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A variety of lepton flavour violating effects related to the recent discovery of neutrino oscillations and mixings is here systematically discussed
in terms of anS3-flavour permutational symmetry. After presenting some relevant results on lepton masses and mixings, previously derived
in a minimalS3-invariant extension of the Standard Model, we compute the branching ratios of some selected flavour-changing neutral
current processes (FCNC) as well as the contribution of the exchange of neutral flavour-changing scalar to the anomaly of the magnetic
moment of the muon. We found that the minimalS3-invariant extension of the Standard Model describes successfully masses and mixings,
as well as, all flavour changing neutral current processes in excellent agreement with experiment.

Keywords:Flavour symmetries; quark and lepton masses and mixings; neutrino masses and mixings; flavour changing neutral currents; muon
anomalous magnetic moment.

Una multiplicidad de efectos de violacion del sabor leptónico relacionados con el reciente descubrimiento de oscilaciones y mezclas de los
neutrinos son discutidos aquı́ en t́erminos de una simetrı́a permutacionalS3 del sabor. Despúes de presentar algunos resultados relevantes
acerca de masas y mezclas de leptones, derivados anteriormente en una extension mı́nimaS3-invariante del Modelo Estándar, calculamos
las tasas de ramificación de algunos procesos que cambian el sabor leptónico (FCNC) aśı como la contribucíon debida al intercambio de
escalares neutros que cambian el sabor a la anomalı́a del momento magnético del múon. Encontramos que la extension mı́nimaS3-invariante
del Modelo Est́andar describe cońexito masas y mezclas, los procesos que ocurren por intercambio de corrientes neutras que violan el sabor
en excelente acuerdo con los experimentos.

Descriptores:Simetŕıas del sabor; masas y mezclas de quarks y leptones; masas y mezclas de neutrinos; corrientes neutras que violan el
sabor; momento magnético ańomalo del múon.
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1. Introduction

In the past nine years, the experiments and observations of
flavour oscillations of solar [1-4], atmospheric [5, 6] and re-
actor [7, 8] neutrinos, established beyond reasonable doubt
that neutrinos have non-vanishing masses and mix among
themselves much like the quarks do. This is also the first
experimental evidence that lepton flavour is not conserved in
Nature [9,10].

On the theoretical side, the discovery of neutrino masses
and mixings is the first conclusive evidence of the incom-
pleteness of the Standard Model, expected on theoretical
grounds since long ago [11-16]. Hence, the need of extend-
ing the Standard Model in a logically consistent and physi-
cally coherent way to allow for lepton flavour violation and a
unified and systematic treatment of the observed hierarchies
of masses and mixings of all fermions. At the same time,
it would be highly desirable to reduce drastically the num-
ber of free parameters in the theory. A flavour symmetry
that generates the observed pattern of fermion mixings and
masses could easily satisfy these two apparently contradic-
tory requirements.

In a recent paper [17], we proposed a minimal extension
of the Standard Model in which the permutational symmetry,
S3, is assumed to be an exact flavour symmetry at the weak
scale. In a serie of subsequent papers [18-21], we made a
detailed analysis of masses and mixings in the leptonic sec-
tor of the S3−invariant extended model and also analyzed

the flavour changing neutral current (FCNC) processes in the
leptonic sector of the theory [19] as well as the contribution
of the exchange of flavour changing scalars to the anomaly of
the magnetic moment of the muon [20].

In this paper, we review, extend and update the results of
our previous analysis of lepton masses and mixings in Sec. 2,
flavour changing neutral currents are discussed in Sec. 3 and,
in Sec. 4, the contribution of the exchange of neutral scalars
to the anomaly of the magnetic moment of the muon is ex-
plained in some detail. We end our paper with a short sum-
mary of results and some conclusions.

2. A Minimal S3-invariant Extension of the
Standard Model

In the Standard Model, the Higgs and Yukawa sectors which
are responsible for the generation of masses of quarks and
charged leptons do not give mass to the neutrinos. Further-
more, the Yukawa sector of the Standard Model already has
too many parameters whose values can only be determined
from experiment. These two facts point to the necessity and
convenience of extending the Standard Model in order to
make a unified and systematic treatment of the observed hi-
erarchies of masses and mixings of all fermions, as well as
the presence or absence of CP violating phases in the mix-
ing matrices. At the same time, we would also like to reduce
drastically the number of free parameters in the theory. These
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two seemingly contradictory demands can be met by means
of a flavour symmetry under which the families transform in
a non-trivial fashion.

Recently, we introduced a minimalS3-invariant Exten-
sion of the Standard Model [17] in which we argued that such
a flavour symmetry unbroken at the Fermi scale, is the per-
mutational symmetry of three objectsS3. In this model, we
imposedS3 as a fundamental symmetry in the matter sector.
This assumption led us necessarily to extend the concept of
flavour and generations to the Higgs sector. Hence, going to
the irreducible representations ofS3, we added to the Higgs
SU(2)L doublet in theS3-singlet representation two more
Higgs SU(2)L doublets, which can only belong to the two
components of theS3-doublet representation. In this way,
all the matter fields in the MinimalS3-invariant Extension
of the Standard Model - Higgs, quark and lepton fields, in-
cluding the right handed neutrino fields- belong to the three
dimensional representation1⊕ 2 of the permutational group
S3. The quark, lepton and Higgs fields are

QT = (uL, dL) , uR , dR ,
LT = (νL, eL) , eR , νR and H,

(1)

in an obvious notation. All of these fields have three species,
and, as explained above, we assume that each one form a re-
ducible representation1S ⊕ 2. The doublets carry capital
indicesI andJ , which run from1 to 2, and the singlets are
denoted byQ3, u3R, d3R, L3, e3R, ν3R and HS . Note that
the subscript3 denotes the singlet representation and not the
third generation.

Due to the presence of three Higgs field, the Higgs poten-
tial VH(HS ,HD) is more complicate than that of the Stan-
dard Model

VH(HS ,HD) = V1 + V2 (2)

where

V1 = µ2
[
(H̄D1HD1) + (H̄D2HD2) + (H̄3H3)

]

+
1
2
λ1

[
(H̄D1HD1) + (H̄D2HD2) + (H̄3H3)

]2
(3)

and

V2 = η1(H̄3H3)
[
(H̄D1HD1) + (H̄D2HD2)

]
. (4)

A Higgs potential invariant underS3 was first proposed
by Pakvasa and Sugawara [22], who assumed an additional
reflection symmetryR : Hs → −Hs. These authors found
that in addition to theS3 symmetry, their Higgs potential
has an accidental symmetryS′2:H1 ↔ H2. The accidental
S′2 symmetry is also present in ourVH(HS ,HD), therefore,
〈H1〉 = 〈H2〉.

The most general renormalizable Yukawa interactions of
this model are given by

LY = LYD
+ LYU

+ LYE
+ LYν , (5)

where

LYD
= −Y d

1 QIHSdIR − Y d
3 Q3HSd3R

− Y d
2 [ QIκIJH1dJR + QIηIJH2dJR ] (6)

− Y d
4 Q3HIdIR − Y d

5 QIHId3R + h.c.,

LYU = −Y u
1 QI(iσ2)H∗

SuIR−Y u
3 Q3(iσ2)H∗

Su3R

−Y u
2 [QIκIJ(iσ2)H∗

1uJR+QIηIJ(iσ2)H∗
2uJR ] (7)

− Y u
4 Q3(iσ2)H∗

I uIR−Y u
5 QI(iσ2)H∗

I u3R+h.c.,

LYE
= −Y e

1 LIHSeIR − Y e
3 L3HSe3R

− Y e
2 [ LIκIJH1eJR + LIηIJH2eJR ] (8)

− Y e
4 L3HIeIR − Y e

5 LIHIe3R + h.c.,

LYν = −Y ν
1 LI(iσ2)H∗

SνIR−Y ν
3 L3(iσ2)H∗

Sν3R

− Y ν
2 [ LIκIJ(iσ2)H∗

1νJR+LIηIJ (iσ2)H∗
2νJR ] (9)

− Y ν
4 L3(iσ2)H∗

I νIR−Y ν
5 LI(iσ2)H∗

I ν3R+h.c.,

and

κ =
(

0 1
1 0

)
and

η =
(

1 0
0 −1

)
. (10)

Furthermore, we add to the Lagrangian the Majorana mass
terms for the right-handed neutrinos

LM = −M1ν
T
IRCνIR −M3ν

T
3RCν3R. (11)

With these assumptions, the Yukawa interactions, Eqs. (6)
to (9) yield mass matrices, for all fermions in the theory, of
the general form [17]

M =




µ1 + µ2 µ2 µ5

µ2 µ1 − µ2 µ5

µ4 µ4 µ3


 . (12)

The Majorana mass for the left handed neutrinosνL is gener-
ated from (11) by the see-saw mechanism,

Mν = MνD
M̃−1(MνD

)T , (13)

where

M̃ = diag(M1,M1,M3).

In principle, all entries in the mass matrices can be complex
since there is no restriction coming from the flavour sym-
metryS3. The mass matrices are diagonalized by bi-unitary
transformations as

U†
d(u,e)LMd(u,e)Ud(u,e)R = diag(md(u,e), ms(c,µ),mb(t,τ)),

UT
ν MνUν = diag(mν1 ,mν2 ,mν3). (14)
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TABLE I. Z2 assignment in the leptonic sector.

− +

HS , ν3R HI , L3, LI , e3R, eIR, νIR

The entries in the diagonal matrices may be complex, so
the physical masses are their absolute values.

The mixing matrices are, by definition,

VCKM = U†
uLUdL, VPMNS = U†

eLUνK. (15)

whereK is the diagonal matrix of the Majorana phase fac-
tors.

3. The mass matrices in the leptonic sector and
Z2 symmetry

The number of free parameters in the leptonic sector may be
further reduced by means of an AbelianZ2 symmetry. A
possible set of charge assignments ofZ2, compatible with
the experimental data on masses and mixings in the leptonic
sector is given in Table I. TheseZ2 assignments forbid the
following Yukawa couplings

Y e
1 = Y e

3 = Y ν
1 = Y ν

5 = 0. (16)

Hence, the corresponding entries in the mass matrices vanish,
i.e.,

µe
1 = µe

3 = 0,

and
µν

1 = µν
5 = 0.

The mass matrix of the neutrinos

According to theZ2 selection rule, Eq (16), the mass matrix
of the Dirac neutrinos takes the form

MνD
=




µν
2 µν

2 0
µν

2 −µν
2 0

µν
4 µν

4 µν
3


 . (17)

Then, the mass matrix for the left-handed Majorana
neutrinos, Mν , obtained from the see-saw mechanism,
Mν=MνD

M̃−1(MνD
)T , is

Mν =




2(ρν
2)2 0 2ρν

2ρν
4

0 2(ρν
2)2 0

2ρν
2ρν

4 0 2(ρν
4)2 + (ρν

3)2


 , (18)

whereρν
2=(µν

2)/M1/2
1 , ρν

4=(µν
4)/M1/2

1 andρν
3=(µν

3)/M1/2
3 ;

M1 andM3 are the masses of the right handed neutrinos ap-
pearing in Ref. 11.

The non-Hermitian, complex, symmetric neutrino mass
matrix Mν may be brought to a diagonal form by a unitary
transformation, as

UT
ν MνUν = diag

(|mν1 |eiφ1 , |mν2 |eiφ2 , |mν3 |eiφν
)
, (19)

whereUν is the matrix that diagonalizes the matrixM†
νMν .

Written in polar form, the matrixUν takes the form

Uν =




1 0 0
0 1 0
0 0 eiδν







cos η sin η 0
0 0 1

− sin η cos η 0


 , (20)

if we require that the defining Eq. (19) be satisfied as an
identity, we may solve the resulting equations forsin η and
cos η in terms of the neutrino masses. This allows us to
reparametrize the matricesMν andUν in terms of the com-
plex neutrino masses,

Mν=




mν3 0
√

(mν3 −mν1)(mν2 −mν3)e
−iδν

0 mν3 0√
(mν3 −mν1)(mν2 −mν3)e

−iδν 0 (mν1 + mν2 −mν3)e
−2iδν


 (21)

and

Uν =




1 0 0
0 1 0
0 0 eiδν




×




√
mν2−mν3
mν2−mν1

√
mν3−mν1
mν2−mν1

0
0 0 1

−
√

mν3−mν1
mν2−mν1

√
mν2−mν3
mν2−mν1

0


 , (22)

The unitarity of Uν constrainssin η to be real and thus
| sin η| ≤ 1, this condition fixes the phasesφ1 andφ2 as

|mν1 | sin φ1 = |mν2 | sin φ2 = |mν3 | sin φν . (23)

The only free parameters in the matricesMν and Uν , are
the phaseφν , implicit in mν1 , mν2 andmν3 , and the Dirac
phaseδν .

The mass matrix of the charged leptons

The mass matrix of the charged leptons takes the form

Me = mτ




µ̃2 µ̃2 µ̃5

µ̃2 −µ̃2 µ̃5

µ̃4 µ̃4 0


 . (24)

The unitary matrixUeL that enters in the definition of the
mixing matrix,VPMNS , is calculated from

U†
eLMeM

†
e UeL = diag(m2

e,m
2
µ,m2

τ ), (25)

whereme, mµ andmτ are the masses of the charged leptons.
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The parameters|µ̃2|, |µ̃4| and|µ̃5|may readily be expressed in terms of the charged lepton masses. The resulting expression
for Me, written to order

(
mµme/m2

τ

)2
andx4=(me/mµ)4 is

Me ≈ mτ




1√
2

m̃µ√
1+x2

1√
2

m̃µ√
1+x2

1√
2

√
1+x2−m̃2

µ

1+x2

1√
2

m̃µ√
1+x2 − 1√

2

m̃µ√
1+x2

1√
2

√
1+x2−m̃2

µ

1+x2

m̃e(1+x2)√
1+x2−m̃2

µ

eiδe m̃e(1+x2)√
1+x2−m̃2

µ

eiδe 0


 . (26)

This approximation is numerically exact up to order10−9 in units of theτ mass. Notice that this matrix has no free parameters
other than the Dirac phaseδe.

The unitary matrixUeL that diagonalizesMeM
†
e and enters in the definition of the neutrino mixing matrixVPMNS may

be written in polar form as

UeL =




1 0 0
0 1 0
0 0 eiδe







O11 −O12 O13

−O21 O22 O23

−O31 −O32 O33


 , (27)

where the orthogonal matrixOeL in the right-hand side of Eq. (27), written to the same order of magnitude asMe, is

OeL ≈




1√
2
x

(1+2m̃2
µ+4x2+m̃4

µ+2m̃2
e)√

1+m̃2
µ+5x2−m̃4

µ−m̃6
µ+m̃2

e+12x4
− 1√

2

(1−2m̃2
µ+m̃4

µ−2m̃2
e)√

1−4m̃2
µ+x2+6m̃4

µ−4m̃6
µ−5m̃2

e

1√
2

− 1√
2
x

(1+4x2−m̃4
µ−2m̃2

e)√
1+m̃2

µ+5x2−m̃4
µ−m̃6

µ+m̃2
e+12x4

1√
2

(1−2m̃2
µ+m̃4

µ)√
1−4m̃2

µ+x2+6m̃4
µ−4m̃6

µ−5m̃2
e

1√
2

−
√

1+2x2−m̃2
µ−m̃2

e(1+m̃2
µ+x2−2m̃2

e)√
1+m̃2

µ+5x2−m̃4
µ−m̃6

µ+m̃2
e+12x4 −x

(1+x2−m̃2
µ−2m̃2

e)
√

1+2x2−m̃2
µ−m̃2

e√
1−4m̃2

µ+x2+6m̃4
µ−4m̃6

µ−5m̃2
e

√
1+x2m̃em̃µ√
1+x2−m̃2

µ




, (28)

where, as before,̃mµ = mµ/mτ , m̃e = me/mτ andx = me/mµ.

The neutrino mixing matrix

The neutrino mixing matrixVPMNS , is the productU†
eLUνK, whereK is the diagonal matrix of the Majorana phase factors,

defined by

diag(mν1 ,mν2 ,mν3) = K†diag(|mν1 |, |mν2 |, |mν3 |)K†. (29)

Except for an overall phase factoreiφ1 , which can be ignored,K is

K = diag(1, eiα, eiβ), (30)

whereα = 1/2(φ1 − φ2) andβ = 1/2(φ1 − φν) are the Majorana phases.
Therefore, the theoretical mixing matrixV th

PMNS , is given by

V th
PMNS =




O11 cos η + O31 sin ηeiδ O11 sin η −O31 cos ηeiδ −O21

−O12 cos η + O32 sin ηeiδ −O12 sin η −O32 cos ηeiδ O22

O13 cos η −O33 sin ηeiδ O13 sin η + O33 cos ηeiδ O23



×K, (31)

wherecos η andsin η are given in Eqs. (20) and (22) ,Oij are given in Eqs. (27) and (28), andδ = δν − δe.
To find the relation of our results with the neutrino mixing angles we make use of the equality of the absolute values of the

elements ofV th
PMNS andV PDG

PMNS [23], that is

|V th
PMNS | = |V PDG

PMNS |. (32)

This relation allows us to derive expressions for the mixing angles in terms of the charged lepton and neutrino masses.
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The magnitudes of the reactor and atmospheric mixing angles,θ13 andθ23, are determined by the masses of the charged
leptons only. Keeping only terms of order(m2

e/m2
µ) and(mµ/mτ )4, we get

sin θ13 ≈ 1√
2
x

(1 + 4x2 − m̃4
µ)√

1 + m̃2
µ + 5x2 − m̃4

µ

, sin θ23 ≈ 1√
2

1 + 1
4x2 − 2m̃2

µ + m̃4
µ√

1− 4m̃2
µ + x2 + 6m̃4

µ

. (33)

The magnitude of the solar angle depends on charged lepton and neutrino masses, as well as, the Dirac and Majorana phases.

| tan θ12|2 =
mν2 −mν3

mν3 −mν1




1− 2O11
O31

cos δ

√
mν3 −mν1
mν2 −mν3

+
(

O11
O31

)2 mν3 −mν1
mν2 −mν3

1 + 2O11
O31

cos δ

√
mν2 −mν3
mν3 −mν1

+
(

O11
O31

)2 mν2 −mν3
mν3 −mν1


 . (34)

The dependence oftan θ12 on the Dirac phaseδ, see (34), is very weak, sinceO31 ∼ 1 butO11 ∼ 1/
√

2(me/mµ). Hence, we
may neglect it when comparing (34) with the data on neutrino mixings.

The dependence oftan θ12 on the phaseφν and the physical masses of the neutrinos enters through the ratio of the neutrino
mass differences, it can be made explicit with the help of the unitarity constraint onUν , Eq. (23),

mν2 −mν3

mν3 −mν1

=
(|mν2 |2 − |mν3 |2 sin2 φν)1/2 − |mν3 || cos φν |
(|mν1 |2 − |mν3 |2 sin2 φν)1/2 + |mν3 || cos φν |

. (35)

Similarly, the Majorana phases are given by

sin 2α = sin(φ1 − φ2) = |mν3 | sin φν

|mν1 ||mν2 |

(√
|mν2 |2 − |mν3 |2 sin2 φν +

√
|mν1 |2 − |mν3 |2 sin2 φν

)
, (36)

sin 2β = sin(φ1 − φν) = sin φν

|mν1 |

(
|mν3 |

√
1− sin2 φν +

√
|mν1 |2 − |mν3 |2 sin2 φν

)
. (37)

A more complete and detailed discussion of the Majorana
phases in the neutrino mixing matrixVPMNS obtained in our
model is given by J. Kubo [24].

4. Neutrino masses and mixings

The determination of neutrino oscillation parameters [25–29]
has finally entered the high precision age, with many exper-
iments underway and a new generation coming. The results
of two global analysis of neutrino oscillations, updated to
september 2007, are summarized in Table II taken from [25].
In this section, numerical values of the neutrino masses and
mixing angles will be obtained from the theoretical expres-
sions derived in the previous section and the numerical values
of the neutrino oscillation parameters given in Table II. In the
presentS3-invariant extension of the Standard Model, the ex-
perimental restriction|∆m2

12| < |∆m2
13| implies an inverted

neutrino mass spectrum

|mν3 | < |mν1 | < |mν2 | [17].

In this model, the reactor and atmospheric mixing angles,θ13

andθ23, are determined by the masses of the charged leptons
only, in very good agreement with the experimental values

(sin2 θ13)th = 1.1× 10−5,

(sin2 θ13)exp ≤ 0.028 (38)

and

(sin2 θ23)th = 0.5,
(sin2 θ23)exp = 0.5+0.06

−0.05.
(39)

As can be seen from Eqs. (34) and (35), the solar angle
is sensitive to the differences of the squared neutrino masses
and the phaseφν but is only weakly sensitive to the charged
lepton masses. If the small terms proportional toO11 and
O2

11 are neglected in Ref. 34, we obtain

TABLE II. Best-fit values, 2σ and 3σ intervals (1 d.o.f) for the
three-flavour neutrino oscillation parameters from global data in-
cluding solar, atmospheric, reactor (KamLAND and CHOOZ) and
accelerator (K2K and MINOS) experiments.

parameter best fit 2σ 3σ

∆m2
21[10−5 eV] 7.6 7.3–8.1 7.1–8.3

∆m2
31[10−3 eV] 2.4 2.1–2.7 2.0–2.8

sin2 θ12 0.32 0.28–0.37 0.26–0.40

sin2 θ23 0.50 0.38–0.63 0.34–0.67

sin2 θ13 0.007 ≤ 0.033 ≤ 0.050
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tan2 θ12 =
(∆m2

12 + ∆m2
13 + |mν3 |2 cos2 φν)1/2 − |mν3 | cos φν

(∆m2
13 + |m2

ν3| cos2 φν)1/2 + |mν3 | cosφν
(40)

From this equation, we may readily derive expressions for the neutrino masses in terms oftan θ12, cos φν and the differ-
ences of the squared neutrino masses

|mν3 | =
√

∆m2
13

2 tan θ12 cos φν

1− tan4 θ12 + r2

√
1 + tan2 θ12

√
1 + tan2 θ12 + r2

(41)

and

|mν1 | =
√
|mν3 |2 + ∆m2

13, |mν2 | =
√
|mν3 |2 + ∆m2

13(1 + r2) (42)

wherer2 = ∆m2
12/∆m2

13 ≈ 3× 10−2.
As r2 ¿ 1, the sum of the neutrino masses is

3∑

i=1

|mνi
| ≈

√
∆m2

13

2 cos φν tan θ12

(
1 + 2

√
1 + 2 tan2 θ12 (2 cos2 φν − 1) + tan4 θ12 − tan2 θ12

)
.

(43)

The most restrictive cosmological upper bound for this
sum is [30]

∑
|mν | ≤ 0.17eV. (44)

This upper bound and the experimentally determined values
of tan θ12 and∆m2

ij , give a lower bound forcos φν ,

cosφν ≥ 0.55 (45)

or 0 ≤ φν ≤ 57◦.
The neutrino masses|mνi | assume their minimal values

when cos φν = 1. Whencosφν takes values in the range
0.55 ≤ cos φ ≤ 1, the neutrino masses change very slowly
with cos φν . In the absence of experimental information we
will assume thatφν vanishes. Hence, settingφν = 0 in our
formula, we find

mν1 = 0.052 eV
mν2 = 0.053 eV
mν3 = 0.019 eV.

(46)

Hence, the computed sum of the neutrino masses is
(

3∑

i=1

|mνi |
)th

= 0.13 eV (47)

below the cosmological upper bound given in Eq. (44), as
expected, since we used the cosmological bound to fix the
bound oncosφν .

Now, we may compare our results with other bounds on
the neutrino masses.

The effective Majorana mass in neutrinoless double beta
decay〈m2β〉, is defined as [31]

〈m2β〉 = |
3∑

i=1

V 2
eimνi |. (48)

The most stringent bound on〈m2β〉, obtained from the
analysis of the data collected by the Heidelberg-Moscow
experiment on neutrinoless double beta decay in enriched
Ge [32], is

〈m2β〉 < 0.3 eV. (49)

In our model, and assuming that the Majorana phases
vanish we get

〈m2β〉th = 0.053 eV (50)

well below the experimental upper bound.
The most restrictive direct neutrino measurement involv-

ing electron type neutrinos, is based on fitting the shape of
the beta spectrum [29]. In such measurement, the quantity

m̄νe =
√∑

i

|Vei|2mνi (51)

is determined or constrained. A very restrictive upper
bound for this sum is obtained from nucleosynthesis pro-
cesses [33,34]

(m̄νe)
exp

< 0.37 eV. (52)

From Eqs. (38) and (39), we obtain

(m̄νe)
th = 0.053 eV. (53)

again, well below the experimental upper bound given in
Eq. (52).
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5. Lepton flavour violating processes

It is well known that models with more than one Higgs
SU(2) doublet may in general, have tree-level flavour chang-
ing neutral currents (FCNC) [35, 36]. Lepton flavour violat-
ing couplings, due to FCNC, naturally appear in the minimal

S3-invariant extension of the Standard Model, since in this
extended model there are three HiggsSU(2) doublets, one
per generation, coupled to all fermions. In a flavour labeled,
symmetry adapted weak basis, the flavour changing Yukawa
couplings may be written as in this expression, the entries in

LFCNC
Y =

(
EaLY ES

ab EbR + UaLY US
ab UbR + DaLY DS

ab DbR

)
H0

S

+
(
EaLY E1

ab EbR + UaLY U1
ab UbR + DaLY D1

ab DbR

)
H0

1

+
(
EaLY E2

ab EbR + UaLY U2
ab UbR + DaLY D2

ab DbR

)
H0

2 + h.c. (54)

the column matricesE′s, U ′s andD′s are the left and right
fermion fields andY (E,U,D)S

ab , Y (E,U,D)1,2
ab are3×3 matrices

of the Yukawa couplings of the fermion fields to the neutral
Higgs fieldsH0

s andH0
1,2 in theS3-singlet and doublet rep-

resentations respectively.
In this basis, the Yukawa couplings of the Higgs fields

to each family of fermions may be written in terms of matri-
cesM(e,u,d)

Y , which give rise to the corresponding mass
matrices M (e,u,d) when the gauge symmetry is sponta-
neously broken. From this relation we may calculate the

flavour changing Yukawa couplings in terms of the fermion
masses and the vacuum expectation values of the neutral
Higgs fields.

The matrixMe
Y of the charged leptons is written in terms

of the matrices of the Yukawa couplings of the charged lep-
tons as

Me
Y = Y E1

w H0
1 + Y E2

w H0
2 , (55)

where, the indexw means that the Yukawa matrices are de-
fined in the weak basis,

Y E1
w =

mτ

v1




0 1√
2

m̃µ√
1+x2

1√
2

√
1+x2−m̃2

µ

1+x2

1√
2

m̃µ√
1+x2 0 0

m̃e(1+x2)√
1+x2−m̃2

µ

eiδe 0 0




(56)

and

Y E2
w =

mτ

v2




1√
2

m̃µ√
1+x2 0 0

0 − 1√
2

m̃µ√
1+x2

1√
2

√
1+x2−m̃2

µ

1+x2

0 m̃e(1+x2)√
1+x2−m̃2

µ

eiδe 0




. (57)

In the computation of the flavour-changing neutral couplings, the Yukawa couplings are defined in the mass basis which
are obtained fromY EI

w , given in Refs. 56 and 57, according to

Ỹ EI
m = U†

eLY EI
w UeR

whereUeL andUeR are the matrices that diagonalize the charged lepton mass matrix defined in Eqs. (14) and (27).
We get,

Ỹ E1
m ≈ mτ

v1




2m̃e − 1
2m̃e

1
2x

−m̃µ
1
2m̃µ − 1

2

1
2m̃µx2 − 1

2m̃µ
1
2




m

, (58)

Rev. Mex. F́ıs. S54 (3) (2008) 81–91



88 A. MONDRAGÓN, M. MONDRAGÓN, AND E. PEINADO

and

Ỹ E2
m ≈ mτ

v2




−m̃e
1
2m̃e − 1

2x

m̃µ
1
2m̃µ

1
2

− 1
2m̃µx2 1

2m̃µ
1
2




m

, (59)

where m̃µ = 5.94 × 10−2, m̃e = 2.876 × 10−4 and
x = me/mµ = 4.84× 10−3.

All the nondiagonal elements iñY EI
m are responsible for

tree-level FCNC processes. The actual values of the Yukawa
couplings in Eqs. (58) and (59) still depend on the VEV’s of
the Higgs fieldsv1 andv2, and, hence, on the Higgs poten-
tial. If the S′2 accidental symmetry in the Higgs sector is pre-
served [22],〈H0

1 〉 = 〈H0
2 〉 = v. With the purpose of making

an order of magnitude estimate of the coefficientmτ/v mul-
tiplying the Yukawa matrices, we may further assume that the
VEV’s for all the Higgs fields are comparable, that is,

〈H0
s 〉 = 〈H0

1 〉 = 〈H0
2 〉 =

√
2√
3

MW

g2

then
mτ/v =

√
3/
√

2g2mτ/MW

and we may estimate the numerical values of the Yukawa
couplings from the numerical values of the lepton masses.

Let us consider, first, the flavour violating process
τ− → µ−e+e−, the amplitude of this process is proportional
to Ỹ EI

τµ Ỹ EI
ee [37]. Then, the leptonic branching ratio for this

process is

Br(τ → µe+e−) =
Γ(τ → µe+e−)

Γ(τ → eνν̄) + Γ(τ → µνν̄)
(60)

where

Γ(τ → µe+e−) ≈ m5
τ

3× 210π3

(
Ỹ EI

τµ Ỹ EI
ee

)2

(MHI )
4 (61)

which is the dominant term, the index I denotes the Higgs
boson in theS3-doublet with the smallest mass. This equa-
tion, and the well-known expression forΓ(τ → eνν̄) and
Γ(τ → µνν̄) [23], give

Br(τ → µe+e−) ≈ 9
4

(
memµ

m2
τ

)2 (
mτ

MH1,2

)4

, (62)

if we take forMH1,2 ∼ 120 GeV , we obtain

Br(τ → µe+e−) ≈ 3.15× 10−17, (63)

well below the experimental upper bound for this process,
which is2.7× 10−8 [38]. Similar computations give the fol-
lowing estimates

Br(τ → eγ) ≈ 3α

8π

(
mµ

MH

)4

, (64)

Br(τ → µγ) ≈ 3α

128π

(
mµ

mτ

)2 (
mτ

MH

)4

, (65)

Br(τ → 3µ) ≈ 9
64

(
mµ

MH

)4

, (66)

Br(µ → 3e) ≈ 18
(

memµ

m2
τ

)2 (
mτ

MH

)4

, (67)

and

Br(µ → eγ) ≈ 27α

64π

(
me

mµ

)4 (
mτ

MH

)4

. (68)

From these equations, we see that FCNC processes in the
leptonic sector are strongly suppressed by the small values of
the mass ratiosme/mτ , mµ/mτ andmτ/MH . The numer-
ical estimates of the branching ratios and the corresponding
experimental upper bounds are shown in Table III. It may be
seen that, in all cases considered, the numerical values for the
branching ratios of the FCNC in the leptonic sector are well
below the corresponding experimental upper bounds.

6. The anomalous magnetic moment of the
muon

In models with more than one HiggsSU(2) doublet, the
exchange of flavour changing scalars may contribute to the
anomalous magnetic moment of the muon. In the minimal
S3-invariant extension of the Standard Model we are con-
sidering here, we have three HiggsSU(2) doublets, one in
the singlet and the other two in the doublet representations
of the S3 flavour group. TheZ2 symmetry decouples the
charged leptons from the Higgs boson in theS3 singlet rep-
resentation. Therefore, in the theory there are two neutral
scalars and two neutral pseudoscalars whose exchange will
contribute to the anomalous magnetic moment of the muon,
in the leading order of magnitude. Since the heavier gen-
erations have larger flavour-changing couplings, the largest
contribution comes from the heaviest charged leptons cou-
pled to the lightest of the neutral Higgs bosons,µ − τ −H,
as shown in Fig. 1. The contribution,δa

(H)
µ , to the magnetic

moment of the muon from the exchange of the lightest neutral
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TABLE III. Leptonic FCNC processes, calculated withMH1,2 ∼ 120 GeV.

FCNC processes Theoretical BR Experimental References

upper bound BR

τ → 3µ 8.43× 10−14 3.2× 10−8 Y. Miyazaki et al. [38]

5.3× 10−8 B. Aubertet. al. [39]

τ → µe+e− 3.15× 10−17 2.7× 10−8 Y. Miyazaki et al. [38]

8× 10−8 B. Aubertet. al. [39]

τ → µγ 9.24× 10−15 6.8× 10−8 B. Aubertet. al. [40]

τ → eγ 5.22× 10−16 1.1× 10−11 B. Aubertet. al. [41]

µ → 3e 2.53× 10−16 1× 10−12 U. Bellgardtet al. [42]

µ → eγ 2.42× 10−20 1.2× 10−11 M. L. Brookset al. [43]

Higgs boson computed in the leading order of magnitude is

δa(H)
µ =

Ỹµτ Ỹτµ

16π2

mµmτ

M2
H

(
log

(
M2

H

m2
τ

)
− 3

2

)
. (69)

the Yukawa couplings appearing in this expression are given
in Refs. 58 and 59. Hence, we obtain

δa(H)
µ =

m2
τ

(246 GeV)2
(2 + tan2 β)

32π2

m2
µ

M2
H

×
(

log
(

M2
H

m2
τ

)
− 3

2

)
, (70)

in this expression,tan β = vs/v1, is the ratio of the vac-
uum expectation values of the Higgs scalars in the singlet
representation,vs, and in the doublet representation,v1, of
the S3 flavour group. The most restrictive upper bound on
tan β may be obtained from the experimental upper bound
onBr(µ → 3e) given in Ref 67, and in Table III, we obtain

tan β ≤ 14 (71)

substitution of this value in Ref. 70 and taking for the Higgs
mass the valueMH = 120 GeV gives an estimate of the
largest possible contribution of the FCNC to the anomaly of
the magnetic moment of the muon

δa(H)
µ ≈ 1.7× 10−10. (72)

This number has to be compared with the difference between
the experimental value and the Standard Model prediction for
the anomaly of the magnetic moment of the muon [44]

∆aµ = aexp
µ − aSM

µ = (28.7± 9.1)× 10−10, (73)

which means

δa
(H)
µ

∆aµ
≈ 0.06. (74)

FIGURE 1. The contribution,δa(H)
µ , to the anomalous mag-

netic moment of the muon from the exchange of flavour changing
scalars. The neutral Higgs boson can be a scalar or a pseudoscalar.

Hence, the contribution of the flavour changing neutral
currents to the anomaly of the magnetic moment of the muon
is smaller than or of the order of6% of the discrepancy be-
tween the experimental value and the Standard Model pre-
diction. This discrepancy is of the order of three standard
deviations and quite important, but its interpretation is com-
promised by uncertainties in the computation of higher or-
der hadronic effects mainly from three-loop vacuum polar-
ization effects,aV P

µ (3, had) ≈ −1.82 × 10−9 [45], and
from three-loop contributions of hadronic light by light type,
aLBL

µ (3, had) ≈ 1.59× 10−9 [45]. As explained above, the
contribution to the anomaly from flavour changing neutral
currents in the minimalS3-invariant extension of the Stan-
dard Model, computed in this work is, at most,6% of the
discrepancy between the experimental value and the Stan-
dard Model prediction for the anomaly, and is of the same
order of magnitude as the uncertainties in the higher order
hadronic contributions, but still it is not negligible and is cer-
tainly compatible with the best, state of the art, experimental
measurements and theoretical computations.
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7. Conclusions

A variety of flavour violating effects related to the recent dis-
covery of neutrino oscillations and mixings was discussed in
the framework of the minimalS3-invariant extension of the
Standard Model that we proposed recently [17]. After a brief
review of some relevant results on lepton masses and mixings
that had been derived in this minimalS3-invariant extension
of the SM, we extended and updated our previous results on
the branching ratios of some selected flavour-changing neu-
tral currents processes (FCNC) [19] as well as the contribu-
tion to the magnetic moment of the muon [20]. Some interst-
ing results are the following:

• The magnitudes of the three neutrino mixing angles,
θ12, θ23 andθ13, are determined by an interplay of the
S3 × Z2 symmetry, the see-saw mechanism and the
lepton mass hierarchy.

• The neutrino mixing angles,θ23 andθ13, depend only
on the masses of the charged leptons and their pre-
dicted numerical values are in excellent agreement
with the best experimental values.

• The solar mixing angle,θ12, fixes the scale and origin
of the neutrino mass spectrum which has an inverted
mass hierarchy with values

mν1 = 0.052 eV,

mν2 = 0.053 eV,

mν3 = 0.019 eV.

• The branching ratios of all flavour changing neutral
current processes in the leptonic sector are strongly
suppressed by theS3 × Z2 symmetry and pow-
ers of the small mass ratiosme/mτ , mµ/mτ , and(
mτ/MH1,2

)4
, but could be important in astrophysi-

cal processes [46,47].

• The anomalous magnetic moment of the muon gets
a small but non-negligible contribution from the ex-
change of flavour changing scalar fields.

In conclusion, we may say that the minimalS3-invariant
extension of the Standard Model describes successfully
masses and mixings in the quark [17] (not discussed here)
and leptonic sectors with a small number of free parameters.
It predicts the numerical values of theθ23 andθ13 neutrino
mixing angles, as well as, all flavour changing neutral current
processes in the leptonic sector, in excellent agreement with
experiment. In this model, the exchange of flavour changing
scalars gives a small but non-negligible contribution to the
anomaly of the magnetic moment of the muon.
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