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A planar perfectly conducting surface does not support a surface electromagnetic wave. However, a structured perfectly conducting surface
can support such a wave. By means of a Rayleigh equation for the electric field in the vacuum above the two-dimensional rough surface
of a semi-infinite perfect conductor we calculate the dispersion relation for surface electromagnetic waves on both a doubly periodic and a
randomly rough surface. In the former case, if the periodic surface modulation is weak, the dispersion relation possesses a single branch
within the non-radiative region of frequency and wave vector values. In the case of a randomly rough surface, in the small roughness
approximation, the binding of the surface wave to the surface is weak, but nonzero. Thus, periodically or randomly structured perfectly
conducting surfaces constitute a new type of optical metamaterial. The implications of these results for the analysis of experimental results
for the propagation of surface plasmon polaritons on metal surfaces in the far infrared frequency range are discussed.

Keywords:Perfect conductor; bigrating; random surface roughness; surface electromagnetic waves; dispersion relation.

En una superficie plana perfectamente conductora no es posible excitar ondas eleé&ticamge superficie. Sin embargo, este tipo de
ondas si pueden existir en una superficie estructurada perfectamente conductora. Por medio de BnadecRagieigh para el campo
eléctrico en el vaio sobre la superficie rugosa bidimensional de un conductor perfecto, calculamos fnrdladispersin para las ondas
electromagaticas superficiales en los casos de una superficie con doble periodo y una superficie con rugosidad BEatetiprimer
caso, si la modula6in superficial pefidica es @bil, la relacon de dispergin posee una sola rama dentro de lagrgio radiativa de valores
de frecuencia y vector de onda. En el caso de una superficie con rugosidad aleatoria, en la aproxienpeguia rugosidad, la liga de

la onda superficial a la superficie esbil, pero diferente de cero. Adas superficies perfectamente conductorasogéra o aleatoriamente
estructuradas constituyen un nuevo tipo de metamatstalo. Se discuten las implicaciones de estos resultados ealslisde resultados
experimentales sobre la propagatide plasmones polaritones de superficie en superficiealioast en el intervalo de frecuencias del
infrarrojo lejano.

Descriptores:Perfectamente conductora; birejilla; rugosidad aleatoria; ondas electrétitagrde superficie; reldni de dispersin.

PACS: 42.25.Dd; 78.68+m

1. Introduction vacuum, which occupies the regiag > 0. With no loss

of generality we can assume that the surface plasmon polari-
If a metamaterial can be defined as a deliberately structurel@n is propagating in the; direction. The single nonzero
material that possesses physical properties that are not pos§Pmponent of the magnetic field of this surface wave in the
ble in naturally occurring materials, surely deliberately struc-vacuum region is given by
tured surfaces that possess optical properties not found in

H3 (z1, xz3|w) = explik(w)z1 — Bolw)zs], 1

naturally occurring surfaces can be considered to be opti- 2 (21, 73)w) plik(w)z1 = fo(w)ws] @

cal metamaterials. Such surfaces can be periodically or ratwhere

doml;I/ structured. - ) — W[ |ew)] 1/2 o
It is well known that the planar surface of a semi-infinite W)= le(w)| —1

perfect conductor does not support a surface electromagnetic

wave. This is readily seen. Let us consider the propagation 1 1/2

of a surface plasmon polariton of frequenegyon the planar Bo(w) = = [} , 3)
surface of a semi-infinite metal characterized by a dielectric ¢ llew) -1

functione(w) that, for simplicity, we assume to be real. The and we have taken into account théb) is negative in the
metal, which occupies the regian, < 0, is in contact with  frequency range where surface plasmon polaritons exist. In
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the far infrared frequency rang€w)| > 1, and Egs. (2)-(3) into the vacuum from the surface [Eq. (1)]. In the far in-

become frared, the functiorng,(w) characterizing the rate of this de-
1 cay is given by Eq. (5). Since the skin depth of the electro-
h(w) = {1 . } (4)  magnetic fields in the metal #(w) = (c/w)]e(w)|~"/2, in
¢ 2]e(w)] this frequency range we may write

(5) Bo(w) = (w/e)*d(w). )

In the limit of a perfect conductor, whea(w)| = oo, we If the frequency of the surface plasmon polariton corresponds
see from Eqs. (4)—(5) that the magnetic field in the vacuunio & wavelength ofl00um, at which the skin depth of the

region becomes metal isd(w) = 5004, we find thatgy(w)~* = 5.07 mm,
i.e. approximately 50 wavelengths. Thus, in the far infrared
Hs (21, 73|w) = expli(w/c)x1], (6) the electromagnetic fields of the surface plasmon polariton

extend far into the vacuum from the surface, it is weakly
which is just a surface skimming bulk electromagnetic wavebound to the surface.

that is not bound to the surfa¢g,(w) = 0). Consequently, However, in experiments carried out several years ago by
on a flat surface /|e(w)| must be nonzero for the surface Stegeman and his colleagues [4], these authors excited sur-
plasmon polariton to bind to the surface. face plasmon polaritons on bare (and overcoated) silver sur-

The wave described by Eq. (6) is “unstable” [1], in the faces in the far infrared (118,8m) by the use of a grating
sense that even a slight change of the boundary conditiogoupler, and found excitation efficiencies very much larger
on the perfectly conducting surface converts it into a surfacehan expected on the basis of perturbation theory [5]. These
wave or into a surface shape resonance, both of which an@sults could be understood qualitatively if, for some rea-
bound to the surface. son, the surface plasmon polaritons were bound to the sur-

In this paper we study theoretically the propagationface more tightly than predicted by the dielectric theory of a
of surface electromagnetic waves on a structured twoplanar metal surfacé.e. if 5y(w) is larger than predicted in
dimensional perfectly conducting surface that is doubly peri€Eq. (5).
odically rough or randomly rough. This is a problem of some  This suggestion prompted a theoretical investigation [6]
current interest. In two recent papers, Pendry and his colnto the propagation of a surface plasmon polariton on a one-
leagues [2,3] studied the existence of surface electromagnetifimensional periodically or randomly corrugated metal sur-
waves on corrugated surfaces of perfect conductors. Tweace in the far infrared frequency range. It was shown there
cases were considered: a one-dimensional periodic array @at such surface roughness, even if its amplitude is quite
rectangular grooves [2], and a square array of holes of squaggnall compared to the wavelength of the surface plasmon
cross section of infinite [2, 3] or finite depth [2]. By the use of polariton, can increase the binding of that wave very sub-
an effective medium approach they showed that such surfacgantially over that expected from the dielectric theory of
electromagnetic waves exist, and calculated their dispersiothe flat surface. This effect exists in any frequency range
curves. in which surface plasmon polaritons exist, but it can domi-

In the work presented here we first derive the Rayleighate the binding for waves on metal surfaces at far infrared
equation for the electric field in the vacuum region abovefrequencies where the binding provided by the dielectric re-
a two-dimensional rough perfectly conducting surface. Wesponse of the metal is so very weak. It was shown in Ref. 6
then consider doubly periodic surfaces with more general sutthat in the limit of infinite conductivity(|e(w)] — oo) the
face profiles than those considered in Refs. 2 and 3, angurface waves still bind to the corrugated surface in the ab-
use the Rayleigh equation, rather than an effective mediurgence of field penetration into the substrate. This result fol-
approach, to calculate the dispersion relation of the surfackws directly from the literature [7—10] on a mathematically
electromagnetic waves it supports. We also obtain the disisomorphic problem. The planar surface of a semi-infinite
persion relation for surface electromagnetic waves on a rarisotropic elastic medium does not support surface acoustic
domly rough surface on the basis of the small roughness afvaves of shear horizontal polarization. However, shear hor-
proximation to the Rayleigh equation. Thus, for both typesizontal waves do bind to the surface if a periodic grating is
of two-dimensional surface roughness we find that a perfectlyuled on it, as was first noted by Auldt al.[7], or if a one-
conducting surface supports surface electromagnetic wavesdimensional random profile is ruled on it [11, 12]. If one for-

Because no real metal is a perfect conductor, even in thmulates the surface plasmon polariton problem in terms of
far infrared region of the optical spectrum, it might be thoughtthe magnetic field in the wave, which is parallel to the sur-
that this investigation is a purely academic exercise. Not aface for propagation normal to the grooves and ridges on it,
all. then in the limit of infinite conductivity the wave equation

We have seen above that in the vacuum above a perfectgnd boundary condition at the surface become identical to
flat metal surface the electromagnetic fields of a surface plaghose occurring in the discussion of shear horizontal surface
mon polariton decay exponentially with increasing distanceacoustic waves on the surface of an isotropic elastic medium.
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The speed of transverse sound waves is replaced by that i a vector normal to the surfaeg = ((x;) at each point on

light in vacuum. it, directed from the perfect conductor into the vacuum, and
These results prompted the conclusion that many experiwe have introduced the definition

mental studies of surface plasmon propagation on corrugated P

metal surfaces in the far infrared frequency range have been Ca(x)) = a—((xu) a=1,2. (12)

interpreted within the framework of the incorrect zero-order Toc

picture, in which it is assumed that the dominant role inthe  The poundary condition satisfied by the field (8) on the

binding of these waves is played by the dielectric responsgyfacer, = ¢(x|) is then given by

of the metal. The correct zero-order picture in many cases is

that of a wave on a surface whose conductivity is infinite; the Jp(x)|w) = 0. (13)

dominant role in the binding is played by the interaction of

the surface wave fields with the corrugations of the surfaceThis vector equation constitutes a set of three equations,

with the dielectric response of the metal playing a minor role.

Our aim in this paper is to provide this correct zero-order Je(x)|w)1 =0 (14)
picture in the case that the perfectly conducting surface is
defined either by doubly periodic or two-dimensional ran- Te(x)|w)2 =0 (15)
dom surface profile functions of rather general form, extend-
ggf;ﬁ;rz% ;h.e approaches used and the results obtained in (x| |w)s = 0. (16)

However, we have only two unknown functions, namely
2. The Rayleigh equation Ay(q)) and As(q)). To obtain a pair of equations for these
two functions we note that Egs. (14)-(16) are not indepen-
The two-dimensional perfectly conducting rough surface wedent. Because the vectaer is perpendicular to the vector
consider is defined by the equation = ((x;), where  Jg(x)(w), we have that
x| = (z1,23,0) is an arbitrary vector in the plang = 0.
The regionzs > ((z1) is vacuum, the regiom; < ((x) is n-Jpg(x)lw =0, 17)
the perfect conductor. The surface profile functidgs ) is
assumed to be a single-valued functiorxgfthat is differen- or
tiable with respect ta:; andzxs.
The electric field in the vacuum region, > ((x)) can =G ()T (e |w)r = G2(¢) T (3¢ [w)-
be written as
+ JE(X” |w)s = 0. (18)

d?q .
Blxfw) = / (2m)? { [ayaolay) = xsqlAp(a) Thus, the satisfaction of any two of Egs. (14)-(16) guaran-
tees the satisfaction of the third. We will take as the pair of
independent equations Egs. (14) and (15), which written out

+ (f(g X Q|)As(q|)} exp[qu X)) + iOéo(qH)xg], (8) eXpIiCitIy are

/((;j)l {{ quéz(xu)—*qw"(q”)} Ala)

whereq = q/q;, ¢ = |ay . and

OZO(QH) = [(w/c) - qH]l/Q *leAs (qH)} eXp[qu “X| + ZOéo(q”)C(XH)] =0 (19)

Ramo(qu) >0, |mozo(qH) > 0. (9)

/ (Zf)l 1 Sdaota) = Sai6ita)] Ap(ay)

The coefficientsi, (q; ) andA,(q) ) are the amplitudes of the
p— ands—polarized components of this field with respect to

the local sagittal plane defined by the vectgrsandxs. _@2As(q“)}exp[iq” -x| + iao(g)¢(x))] = 0. (20)
Let us define the vector

We now introduce the representation
Je(x)|w) = n x BE(x|w) , (10)

w3=¢(x) explico(q))C(x)]
where

_ [ d*Qy :
= (=), —Galox). 1) ay = | oo entian <. @y
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so that

2
I(ao(q))|Qy) /éf)”gf(ao(%)kn —q))

= /dQQjH exp[—iQH XH)] eXp[iOzo(qH)C(XH)}. (22) {C«J (f{” % (A]H)g
x 27 A2

¢ aolgy) Aplay) + (k| 'f1|)As(q|)} =0. (27)

By differentiating both sides of Eq. (21) with respectutp

(1= 1,2), we obtain a second useful result, It should be noted that Eqs. (26)-(27) are not obtained sim-
. ply by lettinge(w) — —oc in the corresponding equations in
Cu (%)) explic (g )¢ ()] Ref. 13.

We now apply Eqgs. (26)-(27) to a study of electromag-

Q) Q . netic surface waves on two-dimensional periodic and ran-
:/ 5 1(eo(@)IQ)) exp(iQy - xy).  (23) domly rough surfaces.

(2m)? Oé()(CIH)
When we introduce Egs. (21) and (23) into Egs. (19)
and (20), then, on multiplying the resulting equations by
exp(—iky - x), wherek is an arbitrary two-dimensional \ye assume here that the surface profile functitm)) is a
wave vector, and integrating on), we obtain as the equa- doubly periodic function ok,
tions for the amplitudesl,(q;) and A,(qy)

3. Abigrating

2 Clxy +x(0) = C(xy), (28)
/ﬁf(ao(qwlﬂku —qy) where

X|| (f) = {1a; + {sas. (29)

¢ qukka—(w? /) X
X {w aold)) Ap(q|)_q1As(q|)} =0 (24) In Eq. (29) a; and a, are the two noncollinear primi-
tive translation vectors of a two-dimensional Bravais lattice,
22 while ¢; and/; are any positive or negative integers or zero,
/ AI(QO(QH)“{H - qy) which we denote collectively by. The area of the primitive
(2m)? unit cell of the two-dimensional lattice defined by Eqg. (29) is
qrkyki—(w?/c2)g " ?/\I‘ea taléoa?\'éed the lattice reciprocal to the one defined by
e A2 1 .
X {_w ao(q)) Ap(ay) =245 ()  =0. Eq. (29), whose sites are given by

(25)

G (h) = hyby + hobs, (30)

.AlthOl.Jgh. one can use Egs. (24)-(25) to study electromag\-Nhere the primitive translation vectokg andb, satisfy the
netic excitations at the rough perfectly conducting surface, i

. . . . X Eonditions
is convenient to transform them into a pair of equations that

resemble the reduced Rayleigh equations arising in the study a;-bj =270
of electromagnetic excitations at a penetrable, e.g. finitely

conducting metal, surface [13]. To obtain this pair of equa-andh; andh, are any positive and negative integers and zero
tions we multiply Eq. (24) byks, EqQ. (25) by—k, and add  that we denote collectively byy.

(31)

179

the resulting equations. The result is For a surface of the type defined by Eg. (28) the function
) I(ao(q))|Q)) becomes
/dqlgf(ao(m)lh —q)) 2
(2m) I(eo(g))IQ)) = >_(2m)*(Q — G)
G
¢ kjay — (w/e)*(ky - @)
% {w 14l ~ [l Ap(ay) 1 , . ‘
0 q||) X CT d x| eXp(flGH 'X”)QXP['LOLO(qH)C(XH)]. (32)
+ (1A<H X (:1|)3As(q|)} =0. (26)  In obtaining this expression we have used the result
~ ~ —1 -X (27T)2
We next multiply Eq. (24) byk; and Eq. (25) by:,, and add Ze A = P Z Q) -Gy (33)
¢ ¢ Gy

the resulting equations. The result is
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We also introduce the expansions Eqg. (31), are
A, () =S (2m)%(q — k) — G)a”(G)), (34
p(a1) ;( oy —ky = Glag (G, (4) blz%(l,o), bQZ%T(O,l). (38)

wherek is the two-dimensional wave vector of the surface , . - .

. ) P The profile function describing a square array of hemiel-
electromagnetic wave, in order that the electric field in thel. ) . 7 .

. . ipsoids of radiusR (< a) and heightd R (Fig. 1) can be
vacuum region satisfy the Bloch-Floquet theorem. Whenwritten in the form
the results given by Egs. (32) and (34) are substituted into
Egs. (26)-(27) we obtain as the equation for the coefficients
{a( ’S)(G )} C(XH) = E S(X” 7X|| (6)), (39)
k| l

L

> T(ao(K)) Ky - K]) where
Gj

oo o
o KK —(w/o)’K K]

s(x)) = { H\/R27wﬁ x| <R (40)

% w ao(K|) (KH X KT|)3 0 |X”‘ > R.
w (K ><IA</'H)3 (KH K
¢ oty | Because of the circular cross section of these hemiellip-
®) soids, the dispersion relation satisfies the relation
% akl‘)‘ (Gi\) —0 (35)
gy ) S (k) = w(k 41
ko V| w(s (k) = w(ky) (41)
where

for each band, whers is a2 x 2 real orthogonal matrix
I(Oéo(Kﬁ)\KH _ Kﬂ) - 1 representative pf any of_the point group operations th_at _Ieave
Gc the square lattice invariant. In the present case this is the
point groupCy,. The property (41) has the consequence that
X /d%\l exp[—i(K) — K|) - x|] all of_ the i_ndepende.nt solutions of the dispers_ion rele}tion are
obtained if we restrict the wave vectky to theirreducible
elemenf the two-dimensional first Brillouin zone. This is
that region of the Brillouin zone that generates the entire zone
when transformed by the application of the operations of the

and, to simplify the notation, we have introduced the vectord0INt 9roupCy, to it.
The dispersion relation for surface electromagnetic waves on 3a
a perfectly conducting bigrating is then obtained by equat-
ing to zero the determinant of the matrix of coefficients in
Eq. (35).

The solutions of this equation are even functionskpf
ws(—k)) = ws(k)|), wheres labels the solutions (bands) for X2
a givenk| in the order of increasing magnitude. They are /' k
also periodic functions ok with a period that is the first
Brillouin zone of the bigratingy, (k; + G ) = ws(k||). The /w 2 Y
solutions can therefore be sought for valuek pfnside this e Wa
first Brillouin zone, and inside the nonradiative region de-

fined by[k| > (w/c). D,/ B/ B °
In the present work the surface profile functiofx ) is /o O/O/

represented by a square array of hemiellipsoids on an oth-

erwise planar surface of a perfect conductor. The primitive %/, >

translation vectors of the square lattice are given by a,;

Qc

X exp[iao(Kﬁ)C(X”)} (36)

HR

X]

a; =a(1,0), as=a(0,1). (37)  FiIGURE 1. A section of an infinitely extended bigrating whose
primitive translation vectors ara; anda,. The hemiellipsoids
The primitive translation vectors of the lattice reciprocal to forming it have radiusk and amplitudeH R. The wave vector

the square lattice defined by Egs. (29) and (37), defined byf the surface electromagnetic wave is denotedpy
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The function Z(v|Gy) for the profile function than the dispersion curve corresponding to the lattice of pro-
(39)-(40) can be evaluated analytically, with the result tuberances.

In Figs. 3a and 3b we present the dispersion curves calcu-

1 . . lated for the values of the parameters give = 0.375,
1(Gy) = ;c/dzx|‘ exp(—iGr - %)) explivC ()] H = 1,andR/a = 0.375p, H = —l,gresr;ﬂé)gtlively. The
ac value of N,,,.,, = 10 was used in calculating both figures.

For both the surface formed from protuberances and the sur-

_1 2r R? i (ivHR)" G =0 (42) face formed from indentations the dispersion curves bend

B a*> = (n+2)n! = away from the vacuum light line into the nonradiative region
more strongly than the dispersion curves presented in Fig. 2a
and 2b.

21R? N (iyHR)™ 25T(% + 1)
TTE X a guE @R

n=1

G £0. (43)

For the values of the parameters used in the numerical calcu:
lations based on the results obtained in this section, namely.

it was necessary to take into account only the first few terms __
(= 15) in these rapidly convergent series.

In order to solve the dispersion relation obtained from
Eq. (35) the infinite sum had to be truncated. This
was done by restricting the reciprocal lattice vectors
G“(h) = hib; + hsobs and Gh(h) = hllbl + hIng to
those that satisfied the conditiofi§ + h3]'/? < N,,., and
[R2 + W22 < Nyppao for some integelV,,q... The conver-
gence of a solution was tested by increasiyg, . systemat-
ically until it stopped changing.

The solution of the dispersion relation was based on the
search for real zeros of a real-valued determinant. For a fixed
k inside or on the boundary of the irreducible element of the
first Brillouin zone the intervad < w < ck) was sampled for
changes of the sign of the determinant. The frequencies al
which these occurred were labeled in the order of increasing
magnitude. This collection constitutes the different branches
of the dispersion curve.

In Fig. 2a we present dispersion curves along the symme-&
try directions in the first Brillouin zone,e. for wave vectors
k| on the boundary of the irreducible element of the Bril- e
louin zone. The values of the parameters assumed in ob-
taining these results werB/a = 0.375, H = 0.5, and
N = 6. The surface thus consists of a square lattice
of hemiellipsoidal protuberances on an otherwise planar sur-
face. For these values of the parameters defining the surfaci
the dispersion curve consists of only a single branch within
the nonradiative region af andk values, as in the case of
a square array of holes of square cross section and finite [2]
or infinite depth [2, 3] on a perfect conductor. All frequen-
cies above the maximum frequency of this branch constitut
a stop band. In Fig. 2b we present the dispersion curve

calculated forhthe ValuiR/a f: 0.375, .H :f -0, anld ._nonradiative region ofy andk values is plotted as a function of
Nmaz = 6. In this case the surface consists of a square attlcqz(” along the boundary of the irreducible element of the Brillouin

of hemiellipsoidal indentations (“dimples”). For this surface ;one (depicted in the insets). The dotted lines represent the vacuum
the dispersion curve also consists of a single branch withimignt line w = cky. The values of the parameters assumed in ob-

the nonradiative region. However, it bends away from thetaining these results are: (&)/a = 0.375, H = 0.5, Npaz = 6;
vacuum light line into the nonradiative region more weakly (b) R/a = 0.375, H = —0.5, N,jq0 = 6.

(ma)/(cm

=
©
3

&IGURE 2. Dispersion curve for surface electromagnetic waves on
square lattice of hemiellipsoids on the planar surface of a per-
ect conductor. The single branch of the dispersion curve in the
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(wa)/(cm)

(wa)/(cm)

FIGURE 3. The same as Fig. 2, but for the following
of the parameters: (az/a = 0.375, H = 1, Npaz =
(b) R/a =0.375, H = —1, Nymaz = 10.

We also need the Fourier integral representatiof(®f ),

2
C(xy) _/mf(QﬁeXP(iQ X)) (45)

The Fourier coefficienf(QH) is also a zero-mean Gaussian
random process that is defined by

(€QS(Q)) = 2m)*5(Q + Q))5°g(IQ])-  (46)

In this resultg(|Qy|) is the power spectrum of the surface
roughness, and is given by

2(1Q) = / Py W (%)) exp(—iQ - x). (47

To obtain the dispersion relation for surface electromag-
netic waves on a randomly rough perfectly conducting sur-
face we will use the small roughness approximation. This
consists of expanding the functiof(ao(q))|k) — q)) in
Egs. (26)-(27) in powers of the surface profile function and
retaining only the first two terms:

Iao(q))ky — qp) = (2m)*6(k — qp)

+ian(g))¢(ky — a) + O(¢?). (48)

Equations (26)-(27) can then be rewritten in the form

(avﬁzpas)
2
aa(ky)Aa(k)) _Z/é#‘/&ﬁ(kH%)Aﬁ(m)a (49)
5

where

ap(k)) = *gao(ku% as(k)) =1, (50)

values and

10;

Vag(kylay) = —iC (k) — aj)ao(ay)Uas(kylay),  (51)

The results presented in Figs. 2 and 3 also illustrate thadith

the dispersion curves of the surface electromagnetic waves on
a doubly periodic surface of a perfect conductor can be varied
by changing the parameters characterizing its roughness.

4. A randomly rough surface

Let us now assume that the surface profile functis ), in
addition to being a single-valued functionof, and differ-
entiable with respect te; andx,, constitutes a stationary,
zero-mean, isotropic, Gaussian random process, defined by

(COxC(x))) = W (| — x| ])- (44)

e kg — (w/o)* (k- )

Upp(Kjlay) = — o (a) (52)
Ups (kylay) = (ky x )3 (53)
Usp(kylay) = iw (54)
Uss (ki) = (k- ). (55)

The surface profile functiog(x) entering Eq. (49) is

a random process. Consequently, the solutidpfc) and
In this equation the angle brackets denote an average over thk (k) of this equation are random functions. Just &s) )

ensemble of realizations of the surface profile function, whileis defined by the moments of its probability density function,

§ = (C3(x)))'/? is the rms height of the surface.

so can these solutions be defined by the moments of their
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probability density functions. Of these, a particularly impor- reduces Eq. (60) to
tant one is the first moment4,, (k) )), which describes the
ropagation of the mean wave across the randomly rough su qH
B opad Y TOUGR SUEL, (k) (Aa (k) ZZ/ 50%g(k) — ayl)~
To obtain the equations satisfied by, (k)) and

(As(ky)), we apply the SnjOOFh.Ing operatét, which aver- Uag (g lay)ao(q))Us, (a [k ao (k) ) (A, (k). (62)

ages every function to which it is applied over the ensemble

of realizations of the surface profile function, and its comple-However, the integral over the azimuthal angle of the vector

mentary operato) = 1 — P, in turn to Eq. (49), with the g vanishes unless the summation indegqualsa. This is

results a consequence of our assumption th@at ) is an isotropic
random process. Thus, we obtain the pair of uncoupled equa-

( )

d?q) tions as the dispersion relations of surface waves of p or s
ao (k) PAs(k)) = Z/vaaﬂ(qu”) polarization:
B
a (k) q" g(Jk — ay)
x [PAg(qy) + QAs(q)]  (56) (k) I = q
a@as(a) =3 [T Qv (ayin) aokyoo(a)
R _Z/ 2 @Vl x Sy g ) U (ay ). (63)
! ag(qy)
x [PA,(r)) + QA (r))]. (57) We now focus our attention on the p-polarized surface

electromagnetic waves. With the aid of Eqs. (50) and

When we use the results that/ s (k| ) = 0, sincec (x) (52)-(55) we find that their dispersion relation is

is a zero-mean random process, and xdt, (r))) is of order (k) = —62/ 2q; g(k; — i)

¢, Egs. (56)-(57) simplify to Gr aolgy 141~ (w/e)? (ky - a))?

aq (k) P Aa (k) + (w/e)?[(ky > @y)sl*ad(q))}- (64)

Z (k) QAs(q)) (58) In the numerical calculations that follow we will assume
Vas Ky lay)Q4s(qy that the surface height autocorrelation functidf(|x;|) has
the Gaussian form

ag(q))QAs(qy) W (|x)|) = exp(—z}/a®), (65)

dzrl\ so that the power spectrum of the surface roughness also has
B Z / Wvﬁﬂ/(qu [r) P A (xy)- (39)  a Gaussian form,
5

. , _ 9(ky —aqyl) = ma® exp[—(a®/4) (k) — q))?]
On combining Egs. (58) and (59) we obtain as the equation

satisfied by the mean amplitudd., (k) )) = na® exp|—(a®/4) (K} + ¢3)]
d’ a d 7’u
ao (k) (Aa(ky)) ZZ/ [Io( a’kq)) +2ZI 1a “kyqy)

o Was(kylay) Ve, (qr)))
as(q))

(Ay(r)))- (60) x cosn(pg — ¢q)] , (66)

The result that wherel,, (z) is the modified Bessel function of order and

) ) ¢ and¢, are the azimuthal angles of the vectifsandq,
(Vas(kylay)Vay (qylr))) = —(2m)°0(k) — )6 g(lk) —ayl) respectively. When Eq. (66) is substituted into Eq. (64), and
the angular integrations are carried out, the latter equation
x ap(q))ao(p)Uas(kyjla))Usy (aq) k) (61)  becomes
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w/c

oo (ky) = —7(52a exp(—a’kj /4) / W oo = 12 u,/C 212 /cdq” la? — w/c )21/
) s 1, 1,5 1,
x exp(—a qH/4) {AIO <2a l<:|q”) + BI; <2a kJ|Q|) + CIy <2a k|<1|>} ) (67)
where
A= Kt — S(w/era + (/o) ©9
B = —2kq(w/c)? (©9)
C=- (W/C) q\l' (70)

To solve this dispersion relation we make thesatz

’ — 54A2(k“,w). (71)

z=
It then follows from Egs. (9) and (71) that
ap(ky) = 10> Ak, w) 72)
where
Alkyw) = 22 exp(=a’kj/4) { /dtJHL212
laff = (w/e)?]V

w/e

w/e
q 1 1 1
+1 / dq|w/c|]1/2}exp(—a2q2|/4) X |:AIO (2a2k|q|) + BIl <2a2k|q|) + CIQ <2a2k|q|>} . (73)

Since the deviation ofiw/c) from k is of O(6*), we can replacéw/c) in the integrals in Eq. (67) by, with the result that

A(k”,w) = A(k‘H,Ck‘H) = Al(k”) + iAQ(kH), (74)
where
(12 7
Ay (k) = — exp(—a kH/4 /dq” 1/2 exp(—a q”/4)
ky
k + k| I, L2 —2k3q I —k +1k“1 Loy, (75)
fai + k| o @I [\ @I |+ 5Rdz |\ 5% i
9 k)
Ag(ky) exp(—a kH/4)/dq” G ‘ 172 exp(—a“qj/4)
I
0
1 2 2 4 1 2 3 1 2 1 2 2 1 2
<3 |2k k| Lo | gatkian | — 2k Lo gatkiay ) + Skjgita { gk ) - (76)
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From Eg. (8) we see that the imaginary parbgfg) must 8

be positive for the wave to be bound to the surface. From (a)

Egs. (72) and (74) we obtain 6 | ]
ao(ky) = 8* [~ Do (ky) + il (ky)], (77)

from which it follows thatA, (k) must be positive.
With the definitions

log(d,(x))

x = ka, y = q)a, (78)

we obtain from Egs. (75)—(76)

5

Arp(k)) = %gdu(x), (79)

whered; (z) andds(x) are universal functions given by

dyi(x) = exp(—2?/4) / df cosh 6 exp[— (% /4) cosh? 6]
0

1 1
X [(2 cosh? 0 + 1) Iy (2952 cosh 9)

1
— 2cosh 01, (2932 cosh 9)

log(d,(x))

1 2 1 2
- - 4 \
+ 5 cosh” 61, (21‘ cosh 91 (80) 0 5 4 6 8 10
X
_ N 3 FIGURE 4. (a) The functiond; (z) defined by Eq. (80) of the text;
=5 |35, 1O z—0 B1)  (b) the functionds () defined by Eq. (82) of the text.

do(x) = exp(—2?/4) / df sin 6 exp[—(x? /4) sin? 6]
0 face in the form

1 1 54 64
X (1 + 3 sin? 0) Iy <2x2 sin 0) w(ky) = ck[1 - Pt (z) — ZEL‘Q(%)]’
where
—2sin 6l <1x2 sin 9) 8
2 wi(z) = 7 [di(z) — di(x))
+ %sin2 0 (;xQ sin 9)] (82) = g[xg - g$4 + O(xﬁ)] r—0
1‘8
_ 4 ng +O@Y 0. 83) wa(z) = Zdl(x)dz(x)
3 10

The further changes of variablgs=x cosh § and y=z sin 6 _ ﬁx")[l _ 5T O] -0
were made in obtaining Egs. (80) and (82), respectively. 3 40 '
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On combining Egs. (71), (74), and (79) we can write
the dispersion relation for surface electromagnetic waves on a
two-dimensional, randomly rough, perfectly conducting sur-

(84)

(85)

(86)

(87)

(88)
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At the same time, from Egs. (77) and (79) we find that the From Eqgs. (84) and (88) we see that in the long wave-
functionao (k) is given by length limit the attenuation rate of the surface electromag-
netic wave due to its roughness-induced conversion into vol-

52 ume electromagnetic waves in the vacuum is proportional to

5 .
colky) = 557" [~ (@) +id ()] (89) (kja)S. The explanation for this dependence is that the fre-
quency dependence of Rayleigh scatteringl idimensions
_ 52 [_4965 " iﬁxg] -0 (90) is wit!l. The protuberances and indentations of the surface
2a3" 3 ' responsible for the scattering of the wave in the present case

. . ) . are three dimensional, since they are defined by the equa-
We recall that as long as the imaginary partgtk ) is posi- tion 23 = ((z1,72). Thus the Rayleigh scattering law in

tive the surface electromagnetic wave is bound to the surfac%e present case gives usahfrequency dependence of the
We see from Eq. (90) that in the _Iong wavelength_l|m|t thescattering rate in the low frequency, long-wavelength limit.
decay length of the surface wave into the vacuum is Proporrya remaining factor of,? arises because the amplitude of

tional to the square of its wavelength parallel to the surfacey,q g ,rface wave decays exponentially with distance into the
'I_'h(_a wave Is therefore weakly bound to the surface in thI%/acuum region, reducing the volume within which its inter-
limit, bqt itis bound nevertheless. . action with the surface roughness occurs thereby. It just has
In Fig. 4 we have plotted, () andd(z) as functions of 5 e remembered that the decay length of the wave in the
a, while the functionsy; (x) andw; (x) are plotted in Fig. 5. yacyum region is proportional to the square of its wavelength

We see from Fig. 4a that, (x) is a positive function ofe,  y4rajiel to the surface [ley (k) is proportional to(k;a)? in
so that the surface wave whose dispersion relation is givefhis case: see Eq. (90)].

by Eq. (84) is indeed bound to the surfgce. This wave also  \we conclude this section by pointing out that in or-
displays the phenomenon of wave slowifag () > 0) for gy (o obtain a dispersion relation that is correctios?)

smallz. it suffices to expand the functiofi(ao(gy)/k; — q) in
1.0 , ‘ ; Egs. (26)-(27) only to first order in the surface profile func-
(a) tion, as was done in Eq. (48). The term @f¢?) in this
expansion, which at first glance might be expected to con-
05 | ] tribute to the dispersion relation @ (52), in fact contributes

to the dispersion relation in a higher orderdh Indeed, if
the term of the second order §ix) is retained in the ex-
= | pansion ofl (ao(q)) k) |q)) in EQ. (48), the end result is that
g the left hand side of Eq. (63) becomes

05 | . [1 — ;5204(2)(160] aa(k”).

The presence of the term

-1.0 ‘ : : 1
0 2 4 6 8 10 —552043(1?“)

in this expression leads to a correction to the equation (63)
for ao(k)) of O(6*), which we have neglected.

5. Conclusions

In this paper we have studied theoretically the existence of
surface electromagnetic waves on the two-dimensional rough
surface of a perfect conductor. We have shown that surface
waves do exist on such a surface. Since surface electromag-
netic waves do not exist on a flat perfectly conducting surface,
the binding of these waves to a perfectly conducting surface
is due entirely to its structuring. We have derived the disper-
sion relations for surface waves on a doubly periodically cor-
rugated surface with a rather general form of its surface pro-
0 2 4 6 8 10 file function, and have illustrated this result by calculating the
x dispersion curve of these waves in the case where the surface
FIGURE 5. (a) The functionu; (x) defined by Eq. (85) of the text;  is represented as a square array of hemiellipsoids. However,
(b) the functionws (x) defined by Eq. (87) of the text. we have also shown that the structuring of the surface need
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not be doubly periodic for it to bind a surface electromagnetidhe spatial profile of the wave may differ substantially from
wave: a randomly rough surface is sufficient. In the case of éhe one corresponding to a planar ideal surface. A small-
doubly periodic surface we have shown that it is possible tamplitude bigrating or random surface roughness can give
modify the dispersion curves of the surface waves by varyrise to a wave more tightly bound to the surface than pre-
ing the lattice parameter of the surface structure and the sizdicted by dielectric theory applied to a perfectly flat surface.
and shape of the units forming that structure. In the case of a Finally, since they give rise to an optical effect, namely
two-dimensional randomly rough surface, in the small rough+the binding of a surface electromagnetic wave, that is not pos-
ness approximation, the surface wave dispersion curve can Bible on a flat perfectly conducting surface, doubly periodic
modified only by varying the ratiof¥/a), since the functions or randomly rough perfectly conducting surfaces can indeed
w1 (z) andws (x) are universal functions af. be regarded as optical metamaterials.

The results we have obtained in this work support the con-
clusion reached in Ref. 6 on the basis of calculations carried
out for one-dimensional periodic or randomly rough surfacesAcknowledgement
that the analysis of experimental data on surface plasmon
polariton propagation on metal surfaces in the far infraredl he research of TA.L. and A.A.M. was supported in part by
frequency range must take into account the possibility thaf\rmy Research Office grant W911NF-06-1-0385.
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