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Plasmonic modes in a dispersive left handed material optical fiber
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We determine the presence of plasmonic surface modes under TE polarization in an optical fiber made of a dispersive left handed material.
These modes keep clearly localized at a constant frequency within the numerical error, despite strong geometrical changes in the physical
system. To prove this fact we analyze systems having random roughness on their surfaces and consider other geometry variations. The
electromagnetic field distribution is determined in the region where plasmonic and non plasmonic modes exist.
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Determinamos la presencia de modos de superficie plasmónicos para polarización TE en una fibráoptica hecha de un metamaterial izquierdo.
Estos modos se mantienen claramente localizados a una frecuencia constante dentro del error numérico de la simulación a pesar de que el
sistema f́ısico se somete a grandes cambios en su geometrı́a. Para probar este hecho, analizamos sistemas que poseen rugosidad aleatoria en
sus superficies y consideramos otras variaciones en la geometrı́a. Determinamos en la región in la regíon del espectro donde existen modos
plasḿonicos y no plasḿonicos.

Descriptores:Fibraóptica; modos de superficie; metamateriales.

PACS: 41.20.5b; 42.81.-I; 42.82.Et

1. Introduction

Structured materials that have recently attracted much in-
terest are the left handed materials (LHM) which owe their
name to the fact that the light vectors~E, ~H and~k form a
left handed triad for a wave propagating through these me-
dia. LHM are periodic arrays of metallic entities in vacuum
with a unit cell of dimensions much smaller than the wave-
length [1]. Although fundamental experiments with LHM
have been developed for the microwave region of the electro-
magnetic spectrum, there exist recent results indicating that
LHM are now available at visible and infrared regions [2-3].

Since these materials have a negative refractive index
within a given range of the electromagnetic spectrum, some
of the well known optical phenomena present variations that
make them potentially useful for new technological applica-
tions like for example negative refraction. As a consequence
the scientific community has started to study a variety of op-
tical systems that include LHM as regular components.

The case of optical fibers is not the exception and some
studies have been proposed to analyze the scattering proper-
ties of infinitely long cylinders made of left handed materi-
als [4-5].

In this work, we analyze the existence of plasmonic sur-
face modes that appear at the surface of an optical fiber made
of LHM by using an integral method to solve the Helmholtz
equation. Most of the numerical methods used to simulate the
propagation of light in optical systems consider only smooth
surfaces. However, real devices involve surfaces that present
some roughness. Such roughness is random in nature and
in certain situations this roughness can be neglected but in
others do not. It is well known that the random roughness
present in real systems can produce interesting phenomena
like the enhanced backscattering [6-7]. So, we will consider
that the surface of the optical fiber has some roughness or
some other geometry variations.

2. Theory

Assuming a sinusoidal time dependencee−iω t for the elec-
tromagnetic fields, the wave equation can be transformed to
the Helmholtz equation

∇2Ψj (~r) + k2
j Ψj (~r) = 0. (1)

In this equationΨj (~r) represents the electric fieldEz in
the case ofTE-polarization in thejth medium (Fig. 1). The
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magnitude of the wave vector is given by

kj = nj(ω)
ω

c
, (2)

where the refractive indexnj(ω) = ±√
µj(ω)εj(ω) that in-

volves the material’s properties is given in terms of the mag-
netic permeabilityµj(ω) and the electric permitivity is given
by εj(ω) both of these functions depending on the frequency
ω. The speed of light is indicated byc. The sign appear-
ing in the refractive index equation must be taken negative
when considering a LHM and positive when the medium is a
dielectric material.

The optical properties of LHM are given by the dielectric
function

ε (ω) = 1−
(ωp

ω

)2

, (3)

and the magnetic permeability function

µ (ω) = 1− F

1− (ω0/ω)2
. (4)

In these expressionsωp=10c/D, ω0=4c/D, F=0.56. D
is a normalization constant that we choose to be the dimen-
sion of the side of the perfect conductor square (Fig. 1).
We will be using also a normalized frequency given by
ω̄=ωD/2πc.

For a flat surface LHM-vacuum, there exist a plasmonic
surface mode whenk|| → ∞ (the parallel component of the
wave vector goes to infinity) whenµ(ωpsw) = −1, being
ω̄psw = ω̄0

√
2/(2− F ) = 0.752 [4].

Let us consider an optical fiber composed of a LHM
in vacuum and enclosed within a perfect conductor cavity as

FIGURE 1. Transverse section of an optical fiber enclosed in a
square cylinder cavity of a perfect conductor.

shown in Fig. 1. TheΓ2 profile is a square, while theΓ1

corresponds to the profile of the transverse section of the op-
tical fiber. The reason to use a perfect conductor is to keep a
simple model of the optical fiber.

By applying the two-dimensional Green’s second integral
theorem toΨj(~r ′) for each region corresponding to thej-th
medium, we have [6-7]

∮

Cj

[
Gj (~r, ~r ′)

∂Ψj (~r′)
∂n′j

−∂Gj (~r, ~r ′)
∂n′j

Ψj (~r ′)

]
ds′=0, (5)

whereGj(~r, ~r ′) is a usual Green function [6,7]. The sources
Ψj(~r, ~r ′) and∂Ψj (~r ′) /∂n′j involved in Eq. (5) can be de-
termined numerically by transforming it to an homogeneous
system of equationsM (ω)F (ω) = 0, where the function
F (ω) is a column matrix that contains the sources. For our
system, the matrixM (ω) can be expressed as

M (ω) =



−L

(1)
mn (11) N

(1)
mn (12) −L

(1)
mn (12)

−L
(1)
mn (21) N

(1)
mn (22) −L

( 1)
mn (22)

0 N
(2)
mn (22) − δmn (22) −µL

(2)
mn (22)


 . (6)

The matrix elements are given by

L
(p)
mn (i j) =

i∆s

4
H

(1)
0

(
kpdmn(i j)

) (
1− δmn(i j)

)
+

i∆s

4
H

(1)
0

(
kp

∆s

2e

)
δmn(i j), (7)

N
(p)
mn (i j) =

i∆s

4
kpH

(1)
1

(
kpdmn(i j)

) Dmn

dmn (i j)

(
1− δmn (i j)

)
+

(
1
2

+
∆s

4π
D′

n (i j)

)
δmn(i j), (8)
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with

dmn( i j) =
√(

Xm ( i) −Xn (j)

)2 +
(
Ym ( i) − Yn (j)

)2
, (9)

Dmn (i j) = −Y ′
n (j)

(
Xm ( i) −Xn (j)

)
+ X ′

n (j)

(
Ym ( i) − Yn (j)

)
, (10)

D′
n (i j) = X ′

n (i)Y
′′
n (j) −X ′′

n ( i)Y
′
n ( j). (11)

In the previous expressions,H(1)
i (z) is the Hankel’s

function of first class and orderi.The symbolδmn ( i j) stands
for a Kronecker’s delta, withmn (ij) meaning themth point
along theΓi and thenth contourΓj , with i, j = 1, 2. The∆s
parameter is the arc length between two consecutive points(
Xn (i), Yn (i)

)
. Finally, kp = npω/c, with p = 1, 2, corre-

sponding to vacuum or the LHM, respectively.
To determine the frequencyωj , we define the real func-

tion
Dt (ω) = ln ( |Det (M) | ) , (12)

whose relative minima can be identified as the frequency of
the modes.

Given the mode frequencyωj we can use the well known
numerical method of single value decomposition [8] to ob-
tain the non trivial solutions forF (ωj) and the corresponding
field.

3. Generating a random rough profile corre-
sponding to a transverse section of a closed
surface

We modeled the surface of an optical fiber by means of a nu-
merically generated random roughness [9-10].

If the radial functionr=r (θ), with 0≤θ<2π, represents
the required profile, let us consider the case where the av-
erage profile is a circumference of radiusR, mathematically
〈r (θ)〉 = R.

We define a function

δ r(θ) = r(θ)−R, (13)

whereδ r (θ) represents the variation of a radial profile with
reference to a circle of radiusR. The random surface can be
modeled by considering a Gaussian distribution given by

f (δ r) =
(
1/
√

2πσ
)

exp

(
− (δ r)2

2σ2

)
, (14)

whereσ represents the standard deviation of radius due to the
surface.

Defining the angular correlation function by

B (θ, θ′) = exp

(
− (θ − θ′)2

Θ2

)
, (15)

whereΘ stands for the “angular correlation length”, and rep-
resents the angular scale of the random roughness. Assuming

FIGURE 2. Scheme of the nucleus of a fiber when the surface is a
realization of an ensamble with random roughness.

that the variationδ r can be determined by using the linear
relation

δ r (θk) = σ

∞∑

j=−∞
AjXj+k, (16)

whereAj are the coefficients to be determined, andXj con-
stitutes a set ofN independent Gaussian variables with zero
media and standard radial deviation equal to one. We can
show that

Aj =
(

2∆θ

Θ
√

π

)1/2

exp

(
−2 (∆θ)2 j2

Θ2

)
. (17)

With these tools we are able to numerically simulate pro-
files with a given random roughness. A typical example is
shown in Fig. 2.

4. Numerical results

Let us consider an optical fiber enclosed in a square cylinder
cavity, as mentioned before, whose transverse section has the
filling fraction 0.5 (Fig.1). If we determine the modes by the
method described in section 2, the plasmonic modes (extreme
of the curves) [11-12] become evident when simulating with
smooth surfaces (Fig. 3, left side) or adding roughness to the
surface of the fiber (Fig. 3, right side). The parameters used
to model the roughness wereσ = R/25, beingR = 0.282,
Θ = 10◦ andD = 1 (arbitrary units). It is worth mentioning
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that the peak corresponding to the extreme minima in both
graphics of Figs. 3a and 3b are located at the frequencies
0.7522 and 0.7515 which are neighbor points in a partition
of the intervalω̄ ∈ [0.65, 0.95] constituted of 400 points.
These results are within the acceptable numerical error espe-
cially considering that modeling smooth and rough surfaces
implies different number of points per partition along the in-
tegration paths that limit the transverse section of the optical
fiber.

A simple way to analyze the plasmonic modes is to de-
termine the electric field intensity distribution and compare
it with other modes. For example the intensity field distri-
bution at the frequencȳω = 0.834 is shown in Fig. 4 and
that corresponding to the plasmonic surface mode localized
at ω̄ = 0.752 is shown in Fig. 5. It is worth noticing the
contrast between the two field distributions. In particular the
distribution corresponding to the plasmonic modes is highly
localized in the vicinity of the interface vacuum-LHM while
the field of the other mode spreads out appreciably far from
this interface.

FIGURE 3. FunctionDt ( ω) for an optical fiber. Nucleus with a
smooth surface (left), nucleus with a rough surface (right).

FIGURE 4. Electric field distribution for an optical fiber enclosed
in a square cylinder cavity at the frequencyω̄ = 0.834.

FIGURE 5. Electric field distribution for an optical fiber enclosed
in a square cylinder cavity at the frequencyω̄ = 0.75.

FIGURE 6. Electric field distribution for an optical fiber enclosed
in a cylinder cavity at the frequencȳω = 0.81541.

FIGURE 7. Electric field distribution for an optical fiber enclosed
in a cylinder cavity at the frequencȳω = 0.752.
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The stability of the position of the plasmonic surface
mode in the frequency space when varying the geometry can
be shown more clearly by observing the intensity field dis-
tributions in Figs. 6 and 7. These fields correspond to the
frequencies̄ω = 0.81541 and ω̄ = 0.752 respectively, and
were calculated by considering a cylindrical cavity of perfect
conductor. It is worth observing that despite of these drastic
geometry changes the plasmonic mode continues to be ac-
cordingly localized at the LHM-vacuum interface.

5. Conclusions

We have shown the presence of plasmonic surface modes at
the surface of an optical fiber of LHM. The plasmonic modes

keep perfectly localized at a constant frequency under dras-
tic geometry changes. This fact was verified by analyzing
optical fibers having smooth and random rough surfaces.
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