and negative ener-
gies of the problem.

Consider firs the positive energy part that can be written
as

Kii(x, x′, t) =
1
2

mc

π~

∞∫

0

(ξ + 2− ξ−1)

× exp i(uξ − vξ−1)dξ (41)

as the (ξ2 − 1) terms in numerator and denominator cancel.
On the other hand in formula (3,471.9) of p. 340

and 8.407.1 of p. 952 of Ref. 5 we have that
∞∫

0

ξν−1 exp(uξ − vξ−1)dξ

= πi

(
− v

u

)ν/2

eiπν/2H(1)
ν

(
2
√

uv

)
(42)

where the requirementRe(u) < 0 is fulfille if events (ct, x),
(0, x′) are causally connected, i.e.if their difference is a time-
like vector. Taking into account the definition of u and v
in (41) and the general expression (41) for Kii(x, x′, t) we
have that

Kii(x, x′, t)

=
imc

2~

{[ |x− x′|+ ct

|x− x′| − ct

]
H

(1)
2

[
imc

~
√

(x− x′)2 − c2t2
]

± 2i

√
ct + |x− x′|
ct− |x− x′|H

(1)
1

[
imc

~
√

(x− x′)2 − c2t2
]

+ H
(1)
0

[
imc

~
√

(x− x′)2 − c2t2
]}

(43)

where H
(1)
ν (z) is the out going Hankel function and the in-

dices i = 1, 2 are related with the ± sign.
As the Eq. (43) depends only on

√
uv and (u/v)ν/2

clearly the sign of u, v does not change anything and we get
the same expression for the negative energy part.

Thus we have the full solution ofKii(x, x′, t) and we can
get K12(x, x′, t), K21(x, x′, t) from (23) (24). For instance,
K21(x, x′, t) is computed as follows. Eq. (23) with ω = 0
together with the explicit form of G11 (33) leads to

G21 = − 1
2c

exp ik|x− x′|. (44)

FIGURE 1. Integration C in the ξ plane for the free particle rela-
tivistic problem.

FIGURE 2. Integration contour for the determination of the propa-
gator of the Dirac oscillator.

Using (28) and variables (36) we fin the corresponding entry
of the propagator to be

K21(x, x′, t) = − mc

8π~

∞∫

−∞
(1− ξ−2)euξ−vξ−1

dξ (45)

which yields, together with the identity H
(1)
−1 = −H

(1)
1 , a

positive energy part in the form

K21(x, x′, t) =
mc

8~

[√
ct + |x− x′|
ct− |x− x′| +

√
ct− |x− x′|
ct + |x− x′|

]

×H
(1)
1

[
imc

~
√

(x− x′)2 − c2t2
]

(46)

while for the negative energy part we proceed as before,
i.e.by studying the parity of the integrand in formula (42).
The K12 entry can be obtained in a similar way from K22

and we have all Kij for the free particle of the Dirac equa-
tion.

Rev. Mex. F́ıs. S54 (3) (2008) 92–98
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4. The propagator of the relativistic Dirac os-
cillator

The Green function of the Dirac oscillator is given by (27)
with ω 6= 0 and if x 6= x′ so δ(x− x′) = 0, we have

{
ε± −

[
− ~2

2m

d2

dx2
+

1
2
mω2x2

]}
Gii = 0 (47)

which is identical to Eq. (31) of Ref. 1 just replacing E by
ε± so that all the non-relativistic analysis is applicable.

We start by definin

z =

√
2mω

~
x, q =

ε±
~ω

− 1
2

(48)

where q is associated to the+ sign forG11 and the− sign for
G22 in (47) and it takes the form[

d2

dz2
− z2

4
+ q +

1
2

]
u±E(x) = 0 (49)

where two independent solutions are those of the parabolic
cylinder

u±E(x) = Dq(±z) (50)

We have now to take for the presence of the term δ(x − x′)
in Eq. (27) for which we integrate this equation with re-
spect to x in the interval x′−λ≤x≤x′−λ with λ → 0.
Taking into account that on the left hand side of (27) we
have the term (−~2/2m)d2/dx2 whose integration give us
(−~2/2m)d/dx and multiplying the integrated Eq. (27) by
(−2m/~2) we see that the process gives

(
dGii

dx

)

x=x′+0

−
(

dGii

dx

)

x−x′−0

= −2m

~2

i~
2mc2

(E ±mc2) (51)

With the exception of the factor (E ± mc2)(2mc2)−1

Eqs (49) and (51) are identical to the non-relativistic (12)
and (13) of [1] for the oscillator when we replace in them
V (x)=(1/2)mω2x2 and the notations E by ε± and p by q.
We can then make use of the non-relativistic Green func-
tion (36) of [1] substituting in it E by ε± and adding the
factor mentioned at the beginning of the paragraph and get

Gii(x, x′, E) =
(

E ±mc2

2mc2

)√
2m

π~ω
Γ
(

1
2
− ε±
~ω

)

×D ε±
~ω−

1
2

(√
2mω

~
x>

)
D ε±
~ω−

1
2

(
−

√
2mω

~
x<

)
(52)

where i=1, 2 correspond respectively to the +,− sign on
the right hand side. Once we have G11(x, x′, E) and
G22(x, x′, E)we can obtainG21(x, x′, E) andG21(x, x′, E)
through the Eqs. (23), (24) .

The x>, x< stand for x>=max(x, x′), x< = min(x, x′).
Thus we can determine the full Green function

Gij(x, x′, E) of the Dirac oscillator problem but we still need
to fin K(x, x′, t) which as we indicate in Eq. (2) of [1]
and (42) above can be written as

K11 =
1

2π~

i~λ+∞∫

i~λ−∞

e−iEt/~
√

2m

π~ω

(
E + mc2

2mc2

)

× Γ
(

m2c4 − E2

2mc2~ω

)
DE2−m2c4

~ω2mc2

(√
2mω

~
x

)

×DE2−m2c4

~ω2mc2

(
−

√
2mω

~
x′

)
dE (53)

where we restrict ourselves toK11(x, x′, E) in which we just
have ε+ which we will denote by ε that from (26) has the
value

ε =
E2 −m2c2

2mc2
+
~ω
2

(54)

so this index of the parabolic cylinder function is the one in-
dicated (53) as we assume x > x′ so x> = x and x< = x′.

The integral in (53) in the E plane is parallel to the real
axis and at positive distance ~λ from it. Because of the term
exp(−iEt/~) we can close the contour by a lower semicir-
cle of infinit radius and the integration takes place over the
contour C in Fig. 2.

The gamma function Γ(z) can be expressed (formula
8.314 of p. 435 Ref. 5) as

Γ(z) =

∞∫

1

ettz−1dt +
∞∑

n=0

(−1)n

n!(z + n)
(55)

where the integral in (55) as well as the parabolic cylinder
function

Dz

(
±

√
2mω

~
x

)

are analytic function of z in the whole complex plane.
Because of the analytic properties mentioned

K11(x, x′, t) can be written as

K11 =
1

2π~

∫

C

dEe−iEt/~
(

E + mc2

2mc2

)√
2m

π~ω

[ ∞∑
n=0

(−1)n

n!
1

1
2 − ε

~ω + n
D ε
~ω−

1
2

×
(√

2mω

~
x

)
D ε
~ω−

1
2

(
−

√
2mω

~
x

)]
dE (56)
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where C is the contour of Fig. 2 that can be reduced to the circles surrounding the values where

ε

~ω
− 1

2
= n (57)

The index of parabolic cylinder functions is then n, but we have other terms in (56) as functions of E and to be able to
evaluate (56) in terms of residues we need to determine E using (54) and (57). Substituting E of (54) in (57) we have

1
(1
2 − ε

~ω + n)
=

2mc2~ω
E2

n − E2
=

2mc2~ω
2En

(
1

En − E
+

1
En + E

)
(58)

where En ≡ √
~ω2mc2n + m2c4. If we make the substitution (58) in (56) we have to evaluate the residues in E = ±En

which give us a factor 2πi and thus we get

K11(x, x′, t) = −iω

√
2m

π~ω

∞∑
n=0

{
e−iEnt/~

(
En + mc2

2mc2

)
(−1)n

n!
mc2

En
Dn

(√
2mω

~
x

)
Dn

(
−

√
2mω

~
x′

)}

+ iω

√
2mω

π~ω

∞∑
n=0

{
eiEnt/~

(−En + mc2

2mc2

)
(−1)n

n!
mc2

En
Dn

(√
2mω

~
x

)
Dn

(
−

√
2mω

~
x′

)}
(59)

In a similar way we can getK22(x, x′, t) and from (23, 24) we obtainK12(x, x′, t),K21(x, x′, t). The results reduce to the non
relativistic ones of (53) in Ref. 1 if we assume c →∞. Let us compute, for instance, K21. Using (23), (24), the component of
Green’s function reads

G21(x, x′, t) = c (p− imωx)
1

2mc2

√
2m

~πω
Γ

(
1
2
− ε+
~ω

)
D ε+
~ω− 1

2

(√
2mω

~
x>

)
D ε+
~ω− 1

2

(
−

√
2mω

~
x<

)
(60)

while the inverse Laplace transform is written as

K21 =
[
(2π~)3mc2ω

]− 1
2 (p− imωx)

∞∫

−∞
dEe−iEt/~Γ

(
m2c4 − E2

2mc2~ω

)
DE2−m2c4

2mc2~ω

(√
2mω

~
x>

)

×DE2−m2c4

2mc2~ω

(
−

√
2mω

~
x<

)
. (61)

The integral can be evaluated through the calculation of residues as before, giving

K21(x, x′, t) = i

√
mω

2π~
c(p− imωx)

{ ∞∑
n=0

[
E−iEn

(−)n

n!En
×Dn

(√
2mω

~
x>

)
Dn

(
−

√
2mω

~
x<

)]

−
∞∑

n=0

[
EiEn

(−)n

n!En
Dn

(√
2mω

~
x>

)
Dn

(
−

√
2mω

~
x<

)]}
(62)

which exhibits contributions from both positive and negative
energies. Thus we can obtain the full propagator for the Dirac
oscillator. It should be mentioned that the presence of infinit
sums in our expressions is not an obstacle for their applicabil-
ity. In fact, the authors have worked out previously an exam-
ple involving the evolution of a wave packet in Ref. 6, where
the convergence of these sums is proven.

In the present paper and in Ref. 1 we dealt only with one
dimensional problems both non-relativistic and relativistic to
make clear the main ideas of our developments.

We plan to extend our analysis to more dimensions so the
procedure outlined in the abstract of this paper can cover the
determination of all kinds of Feynman propagators.

5. Discussion on applications

In the years following the formulation of the Dirac oscilla-
tor [2], a number of publications appeared on the many-body
generalization of this system. The applicability to the spec-
troscopy of quarkonia and non-strange baryons (where a rel-
ativistic approach is reasonable) was readily given. For a full
description see [7] and references cited therein. It was clear
though that the Dirac oscillator potential could be used only
as a model interaction in the context of nuclear and subnu-
clear physics. However, the possibility of an effective real-
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ization appears now at the level of condensed matter as we
shall indicate.

For several years, the band structure of electrons in mate-
rials such as graphene (two dimensional graphite) or boron
nitride, has been of interest due to its Dirac-like struc-
ture [8, 9] with both effective speed c ∼ 106 m/s [10] and ef-
fective mass. The latter appears in the case of binary crystals
(graphene electrons are effectively massless) and for the case
of boron nitride its value is proportional to the energy dif-
ference of excited electrons in boron and nitrogen. Recently,
a renewed interest in these studies has led to experimental
results [11] and novel theoretical treatments in the context of
the Dirac theory [12]. In some idealization, 2+1 dimensional
electrons in the lowest conduction band behave as free Dirac
particles and the presence of external interactions has been
introduced through deformations of the hexagonal lattice de-
scribing the material, small external fields electron-electron
interactions, etc.

In the case of lattice deformations with applications to
nanotubes, we follow [13], where effective Hamiltonians
contemplating interactions with phonons have been obtained
near the Brillouin points located at opposite corners of the
reciprocal hexagon. They have the form of the free Dirac
Hamiltonian plus an effective potential of a quite general
form (see eqns. (3.1,3.9,3.10) in Ref. 13). Such potential
is given in terms of in-plane displacements as functions of
the lattice points. One can notice that a suitable choice of
such displacements leads to a 2 + 1 dimensional Dirac os-
cillator (without mass term for graphene). Though it can be
argued that setting a specifi deformation fiel could be an
experimentally difficul task, deformations induced by exter-
nal inhomogeneous temperature baths can be considered as
a possibility. The latter is the subject of theoretical work in
progress.

Finally. we would like to point out that the determination
of the Feynman propagator seems to be a natural step in the
study of these systems.
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