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Technological advances in hardware as well as new computational paradigms give us the opportunity to apply digital techniques to Pulse
Shape Analysis (PSA), requiring powerful resources. In this paper, we present a PSA application based on Artificial Neural Networks
(ANNs). These adaptive systems offer several advantages for these tasks; nevertheless it is necessary to face the particular problems linked to
them as: the selection of the learning rule and the ANN architecture, the sizes of the training and validation data sets, overtraining, the effect
of noise on the pattern identification ability, etc. We will present evidences of the effect on the performance of a back-propagation ANN as a
pattern identifier of both: the size of the noise that the Bragg curve spectrometer signal present and of overtraining. In fact, these two effects
are related.
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Los avances tecnológicos del hardware lo mismo que los nuevos paradigmas computacionales brindan la oportunidad de aplicar técnicas
digitales al Análisis de Forma de Pulsos (PSA), lo cual requiere de recursos poderosos. En este trabajo, se presenta una aplicación de PSA
basada en Redes Neuronales Artificiales (ANNs). Estos sistemas adaptivos ofrecen varias ventajas para estas tareas; sin embrago es necesario
enfrentar los problemas particulares asociados a ellos como: la selección de la ley de aprendizaje y de la arquitectura de la ANN, los tamaños
de los conjuntos de datos de entrenamiento y de validación, el sobreentrenamiento, el efecto del ruido sobre la habilidad para identificar
patrones, etc. Se presentarán evidencias del efecto sobre el rendimiento de una ANN de retro-propagación como reconocedor de patrones
del: tamaño del ruido que la señal de un espectrómetro de curva de Braga presenta ası́ como del sobreentrenamiento. De hecho, estos dos
efectos están relacionados.

Descriptores: Redes neuronales; espectroscopia de curva de Braga; análisis digital de forma de pulsos; identificación de patrones.
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1. Introduction

Digital pulse shape analysis, DPSA, is becoming a quite help-
ful technique in demanding situations where complex inter-
esting signals need to be analyzed. Fortunately, due to rela-
tively recent hardware and software developments, see a sum-
mary in [1], DPSA techniques are being developed [1-11].
Bragg curve spectroscopy, BCS, [12-15], is one field where
DPSA may be applied [1,2,9-11]. BCS is used as a particle
identification technique, and, traditionally, it is based on the
measurement of two parameters, the total energy of an ion or
particle, ETot, and its Bragg peak amplitude, BP, maximum
of the specific stopping power curve of the ion when travers-
ing a gas medium (S(E) = dE = dx ≡ Bragg curve). These
two signals are obtained by feeding the output from the anode
of a Bragg curve spectrometer to two amplification electronic
branches, one with a large integration time, ETot signal, and
the other with a short one, BP signal [12-15].

In [1], we presented a novel way to extract relevant pa-
rameters associated with the outgoing ions from nuclear re-
actions. It was based on digitizing the signals provided by
a Bragg curve spectrometer, allowing the implementation of
more thorough DPSA. Due to the complexity of this task, it
was required to take advantage of new and more powerful

computational paradigms. This was fulfilled using a back-
propagation ANN as a pattern identifier of synthetic BCs. We
used the common technique of early stopping [16] in order to
take care of overtraining, which is a known problem during
the training stage of an ANN [16-30]. The patterns analyzed
in Ref. 1 were synthetic noisy BCs. A synthetic noise compo-
nent was added to simulate any possible source of noise that
normally goes with the experimental signal of interest. As
it was expected, overtraining, i.e., overfitting the data by the
ANN during training, was observed. In [2], we determined
the effect of the size of the noise component on the appear-
ance of overfitting during the training stage. Here, we present
a continuation of the search for the effect of overfitting with
noise components sizes equal to 1%, 5%, and 9%, and com-
pare the results to the 3 cases studied in [2] corresponding to
2%, 6% and 10%.

2. DPSA and Bragg curve spectroscopy

The new powerful DPSA approach pursued in this paper is
described in Ref. 1. It is essentially based on analyzing syn-
thetic BCs and saving them as 81-tuples of bins, discrete val-
ues or parameters {S(i)}i=1;81. In Figs. 1a-c, it is shown ex-
amples of the used ideal BCs (solid line) together with a sim-
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ulated synthetic experimental BC (dots) that includes a fast
changing component taking into account any possible origin
of experimental noise of sizes equal to 1%, 5% and 9% (size
of the standard deviation).

FIGURE 1. Plots of an ideal synthetic BC (solid line) together with
a simulated synthetic experimental BC (dots) which includes a fast
changing component that takes into account any possible origin of
experimental noise equal to: a) 1%, b) 5%, and c) 9%. The training
and validation data sets were built using BCs of a length consisting
of at least 41 bins.

3. Artificial neural networks

A way to measure how well an ANN is learning its task is by
observing, as a function of the number of training epochs, the
reduction in the training and validation sum of squares error
functions calculated over the entire training and validation
data sets, DT and DV , respectively, i.e.:

ET (ρ) =
1
K

|~yt−f [~xp;~w(ρ)]|2∑

p∈DT

or

EV (ρ) =
1
K

|~yt−f [~xp;~w(ρ)]|2∑

p∈DV

(1)

where ~w(ρ) represents the link array after training the ANN
for ρ epochs, K represents the number of patterns in DT or
DV and f [~xp; ~w(ρ)] is the ANN output for pattern p after
ρ training epochs. In an error-correction learning algorithm,
the goal of the learning process is to adjust the free parame-
ters, the link array ~w spanning the link space, so as to mini-
mize the training sum of squares error function, ET (ρ), con-
sidered it as a cost functional over the number of training
epochs ρ. The initial values of the link array components are
chosen according to a uniform random distribution over the
interval [-0.5, 0.5]. In order that the ANN keeps its gener-
alization capability (the ability to identify patterns from the
validation data set rather than the training data set), during the
training stage, overtraining has to be prevented, this means,
one should impose an early stopping of the training process,
this is, ones EV (ρ) reaches a minimum value, say at ρmin,
even though ET (ρ) keeps on decreasing. In [1], it was shown
that this is not exactly correct, in some cases it is required to
keep on training the ANN a little bit more over ρmin.

For the problem of BCs identification using a feed-
forward ANN, we chose the error back-propagation learning
law including a momentum term [31], since it has proved to
be efficient for pattern identification tasks [1,2,8,32-34].

4. Pattern representation and ANN architec-
ture

Rather than building the data sets using synthetic BCs span-
ning the whole range of 81 bins corresponding to the different
possible discrete values of ETot, we used BCs correspond-
ing to the 41 largest total energies only, the shaded region in
Figs. 1a-c. In this way, one warrants that all the analyzed
BCs achieve their BP, which, for all our ideal synthetic BCs,
corresponds to the 17th bin, considerably simplifying, in this
way, the ANN task. The training and validation sets are de-
fined as:

DT ≡ {[{Sp(i; Et
Tot(n), BP t)]i=1,81}p=1,K

and

DV ≡ {[{Sp(i; Et
Tot(n), BP t)]i=1,81}p=1,K , (2)
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where, for a given p, [{Sp(i; Et
Tot(n), BP t)]

i=1,81 models
an experimental synthetic noisy BC corresponding to a to-
tal ideal energy target value equal to and to an ideal Bragg
peak target value equal to BP t, where: 41 ≤ n ≤ 81 and
Sp(i;Et

Tot(n), BP t) = 0 if n < i. K is the number of pat-
terns in each one of the data sets, and it is equal to 45,100,
corresponding to 100 BCs for each one of the 451=11x41
different classes of BCs, 11 different BP t values times the
41 different Et

Tot(n) discrete values. The experimental noisy
BCs were defined as:

Sp(i;Et
Tot(n), BP t) =Sp

0 (i;Et
Tot(n), BP t) (3)

+Sp
G(i; Et

Tot(n), BP t)

whereSp
0 (i; Et

Tot(n), BP t) represents a smooth ideal BC
(solid lines in Figs. 1a-c), and Sp

G(i; Et
Tot(n), BP t) a

fast noise component that follows a Gaussian distribution
with a mean value equal to 0 (dashed lines in Figs. 1a-c)
and an energy dependent standard deviation equal to e ×
Sp

0 (i;Et
Tot(n), BP t), where e is equal to 0.01, 0.05 and 0.09

corresponding to error sizes of 1%, 5% and 9%. The architec-
ture of the employed ANN is a fully connected feed-forward
network with: an input layer of 81 neurons, 5 hidden layers
of 9 neurons each, and an output layer of 2 neurons. For all
neurons, a sigmoid nonlinear activation function was defined
in terms of a logistic function, i.e.:

g(~x) =
1

1 + exp[−(~w · ~x− θ)]
, (4)

where ~x is the neuron input array with information coming
from all neurons from the previous layer which is pondered

TABLE I. ANN training and validation data set parameters.

PARAMETER VALUE

Learning law Back-propagation with

momentum term

ANN size Input layer: 81 units

5 hidden layers: 9 units each

Output layer: 2 units

Fully connected

αg =learning rate 0.3 and 5.0

µ =momentum term 0.15

w initialization range [-0.5,0.5]

Order of pattern presentation Shuffle

Activation function Sigmoid

Neurons update order Serial order

DT and DV data sets 100 samples of each one

of the 451 classes:

(11 BP values) × (41 ETot values)

CPU time (SUSE LINUX) 30 days of execution time for a

Intel Pentium 4, 1.7 GHz training of 1,000,000 epochs

by the weight array, ~w, associated with the links that carry
each one of the inputs, and θ is the bias value of the neuron.
In Table I, it is presented a summary of all the parameters of
the ANN and of the training and validation data sets.

5. Results

Since our main concern is to find out how the signal noise
present in the Bragg curves systematically limits the learning
capability of our ANN, we trained 3 ANNs corresponding
to 3 different values of the signal to noise ratio (S/N): 1%,
5% and 9%, and compare them to the 3 cases analyzed in
Ref. 2, 2%, 6% and 10%. From a previous work, [1], we
know that due to the link array random initialization when
using a uniform random distribution over the interval [-0.5,
0.5], the subsequent ANN learning evolution, as monitored
by the shapes of the error curves ET (ρ) and EV (ρ), may be
drastically perturbed, but, eventually, EV (ρ) will reach its
minimum value. According to this, from our noise analysis,
we would expect to observe that, the minimum EV (ρmin) as
function of the S/N value showed a general increasing trend,
which might be modulated by the ANN link array random

FIGURE 2. ET (ρ) and EV (ρ) error curves corresponding to S/N
equal to 1%, 2%, 5%, 6%, 9% and 10% over the range from 0 to
2,000,000 epochs.
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FIGURE 3. BP vs. ETot validation scatter plots corresponding to 2,000,000 training epochs for noise sizes equal to a) 1%, b) 2%, c) 5%,
d) 6%, e) 9% and f) 10%. Figs. 3c, 3d, and 3f, look reasonable. In fig. 3a, it can be seen that the ANN has been able to reach a good
classification of all the groups (one could say a perfect classification), but it has not learnt all the groups with the same accuracy. In figure 3b,
it can be seen that the ANN has been able to learn all the groups reasonably well but, definitively, there are patterns with a bad identification.
And, finally, in Fig. 3e, it is clear that the ANN has not been able to learn all the different family classes.

initialization. In Figs. 2a-b, we present the error curves
ET (ρ) and EV (ρ) corresponding to S/N equal to 1%, 2%,
5%, 6%, 9% and 10% over the range from 0 to 2,000,000
epochs. From these figures it can be seen that, after 2,000,000
epochs, the error curves corresponding to 1% and 2%, when
compared to the 5% and 6% curves, seem to indicate that
they have not been able to attain their minimum value yet.
This suspicion can be verified by looking at the correspond-
ing BP vs. ETot scatter plots shown in Figs. 3a-f. In the case
of a 1% noise, it can clearly be seen that, although the ANN is
already capable of a perfect classification, it has not reached

a perfect identification yet, i.e., it seems that the sizes of the
spots corresponding to each one of the 451 different BP vs.
ETot classes could be made smaller if one continues training
the ANN. In some extent, this also occurs in the case of a
2% noise, suggesting that it also requires additional training.
This does not happen to occur for 5%, 6% and 10% noises.
Apparently, from the same figures, the 9% case also demands
additional training. For that reason we decided to train the
corresponding ANNs some additional epochs. In the case of
a 1% noise, the ANN was trained up to 10,000,000 epochs,
the 2% one up to 5,000,000 epochs, and
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FIGURE 4. ET (ρ) and EV (ρ) error curves corresponding to S/N
equal to 1%, 2%, and 9% over the ranges from: 0 to 10,000,000, 0
to 5,000,000, 0 to 3,000,000, epochs respectively.

FIGURE 5. ET (ρ) and EV (ρ) error curves corresponding to S/N
equal to 1% from 0 to 1,420.000 epochs, but the learning rate pa-
rameter was changed from 0.3 to 5.0 after 100,000 training epochs.

the 9% one up to 3,000,000 epochs. In Fig. 4, we present
ET (ρ) and EV (ρ) error curves for all cases. It is seen from
this figure that the 2% and 9% cases reach their minimum val-
ues at approximately 3,050,000 and 2,515,000 epochs respec-
tively. Although the 1% error curves showed a considerable
enhancement, 10,000,000 training epochs were not enough
in order to reach the minimum. But, in this last case, from
the smoothness of the error curves (after 100.000 epochs) we
concluded that the training effect induces a very slow evolu-
tion along the error surface, so it was decided to start over the
training of the ANN beginning at 100,000 epochs but, this
time, the learning factor was changes from 0.3 to 5.0. The
corresponding ET (ρ) and EV (ρ) error curves are shown in
Fig. 5 up to 1,420,000 training epochs. It can be seen that,
this time, after 800,000 training epochs using a large learning
factor, this is, a total of 900,000 training epochs after tack-
ing into account the initial 100,000 epochs that used a small
learning factor, the ANN has been able to

FIGURE 6. a) BP vs. ETot validation scatter plot corresponding to
S/N equal to 1% after the minimum value is reached at 900,000
epochs, using a learning factor equal to 0.3 from 0 to 100,000
epochs and equal to 5.0 from 100,000 on. b) BP vs. ETot vali-
dation scatter plot corresponding to S/N equal to 2% after the min-
imum is reached at 3,050,000 epochs. c) BP vs. ETot validation
scatter plot corresponding to S/N equal to 9% after the minimum is
reached at 2,515,000 epochs.

reach its minimum value equal to 0.0006. This 100,000 old
epochs plus the 800,000 new epochs roughly corresponds to
100, 000 + (5/0.3)× 800, 000 ≈ 13, 433, 333 old epochs.

The BP vs. ETot scatter plots obtained in the 1%, 5%
and 9% cases are shown in Figs. 6a-c. In the 1% case the
ANN was trained using a learning rate equal to 0.3 from 0
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to 100,000 epochs, and equal to 5.0 from 100,000 epochs on,
and the minimum was reached after a total of 900,000 train-
ing epochs. In the 5% and 9% cases the learning factor used
was equal to 0.3 and the corresponding minima were reached
at 960,000 and 2,515,000 epochs.

Table II summarizes the number of training epochs that
it takes each one of the validation error curves EV (ρ) to
reach its minimum value. It also presents the minimum value
EV (ρmin) and its standard deviation, stdEV (ρmin), calcu-
lated in a small neighborhood around ρmin. As it is natural
to expect, the minimum value reached by EV (ρ) increases as
the corresponding S/N ratio increase. In Figs. 7a-b, we show
a plot of EV (ρmin) vs. S/N in linear and logarithmic scales.
The dotted lines in Figs. 7a-b were obtained after fitting a
straight line to ln

[
EV (ρmin)

]
.

The uncertainties shown in Figs. 7a-b are displayed just
to give us an idea of the variability of EV (ρ) in a neighbor-
hood around ρmin rather than the variability of EV (ρmin)
around its average value, i.e., the values obtained when re-
peating the whole training of the ANN several times. The
only case in which we are capable of estimating the size of
this additional source of uncertainty is in the 10% case, be-
cause, in that case, we repeated the training of the ANN 13
times, allowing us to estimate the average value and the stan-
dard deviation of all these 13 values. The result obtained in
this way for the 10% case is 0.907± 0.032 in comparison to
0.868 ± 0.022 that corresponds to the average value of the
fastest learning ANN for a 10% S/N, and its standard devi-
ation around the minimum, both quantities were calculated
over the interval from 127,000 to 146,000 learning epochs,
i.e., around the minimum of the corresponding EV (ρ) error
curve. For the interested reader, in Ref. 1 we explained why
although in this 10% S/N case the minimum value of EV (ρ)
is reached after 136,000 training epochs, we preferred to train
the ANN up to 196,000 epochs. Since these two sources of
uncertainty may be considered as independent then the total
uncertainty will be given by the square root of sum of squares
of both values, which amounts to ±0.039. The result of fit-

TABLE II. Summary of the number of training epochs that it took
each one of the validation error curves EV (ρ) to reach their min-
imum values. In the 1% case, the total number of training epochs
is split in 100,000 epochs using a learning factor equal to 0.3 and
800,000 training epochs using a learning factor equal to 5.0 what
amounts to an equivalent of 13,433,333 learning epochs with a 0.3
learning factor.

N/S (%) ρmin (epochs) EV (ρmin) stdEV (ρmin)

1 100, 000 + 800, 000 0.0006 0.00026

≈ 13, 433, 333

2 3,050,000 0.0022 0.00022

5 960,000 0.012 0.00076

6 1,308,000 0.040 0.00062

9 2,515.000 0.55 0.020

10 196,000 0.87 0.022

FIGURE 7. Plot of EV (ρmin) vs. n = S/N in linear and logarith-
mic scales. The dotted lines were obtained fitting a straight line to
ln

[
EV (ρmin)

]
.

ting a straight line to ln
[
EV (ρmin)

]
as a function of S/N,

Fig. 7b, may be expressed as:

EV
min(n) = αexp(βn), (5)

where α = 0.00037514, β = 0.80284, and n represents the
corresponding S/N value. This curve describes how the noise
present in the signals or patterns to be identified, n, con-
tributes to set limits to the learning capability of an ANN.

One thing that at first sight appears baffling is the fact
that, for small values of S/N, the ANN takes longer to learn its
task, i.e., the EV (ρ) error curve reaches its minimum value
slowly, requiring a large number of training epochs, see 1%
and 2% cases in Table II. In these cases, it is undeniable that
it takes longer to learn their tasks, but the point is that the
different tasks are not equivalent, and this is a result of to the
limiting learning effect due to the noise present in the signals.
In other words, at low values of S/N, there are subtle features
that are learnable, but, due to the noise masking effect, at high
S/N values, they cannot be learnt. In fact, this masking effect
grows smoothly as a function of n or S/N value, as suggested
by Eq. 5, Fig. 7b. These subtle features, although learnable,
are not easy to be learnt by the ANN, in deed, they demand
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a large number of training epochs. The decreasing ability to
learn subtle features as the parameter n increases is reflected
in the diminishing quality of the corresponding BP vs. ETot

scatter plots as the parameter n increases; see Figs. 3a-f and
6a-c. One may assume that the extent of the spreading of the
100 (BP, ETot) values predicted by the ANN around the cor-
responding tutorial value for a fixed class, is determined by
the amount of features that the ANN may be able to extract
during the learning or training stage. Of course, subtle fea-
tures takes longer to be learnt, but, as far as the S/N value
is small enough as not to mask that particular feature, it will
eventually be learnt by the ANN. This means that, for small
S/N values, the error surface is quite smooth once the ANN
has learnt the gross features of the patterns. This is why we
were successful when, in the 1% S/N case, we replaced the
original 0.3 learning factor by a much larger value equal to
5.0 and the ANN was still able to learn with no problem. On
the other side, a large noise, large n, implies a bumpy error
surface, preventing the learning rule to be able to detect shal-
low minima corresponding to subtle features.

Visualizing the learning process as adaptation or evolu-
tion of the ANN configuration point in link space, which,
when using a back-propagation learning law, is equivalent to
following the steepest descendent path [35], then overtraining
may be accounted for by those regions in link space where the
steepest descendent path is due to structures in the error sur-
face that have nothing to do with the relevant pattern features
of interest, but rather they are produced by the concomitant
signal noise. Unlikely, ANN feature learning occurs when
the configuration point in link space traverses regions where
the steepest descendent path is pronounced and produced by
a particular feature of interest. Once this feature is learnt by
the ANN, the shape of the error surface is again dominated by
noise, and overtraining will be observed for a while until the
ANN configuration point gets to a new region, where, once
more, the shape of the error surface is dominated by the in-
fluence of the new feature ready to be learned. In the EV (ρ)
error curves of Figs. 2b and 4 one can clearly observe re-
flected this behavior. Eventually, the ANN will get to a point
where the remaining features not yet extracted or learnt by
it, are not able to dominate any more the shape of the error
surface in link space, and noise will take over for that point
on as the error surface shape defining factor, i.e., overtraining
will dominate the learning process for that point on. The idea
is to stop the training process at that point.

In the particular case of a 1% noise, one can see from
the qualities of Figs. 3a, 6a and the smoothness of Fig. 5,
that the ANN was able to learn the gross patter features af-
ter only 100,000 training epoch, a small number in compar-
ison to the other S/N cases. But in order to extract the rest

of the pattern features, presumably subtle features, it took
the ANN a very large number of epochs to learn them. In
deed, the S/N is so small that overtraining never shown up. It
might be that the ANN is still extracting pattern features af-
ter a training of 100,000 training epochs with a 0.3 learning
factor plus 1,320,000 training epochs with a 5.0 learning fac-
tor, totaling an equivalent of 100,000 + (5.0/0.3)x1,320,000
≈ 22,100,000 training epochs with a 0.3 learning factor. Of
course, for practical classification applications, it might not
be necessary to let the ANN to try to extract all the pattern
features, since all one needs to do is to perform a pattern iden-
tification, which may be achieved once the ANN has learnt a
certain number of pattern features and not necessary all of
them. This is why we decided, from a practical point of view
that, after a training of 100,000 (0.3) + 800,000 (5.0) epochs,
the ANN is suited for our pattern identification purposes. In
fact, the ANN trained 2,000,000 (0.3) epochs or even 100,000
(0.3) might work as well also. We decided to keep on training
the ANN because we were not only interested in developing
the ANN classification ability, but rather in observing how
it was going to learn or extract the remaining unlearned fea-
tures, i.e., how its EV (ρ) error curve was going to evolve.

Finally, is good to remind that the search for the minimum
of EV (ρ) using the steepest descent path depends a lot on the
random initialization point, ~w(0), in link space. Depending
on the circumstances, a particular initial value, ~w(0), may
lead the evolution of the ANN through regions corresponding
to a slow adaptation path or vice versa. The 9% case corre-
sponds to the first case, requiring 2,515,000 epochs to get to
the minimum, and the 10% case to the second, requiring only
136,000 epochs. The point is that, although the selected path
to get to the minimum may happen to be shorter or longer,
there are limits set to the amount of feature extraction that
the ANN may learn from a training data set, and those limits
are defined by the S/N but not by the path followed to get to
the minimum.

6. Conclusions

We have presented evidences supporting an explanation and
parameterization, Eq. 5, of how the concomitant noise that
distorts the signals or patterns to be identified by an ANN
set limits to its learning capability. Also, we have presented
evidences that explain overtraining as a competition between
the patterns relevant features, on the one side, against the sig-
nal noise, on the other side, as the main cause defining the
shape of the error surface in link space and, consequently,
determining the steepest descent path that controls the ANN
adaptation process.
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