The threshold anomaly from the simultaneous calculation of elastic scattering and fusion cross sections for the systems $^9\text{Be}+^{144}\text{Sm}$ and $^9\text{Be}+^{64}\text{Zn}$ for energies around the barrier

A.G. Camacho,* E.F. Aguilera, and E.M. Quiroz
Departamento del Acelerador, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, México, D.F. 11801, México.

P.R.S. Gomes and J. Lubian
Instituto de Física, Universidade Federal Fluminense, Avenida Litoranea s/n, Gragoatá, Niterói RJ 24210-340, Brazil.

Recibido el 20 de febrero de 2008; aceptado el 4 de julio de 2008

The energy dependence of the optical potential is used to study the threshold anomaly for reactions with the weakly bound projectile ^9Be on ^{144}Sm and ^{64}Zn for energies around the Coulomb barrier. The energy dependent potential parameters are obtained from a simultaneous χ^2-analysis of elastic scattering and fusion data. There are signatures that in fact, the so-called breakup threshold anomaly shows up for these systems. This finding is in agreement with other calculations involving weakly bound projectiles.

Keywords: Nuclear reactions; weakly bound nuclei; threshold anomaly.

La dependencia con la energía del potencial óptico se usa para determinar la presencia de la Anomalia de Umbral en reacciones entre el proyectil débilmente ligado ^9Be con ^{144}Sm y ^{64}Zn a energías alrededor de la barrera Coulombiana. Los parámetros del optencial óptico se encuentran mediante un ajuste χ^2 de los datos experimentales de dispersión elástica y fusión completa. Los resultados demuestran que, en realidad la Anomalia de Umbral por Rompimiento aparece en estas reacciones. Esta conclusión concuerda con los resultados de otras reacciones en que intervienen projectiles débilmente ligados.

Descriptores: Reacciones nucleares; núcleos débilmente ligados; anomalía de umbral.

PACS: 24.10.-i, 25.70.Jj, 23.23.+x; 56.65.Dy

1. Introduction

One of the main interests in the field of low energy nuclear reactions has been the role that the breakup process plays on fusion and other reaction mechanisms in reactions involving weakly bound nuclei [1]. This subject is usually studied by two different approaches. The first is the direct investigation of the behavior of fusion excitation functions and coupled channel calculations for fusion reactions. The second approach is more indirect, and it is concerned with the behavior of the energy dependence of optical potentials derived from elastic scattering data, particularly on the presence of the threshold anomaly in the elastic scattering of those nuclei. Most of such studies, in both approaches, use the following weakly bound nuclei as projectiles: ^9Be, ^6Li, ^7Li and ^6He. For all of them, the breakup separation energies is much smaller than the usual 8 MeV/A required to separate nucleons from tightly bound nuclei. For the nuclei mentioned, the breakup threshold energies range from $S_2=2.47$ MeV for the $^7\text{Li} \rightarrow \alpha + t$ breakup to $S_{2n}=0.98$ MeV for the $^6\text{He} \rightarrow ^4\text{He}+2n$ breakup. A very interesting nuclei to be investigated is ^9Be, which breaks up as $^9\text{Be} \rightarrow ^8\text{Be}+n \rightarrow \alpha + \alpha + n$ with $S_\alpha=1.67$ MeV. Reactions with these weakly bound projectiles show that the breakup yield has considerable values even for energies well below the Coulomb barrier. For the scattering of tightly bound systems, the threshold anomaly (TA) usually is observed. Since this phenomenon is associated to the closing of reaction channels as the bombarding energy decreases towards the Coulomb barrier, it is interesting to investigate whether the TA is present in the scattering of weakly bound projectiles. It has recently been proposed that reactions involving the most weakly bound nuclei show a different type of anomaly, the so-called Breakup Threshold Anomaly (BTA) [2-4]. The origin of the BTA is the fact that the breakup process for weakly bound nuclei has large cross section even at sub-barrier energies, and so the absorptive part of the nuclear potential does not show a sharp decrease as the bombarding energy decreases, but keeps constant values or increasing values at energies slightly below the barrier. So, if BTA occurs, the energy dependence of the real nuclear potential derived from the dispersion relation does not show the usual bell-shape associated to the TA around V_{2N} [5].

At this point, it is important to mention that the energy dependence of the optical potential is produced by polarization potentials originated from the coupling between the elastic scattering and different reaction mechanisms, such as inelastic excitation, transfer of nucleons or clusters of nucleons, breakup, fusion, fission and quasifission. These mechanisms may produce polarizations of different signs, attractive or repulsive[6,7]. The net effect on the energy dependence of the total optical potential depends on the importance and strength of the different specific polarization potentials. For systems containing only tightly bound nuclei, couplings to bound ex-
cited states or transfer channels produce an attractive polarization potential and, consequently, leading to enhancement of the fusion cross section at energies near and below the Coulomb barrier, when compared with no-coupling calculations. For these systems, the energy dependence of the optical potential shows the usual TA [8,9]. When weakly bound nuclei are involved in the interaction, the breakup channel may remain open at energies below the Coulomb barrier, and so the imaginary part of the potential does not vanish near the barrier. Actually, for stable weakly bound nuclei, such as 6Li and 9Be, it has been observed [2,3,10,11] that the strength of the imaginary part of the optical potential increases as the energy is reduced toward the nominal Coulomb barrier. From this characteristic of the imaginary potential and because of the dispersion relation, the strength of the real part of the potential decreases at this energy region. For halo or neutron skin nuclei, not only the breakup channel but also transfer channels may remain open, with cross sections much larger than that for fusion for energies below the fusion barrier.

In this work, we consider the extensive measurements for the reaction between 9Be with the medium mass targets 64Zn [12–15] and 144Sm [16,17] and perform a theoretical study of them using the optical model for direct reactions. Specifically, a simultaneous calculation of elastic scattering, complete fusion and breakup cross sections is done within the optical model. Particular emphasis is focused into the effect of the breakup process has on fusion and on the threshold anomaly. The approach used is the one proposed by Udagawa et al. [18,19] to describe fusion within the framework of direct reaction theory. Thus, a Woods-Saxon optical potential $U_a = V_a + iW_a$ for the entrance channel a is considered, where the imaginary potential W_a is split into volume and surface parts, that is $W_a = W_{a,F} + W_{a,DR}$. It will be assumed that the volume part $W_{a,F}$ is solely responsible for the complete fusion absorption process while the surface part $W_{a,DR}$ is so for all other absorption processes. Therefore, we propose that, by means of the decomposition of W_a, the effect of the breakup of the projectile on fusion will be more clearly isolated. It is expected that the conjugated energy dependence of the fusion potential $W_{a,F}$ and the direct reaction potential $W_{a,DR}$ will tell us how strong is the breakup effect on fusion. For the systems 9Be+64Zn and 9Be+144Sm, direct reactions are mostly breakup reactions, particularly near and below the Coulomb barrier, hence these should be treated by $W_{a,DR}$.

The Woods-Saxon parameters of the optical potentials will be extracted by a simultaneous fit of complete fusion and elastic scattering data. The direct reaction cross section $\sigma_{DR} = \sigma_F - \sigma_{CF}$ includes incomplete fusion σ_{ICF}, inelastic scattering σ_{inel} and non-capture breakup σ_{NCBU}. In fact, σ_{NCBU} for the nuclear systems under consideration, accounts for most of the total reaction cross section at energies below the Coulomb barrier. The threshold anomaly is discussed by studying the behavior of the energy dependent potentials $V_{a,F}(r,E)$, $V_{a,DR}(r,E)$, $W_{a,F}(r,E)$ and $W_{a,DR}(r,E)$ at the strong absorption radius R_{sa}. Finally the effect of breakup reactions on complete fusion is discussed by studying the effects of $V_{a,DR}$ and $W_{a,DR}$ on the fusion cross section calculation.

2. Basic equations

The Hamiltonian H for the nuclear system is of the form,

$$H_a = T_a + V_a,$$ \hspace{1cm} (1)

where the distorted wave $\chi_a^{(+)}$ satisfies the following expression,

$$(T_a + V_a)\chi_a^{(+)} = E_a\chi_a^{(+)} ,$$ \hspace{1cm} (2)

and the potential V_a is defined by,

$$V_a(r,E) = V_{Coul}(r) - V_{a,0}(r) - U_a(r,E).$$ \hspace{1cm} (3)

Here, $V_{Coul}(r)$ is the Coulomb potential, $V_{a,0}(r)$ is the energy independent average nucleus-nucleus potential and $U_a(r,E)$ is the nuclear polarization potential which is given by [20–23],

$$U_a(r,E) = V_a(r,E) + iW_a(r,E).$$ \hspace{1cm} (4)

In order to simplify the notation, we drop the subindex a which refers to the incident elastic channel. Then, the imaginary part W is assumed to have two parts, i.e.,

$$W(r,E) = W_F(r,E) + W_{DR}(r,E),$$ \hspace{1cm} (5)

where W_F accounts for complete fusion and W_{DR} for all other absorption processes. Thus, Eq. (4) can be written as $U = U_F + U_{DR}$, where $U_F = V_F + iW_F$, $U_{DR} = V_{DR} + iW_{DR}$ with $V = V_F + V_{DR}$.

The strength of the real polarization potential $V(E)$ can be derived from the imaginary polarization strength $W(E)$ by the dispersion relation,

$$V_i(E) = V_i(E_s) + \frac{(E - E_s)}{\pi} P \int_{0}^{\infty} \frac{W_i(E')}{(E' - E_s)(E' - E)} dE',$$ \hspace{1cm} (6)

$$i = F, DR$$

where $V_i(E_s)$ is a value of the potential at the reference energy E_s as define in Ref. 5. So, once the energy dependent forms for V_i, $i = F, DR$ are calculated, the corresponding real potential parts V_i can be found.

The energy independent nuclear potential $V_0(r)$ and the fusion absorption potential $W_F(r,E)$ are assumed to have the geometrical forms[24],

$$V_0(r) = V_0f(r)$$ \hspace{1cm} (7)
and,

\[W_F(r, E) = W_F(E) f(r) \quad (8) \]

where

\[f(x_i) = \frac{1}{1 + \exp(x_i)}, \quad x_i = \frac{r - R_i}{a_i}, \quad i = 0, F. \quad (9) \]

with \(R_i = r_i(A_1^{1/3} + A_2^{1/3}) \), \(r_i \) being the reduced radius parameter and \(a_i \) the diffuseness parameter.

The surface imaginary potential \(W_{DR}(r, E) \) is defined by,

\[W_{DR}(r, E) = 4a_{DR} W_{DR}(E) \frac{df(x_{DR})}{dr} , \quad (10) \]

where \(a_{DR} \) stands for the direct reaction diffuseness and \(x_{DR} = (r - R_{DR})/a_{DR} \). The potentials \(V_F(r, E) \) and \(V_{DR}(r, E) \) are assumed to have the same forms as \(W_F(r, E) \) and \(W_{DR}(r, E) \) respectively, with the same diffuseness and reduced radius. The parameters of \(V_0(r) \), \(W_F(r, E) \), \(W_{DR}(r, E) \) as well as the strengths of \(V_F(r, E) \) and \(V_{DR}(r, E) \) will be extracted from a simultaneous \(\chi^2 \)-analysis of the elastic and complete fusion data, as it will be shown in the next section. It should be pointed out that the breakup cross section may include contributions from Coulomb and nuclear interactions, and therefore the direct reaction potential may include both effects. Also, the Hartree-Fock potential \(V_F(r) \) of Eq. (3) may have an energy dependence due to non-locality effects coming from knockon-exchange contribution. We shall not consider such effects since they are negligible [25].

The angle-integrated total reaction cross section is calculated by using the full absorption potential \(W \), i.e.,

\[\sigma_R(E) = \frac{2}{\hbar v} \left\langle \chi_a^{(+)} | W(E) | \chi_a^{(+)} \right\rangle , \quad (11) \]

here we have rewritten the sub-index \(a \) to emphasize the elastic channel. The fusion and direct reaction cross sections are similarly obtained by

\[\sigma_i(E) = \frac{2}{\hbar v} \left\langle \chi_a^{(+)} | W_i(E) | \chi_a^{(+)} \right\rangle , \quad i = F, DR. \quad (12) \]

The calculated relative motion distorted waves \(\chi_0^{(+)} \) obtained with the Woods-Saxon potential \(U_a \) of Eq. (4) will be used throughout the calculations. So, in this sense all the calculated cross sections will be consistent with elastic scattering.

\[\chi^2/N \]

3. \(\chi^2 \)-analysis of elastic scattering and complete fusion.

We begin by performing a simultaneous \(\chi^2 \)-analyses of elastic scattering and CF data for the system \(^9\text{Be} + ^{144}\text{Sm}\) at the energies \(E_{lab} = 33, 34, 35, 37, 39 \) and \(41 \text{ MeV} \) [16,17]. The parameters of the real energy independent average potential \(V_0(r) \) of Eq. (7), were found by fitting the elastic scattering data at 32 MeV, with a volume Woods-Saxon absorption potential with radial parameter \(r_W = 1.4 \text{ fm} \), strength \(W = 64.3 \text{ MeV} \) and diffuseness \(a_W = 0.36 \text{ fm} \). The derived parameters for \(V_0(r) \) are \(V_0 = 25 \text{ MeV} \), \(r_0 = 1.22 \text{ fm} \) and \(a_0 = 0.52 \text{ fm} \), which correspond to a shallow potential as it is required in the fit of elastic scattering data of projectiles such as \(^6\text{Li} \) and \(^9\text{Be} \) [26]. Concerning the potential \(W_F(r, E) \), the radius parameter \(r_W \) was fit at 1.4 fm thus the strength \(W_F(E) \) and the diffuseness \(a_F \) are calculated by the \(\chi^2 \)-analysis. As for the surface potential \(W_{DR}(r, E) \), we set \(a_{DR} = 0.72 \text{ fm} \), then \(W_{DR}(E) \) and the reduced radius \(r_{DR} \) are calculated. Since the geometric forms of \(V_F(r, E) \) and \(V_{DR}(r, E) \) are assumed to be the same as \(W_F(r, E) \) and

\[\begin{array}{cccc}
E_{lab} \text{ (MeV)} & a_F \text{ (fm)} & r_{DR} \text{ (fm)} & \chi^2/N \\
31.1 & 0.57 & 1.61 & 0.21 \\
32.0 & 0.51 & 1.63 & 0.65 \\
32.9 & 0.56 & 1.63 & 0.45 \\
34.8 & 0.53 & 1.66 & 0.56 \\
36.7 & 0.67 & 1.67 & 0.90 \\
38.6 & 0.67 & 1.68 & 0.90 \\
\end{array} \]

FIGURE 1. Potential strengths as derived from the \(\chi^2 \)-analysis for the fusion and direct reaction potentials (dots). The lines in Fig. (a) correspond to the linear fit of Eqs. (13) and (14), while those in Fig. (b) are the results of the dispersion relation.
$W_{DR}(r, E)$ respectively with the same reduced radius and diffuseness parameters, therefore only the energy dependent strengths $V_F(E)$ and $V_{DR}(E)$ are to be determined. In Figs. 1a and 1b, we show the results for the potential strengths $W_F(E), W_{DR}(E), V_F(E)$ and $V_{DR}(E)$ and in Table I, the values for a_F and r_{DR}.

The straight lines in Fig. 1a are linear fit to the extracted potentials given by,

$$W_F(E) = \begin{cases} 0 & E \leq E_{CF} = 28.73 \\ 0.49(E-28.73) & 28.73 < E \leq 33.06 \\ 2.122 & E > 33.06 \end{cases}$$

and

$$W_{DR}(E) = \begin{cases} 0 & E \leq E_{DR} = 24.74 \\ 0.031(E-24.74) & 24.74 < E \leq 33.33 \\ 0.2663 & E > 33.3 \end{cases}$$

Here, E_{CF} and E_{DR} correspond to the complete fusion and direct reaction threshold energies, which are found by the zero of the linear fit to the values $S_i = \sqrt{(E_{cm} \sigma_i \text{exp})}$, $i = CF, DR$, as prescribed by P.H. Stelson et al., [27]. It is assumed that the threshold energy of direct reactions E_{DR} coincides with that of the total reaction cross section E_R. This is so since, for energies below the sub-barrier regime, breakup reactions account for almost all of the total reaction cross section. The lines in Fig. 1b correspond to the calculation of the real polarization potentials $V_F(E)$ and $V_{DR}(E)$ by means of the dispersion relation [5], where the reference energy has been set at $E_s = 32.94$ MeV with reference potentials $V_F(E_s) = 1.5$ MeV and $V_{DR}(E_s) = 0.05$ MeV. As seen, from Figs. 1a and 1b our calculations show that the dispersion relation is satisfied. The elastic scattering cross section shown in Fig. 2, is determined with the use of the FRESCO code [28]. Figure 3 shows the total reaction σ_R and complete fusion σ_{CF} cross section results in the center of mass system and in Fig. 4, the calculations for $\sigma_R - \sigma_{CF}$ are given in comparison with the “data” for $\sigma_{NCBU} + \sigma_{ICF} + \sigma_{inelastic}$ extracted from Ref. 16 and 17. It should be pointed out that $\sigma_R - \sigma_{CF}$ corresponds to the calculation of the direct reaction cross section using Eq. (12).

As regards to the system $^9\text{Be} + ^{64}\text{Zn}$, we follow the same lines as done for the case of ^{144}Sm. We consider the experimental data of [12–15] and perform a simultaneous χ^2-analysis of elastic scattering and complete fusion data at the laboratory energies of 21, 23, 26 and 28 MeV. As before the Coulomb potential radius is set at $r_C = 1.25$ fm. The optical potential parameters of the energy independent potential $V_0(r)$ are fi ed at $V_0 = 60.0$ MeV, $a_0 = 0.52$ fm and $r_0 = 1.22$ fm. In this calculation, we have fi ed the diffuseness parameters at $a_F = 0.35$ fm and $a_{DR} = 0.25$ fm.

In Table II the determined values from the χ^2-fittin for the radii parameters are given. As there are not available complete fusion data at 17 MeV and 19 MeV, we estimated these by a...
TABLE II. Calculated values for the reduced radii (fm) and cross sections (mb). Data taken from Refs. 12 to 15.

<table>
<thead>
<tr>
<th>E_{lab} (MeV)</th>
<th>r_F</th>
<th>r_{DR}</th>
<th>χ^2/N</th>
<th>σ_{CF}</th>
<th>σ_R</th>
<th>$\sigma_{CF,exp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>1.55</td>
<td>2.03</td>
<td>0.90</td>
<td>5.0</td>
<td>70.0</td>
<td>4.9</td>
</tr>
<tr>
<td>19</td>
<td>1.55</td>
<td>1.89</td>
<td>0.68</td>
<td>47</td>
<td>190</td>
<td>46</td>
</tr>
<tr>
<td>21</td>
<td>1.64</td>
<td>1.93</td>
<td>0.38</td>
<td>329</td>
<td>420</td>
<td>344</td>
</tr>
<tr>
<td>23</td>
<td>1.57</td>
<td>1.7</td>
<td>0.39</td>
<td>524</td>
<td>603</td>
<td>530</td>
</tr>
<tr>
<td>26</td>
<td>1.56</td>
<td>1.7</td>
<td>0.71</td>
<td>774</td>
<td>876</td>
<td>800</td>
</tr>
<tr>
<td>28</td>
<td>1.58</td>
<td>1.74</td>
<td>0.74</td>
<td>976</td>
<td>1049</td>
<td>1000</td>
</tr>
</tbody>
</table>

Wong calculation [29]. That is, the existing data at 21, 23, 26 and 28 MeV are fitted with the parameters $V_B=17$ MeV, $R_B=10.0$ fm and $\hbar\omega=4.0$ MeV.

The determined potentials V_F, V_{DR}, W_F and W_{DR} are given in Fig. 5 at the strong absorption radius $R_{sa}=12.2$ fm. The elastic scattering cross section is presented in Fig. 6. The calculated values of the total reaction cross section shown in Table II are those extracted from elastic scattering data. Also, the values of the complete fusion cross sections are shown with the corresponding experimental measurements.

As seen from Figs. 2, 3, 4, 6 and Table II our results are in close agreement with the data for both nuclear systems.

4. A study of the threshold anomaly and the effect of breakup on fusion

One of the most interesting features of this model, that of separating the incident flu absorption into fusion and direct reaction parts, represented by the potentials W_F, V_F and W_{DR}, is that it allows us to study their energy variation in a separate manner. As seen in Fig. 1, W_F and V_F show a strong variation around the barrier energy, this is characteristic of the threshold anomaly (TA) usually present in reactions between stable tightly bound nuclei. However, W_{DR} and V_{DR} do not seem to present this strong variation, since they are rather smooth functions of E. However, since the geometric forms of the fusion and direct reaction potentials are different, the potential strengths shown in Figs. 1a and 1b can not by themselves provide enough information on the relative importance of both mechanisms in the region of strong absorption. For this reason, it is convenient to consider their behavior at the strong absorption radius R_{sa}. Figures 5 and 7 show the values of V_F, V_{DR}, W_F and W_{DR} as functions of the energy at the strong absorption radius R_{sa} (11.86 fm for $^9\text{Be}^{144}\text{Sm}$ and 12.2 fm for $^9\text{Be}^{64}\text{Zn}$). It is seen that for both cases $|W_{DR}(R_{sa}, E)| > |W_F(R_{sa}, E)|$ for the energy ranges under study, that is, flu absorption is dominated by direct reactions. As a matter of fact, this tendency seems to be valid as the energy is lowered below the barrier V_B. The fact that $W_{DR}(R_{sa}, E)$ does not show a sharp decrease as the energy is lowered below the barrier indicates also that $W(R_{sa}, E) = W_F(R_{sa}, E) + W_{DR}(R_{sa}, E)$ does not present such a decrease. On the other hand, we observe that $|V_{DR}(R_{sa}, E)| > |V_F(R_{sa}, E)|$ for energies above V_B, although it appears this behavior may be reverted for energies below the barrier. Anyway, the total potential $V(R_{sa}, E) = V_F(R_{sa}, E) + V_{DR}(R_{sa}, E)$ seems to have a very different energy variation from the usual bell shape which is characteristic of the threshold anomaly. All of these facts indicate us that indeed the threshold anomaly is not present for the systems $^9\text{Be}^{64}\text{Zn}$ and $^9\text{Be}^{144}\text{Sm}$. This finding is in agreement with some other previously reported works for different nuclear systems involving weakly bound projectiles such as $^6\text{Li}^{208}\text{Pb}$, ^{138}Ba [30,33], ^7Li, $^{9}\text{Be}^{27}\text{Al}$ [11,34,35] and $^{9}\text{Be}^{209}\text{Bi}$ [32,36]. However, we believe that the present work shows more clearly what hap-
pens in terms of the two components of the imaginary part of the optical potential, that is W_{DR} and W_{DR}. The fact that the imaginary potential is dominated by the direct reaction part as the energy is lowered below the natural barrier threshold, and therefore the "threshold "ceases to be the barrier itself, was pointed out by Hussein et al., [12] as a characteristic of the Breakup Threshold Anomaly (BTA).

Now, we propose that the effect of breakup reactions on the fusion cross section can be studied by analyzing the effect that the potentials responsible for direct reactions, that is V_{DR} and W_{DR} have on fusion. This is true since for the systems at hand, breakup is by far, the most important contribution to the direct reaction cross section in the low energy region. There are two main physical contributing effects by which V_{DR} and W_{DR} may affect fusion reactions.

(i)- A repulsive V_{DR} tends to lower the Coulomb barrier and therefore suppresses fusion and,

(ii)- The loss of incident flu into direct reactions, represented by W_{DR}, suppresses fusion.

From Figs. 5 and 7, it is evident V_{DR} suppresses fusion since becomes repulsive in the energy region under study. On the other hand, W_{DR} which is connected to the loss of flu mainly into the breakup channel, also suppresses fusion. When both potentials V_{DR} and W_{DR} are simultaneously applied, we obtain a net suppression. This result is in agreement with some other works for systems with weakly bound projectiles on heavy targets, where experimental complete fusion cross sections are compared with coupled channel calculations which use potentials deduced from experimental barrier distributions [37-39] or reliable double folding potentials [16,17,40-43] that do not take into account the breakup channel. However, it is important to mention that the fusion suppression due to the breakup effects is not observed when light targets are used [44-46], and therefore the Coulomb breakup is not so important as for heavier targets.

5. Summary and conclusions

In summary, we have carried out a simultaneous χ^2-analysis of elastic scattering and complete fusion cross sections for the systems 9Be+64Zn and 9Be+144Sm, at near fusion barrier energies. In the model, the optical polarization potential has been split into a fusion part and a direct reaction part, each one being responsible for the corresponding fusion and direct reaction absorption processes. The results of the χ^2-fitting show that the extracted potentials satisfy the dispersion relation. It has been shown that the fusion potential $W_F(E)$ exhibits the threshold anomaly as it occurs in reactions with tightly bound projectiles. However, this is not the case for the surface potential $W_{DR}(E)$ that is a smooth function of E. Energy dependent forms for V_F, V_{DR}, W_F and W_{DR} at the strong absorption radius, show that the direct reaction potential is much more important than the fusion potential. As a matter of fact, the forms of the total potentials $V(E)$ and $W(E)$, which are dominated by $V_{DR}(E)$ and $W_{DR}(E)$, are rather smooth functions of the energy around the barrier. Therefore, our results indicate that instead of the usual threshold anomaly, the Breakup Threshold Anomaly shows up for these nuclear systems. We believe that the method used in this work, is more illustrative for this kind of analysis than the ones which do not split the optical potential.

The effect of breakup on fusion cross sections has been studied by analyzing the effect of the potentials responsible for direct reactions, V_{DR} and W_{DR}. By separately considering these potentials, it has been determined that, there is a net effect of suppression of complete fusion cross sections for energies above the Coulomb barrier energy.