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Optimization of the gain in non-uniform gratings in a Bi 12SiO20 crystal
considering the variation of fringe period, optical activity and

polarization angles in a strong non-linear regime
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We solved numerically the set of non-linear differential material rate differential equations, and using these solutions, we include the non-
uniformity of the grating and of the magnitude and phase of light modulation along a sample thickness to calculate self-consistently the energy
exchange in two-wave mixing. We optimize the gain, considering strong nonlinear conditions, variation of fringe period, optical activity,
birefringence, absorption, polarization angle, applied fields and two crystal orientations: the grating vector parallel and perpendicular to the
face [001] Under these conditions there is a complex relationship among all these parameters, and the prediction of the conditions for the
optimum value of the gain is not simple We report the optimal sample thickness for different situations We obtained a maximum gain of 5.2.

Keywords:Photorefractive gratings; refractive index; beam coupling; energy exchange; non-linear optics.

Resolvimos nuḿericamente el conjunto de ecuaciones diferenciales parciales no lineales del material y, usando estas soluciones, incluimos
la no uniformidad de la rejilla y de la magnitud y de fase de la modulación de la luz a lo largo del espesor de la muestra para calcular auto
consistentemente el intercambio de energı́a del mezclado de dos ondas. Optimizamos la ganancia considerando condiciones fuertemente
no-lineales, la variación del tamãno de la rejilla, actividad́optica, birrefringencia, absorción, ángulos de polarización, campos aplicados,
y dos orientaciones cristalinas: el vector de la rejilla paralelo y perpendicular a la cara [001]. Bajo estas condiciones existe una relación
compleja entre todos estos parámetros, y la predicción de las condiciones para el valoróptimo de la ganancia no es simple. Reportamos el
espesoŕoptimo de la muestra para diferentes situaciones. Obtenemos una ganancia máxima de 5.2.

Descriptores: Acoplamiento de haz; intercambio de energı́a; óptica no lineal.

PACS: 42.65.-k; 42.70.-a; 42.70.Nq

1. Introduction

BSO (Bi12SiO20) is a photorefractive material of the sillenite
family with a high response rate, high sensitivity, unlimited
recyclability and large holographic storage times with a good
potential technological use [1-3]. For thick samples with no
very large absorption coefficient, under a non-linear regime,
we have a strong beam coupling and there is a spatial redis-
tribution of the light intensity pattern that changes the light
modulation across the crystal. In this way the grating is spa-
tially non-uniform and its amplitude and phase change within
the sample along the sample thickness,z. It was shown re-
cently that the non-uniformity of the grating is of great rele-
vance to the energy exchange and to the influence of the input
polarization angles on the gain [4].

When a large absorption coefficient is present, the light
waves decay very rapidly inside the sample, and the energy
exchange as well as the spatial non-uniformity of the grating
become irrelevant. However, it is possible to obtain low ab-
sorption coefficients in sillenites with adequate doping [5,6].

In this work we considered a non-moving transmission
grating We solved numerically the set of non-linear material
rate differential equations. We used these solutions to study

the optimization of the gain including the non-uniformity of
the grating and of the magnitude and phase of light modu-
lation along a sample thickness, considering the variation of
the fringe period. We studied thick BSO crystals where the
effects of beam coupling become significant. We followed
a vector approach [7-10] to express the two-wave coupling
equations that represent the recording process, including op-
tical activity, birefringence, absorption of light and several
values of light modulation and polarization angles of the in-
cident beams. We considered two optical configurations for
KG (the grating vector) KG ‖ [001] and KG ⊥[001] for dif-
ferent values of d.c applied fields. The solutions to the corre-
sponding two sets of beam coupling equations were obtained
numerically in a self-consistent way.

2. Coupled wave equations

We took as intensity of the interference light pattern

I(x) = I0(1 + |m(z)| cosKGx), (1)

whereI is the total intensity of the light andm(z) is the light
modulation which varies along the sample thickness accord-
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ing to:

m(z) = 2
[A1ξ(z)A2ξ(z)∗ + A1ς(z)∗A2ς(z)]

I0
(2)

Where we considered the interaction of two plane,
monochromatic, linearly polarized electromagnetic waves,
~A1(z) and ~A2(z), that propagate inside the sample. Each
field has two components: one, alongûζ perpendicular to the
plane of incidence (x− z) and the other, alonĝuξ parallel to
the same plane. The total light field can then be written as the
superposition of the two:

~A(~r)= ~A1(z) exp(−i~k1 • ~r)+ ~A2(z) exp(−i~k2 • ~r2), (3)

where
→
k1 and

→
k2 are the corresponding wave vectors, and

→
A
1
(z)=A1ξ(z)ûξ+A1ς(z)ûς ;

→
A
2
(z)=A2ξ(z)ûξ+A2ς(z)ûς

With this interference pattern in the photorefractive mate-
rial the light excites electrons to the conduction band, which
migrate due to diffusion and drift from the bright to the dark
parts of the crystal where they are captured by the compen-
sating centers, resulting in the appearance of a space charge
field. These phenomena are described with the usual one-
trap-one band model [1112] by the following set of equations:

∂N+

∂t
= (sI + β)(N −N+)− γnN+ (4)

∂n

∂t
=

∂N+

∂t
− ∇ · j

e
(5)

j = eµnE − eD∇n + pI (6)

∂ (εε0E)
∂x

= e(n + NA −N+) (7)

The motion of the carriers, of chargee, is along thex
coordinate, NA is the initial number of acceptors or com-
pensating centers,N+ is the concentration of ionized donors
at instantt andN+ is the total concentration of donors. The
current density isj, the electron concentration isn and their
mobility µ, D is the diffusion coefficient,γ the trapping co-
efficient,β the thermal ionization rate,s the photo ionization
cross section,ε the dielectric constant,pI the photovoltaic
current,p the photovoltaic constant (effective Glass coeffi-
cient) andε0 the permittivity in free space. The total electric
field is E, which is given by the sum ofEa (external d.c.
field) and the induced space charged fieldEesc.

We solved numerically the set of non-linear material rate
differential equations (4) for several values of fringe spac-
ing, Λ : 1, 2, 3, 4, 5, 7, and 10 microns. In this manner
we obtained the variation of the overall space charge field as
a function of light modulation for each value of the applied
field (5 and 10 Kv/cm) We followed the method described
elsewhere [13]. For each one of these values of fringe spac-
ing we obtained the numerical solutions for several values of
m0, the value of light modulation at the surface of the sample,

TABLE I. Parameters for BSO [7, 14, 16, 17] taken for our calcula-
tions.

BSO

ε Dielectric constant 56

n0 Average refractive index 2.5

r Electro optic coefficient (mV−1) 4.7×10−12

ND Donor density (m−3) 1025

NA Acceptor density (m−3) 1022

µτ Mobility lifetime product (cm2 V−1) 1×10−7

γ Recombination constant (m3s−1) 1.6×10−17

s Photo ionization cross section (m2J−1) 1×10−5

α Absorption coefficient (cm−1) λ = 532nm 0.65

ρ Optical activity (◦/cm)λ = 532nm 386∼ 6.74 cm−1

between 0 and 1. Then we performed the Fourier decompo-
sition for each of the calculated overall space charge fields
to obtain the amplitude,E1 of its fundamental Fourier com-
ponent and its phase,Φ which is the dephasage of the space
charge field with regard to the light interference pattern, for
every one of the cases considered. It is necessary to mention
that this method does not rely on a Fourier expansion and so
its validity is not limited by the use of a truncated harmonic
basis. In this way we have obtained the grating strength and
its phase as functions of light modulation which are neces-
sary to solve self-consistently the beam coupling equations.
The parameters used for the BSO are shown in Table I.

In this work we considered a crystal cut to expose the
(1̄10), the (110) and the (001) crystallographic faces. To deal
with the two wave mixing (TWM) problems, we followed
a tensor approach, taking into account optical activity, bire-
fringence, absorption of light, for the two common optical
configurations, the first with KG ‖ [001] and the light waves
are propagating in the (1 10) plane. The second configuration
is with KG ⊥ [001] where KG ‖ [1 10] and the light waves
propagate in the (001) plane, and the applied electric field is
parallel to KG [7,8] For each configuration, the correspond-
ing set of differential equations is obtained by the substitution
of the light field,

→
A(r) given, by Eq. (3), and the electric dis-

placement tensor,
→
D(r), in the steady state wave equation,

∇2
→
A(r) +

k2
0

ε0

→
D(r) = 0 (8)

→
D(r) in a sillenite medium can be expressed as

Di = ε0(εij + Gij + ∆εij)Ej (9)

whereεij is the symmetric optical permittivity tensor in the
absence of optical activity and electro-optic couplingGij is
the tensor describing the optical activity,Ej is the j com-
ponent of the electric field,∆εij is the variation of the opti-
cal permittivity tensor induced by the linear Pockels electro-
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optical effect. For simplicity we are neglecting the photo-
voltaic and photo galvanic effects. The piezoelectric and
photo elastic effects, for crystals of the sillenite family with
the configurations we are considering can be neglected [8]
The permittivity and the optical activity tensors are expressed
in the light propagation coordinate system.

Finally, neglecting the second derivate of the field the fol-
lowing set of equations for KG ‖ [001] with the light waves
propagating in the (1 10) plane is obtained [7,8]:

dA1ς(z)
dz

= −ρA1ξ(z)− α

2
A1ς(z) (10)

dA1ξ(z)
dz

= ρA1ς(z) + iκ0A1ξ(z) + iκ∗1(z)A2ξ(z)

− α

2
A1ξ(z) (11)

dA2ς(z)
dz

= −ρA2ξ(z)− α

2
A2ς(z) (12)

dA2ξ(z)
dz

= ρA2ς(z) + iκ0A2ξ(z) + iκ1(z)A1ξ(z)

− α

2
A2ξ(z) (13)

Hereα is the absorption coefficient andρ is the optical
activity. The constantκ, is due to the variation of the mag-
nitude of the change in the refractive index induced by the
external applied field,E:

κ0 =
2π∆n0

λ cos θ
(14)

where

∆n0 =
n3

0rE0

2
(15)

n is the average refraction index in the sample,λ is the wave
length of the recording monochromatic beams,θ is the in-
cidence Bragg’s angle andr is the electro-optic coefficient.
Notice thatκ0 is not a function of z.

The coupling factor,κ1 is due to the space charge field
obtained from the solution of the material rate equations; it is
complex, and a function ofz:

κ1(z) =
π∆n1(z)
λ cos θ

(16)

where∆n1(z) is the modulated change of the refractive index
induced by the space charge field through the linear electro-
optic effect:

∆n1(z) = n3
or ∗

|E1(z)|
2 |m(z)| ∗ eiΦ(z) ∗m(z) (17)

whereΦ is the dephasage of the space charge field with re-
gard to the light interference pattern,z being the coordinate
along the sample thickness, which is in the same direction as
the light beam propagation andm(z) the complex light mod-
ulation, given by Eq. (3).E1(z) is the fundamental Fourier

component of the space charge field, and Eq. (16) can be
written as:

κ1(z) =
π

λ cos θ

n3
0r |E1(z)|

2
exp i(Φ(z) + ψm(z)) (18)

hereψm(z) is the phase of the light modulation
Notice that we are considering not only the magnitude of

the variation of the refractive index along the sample thick-
ness, but also the variation of its phase. It is important to
take this into consideration when a static d.c. electric field is
applied, because the phaseΦ is no longerπ/2 as in the diffu-
sion regime. The phase in this case is a function of both the
value of the applied field and the coordinate along the sample
thickness

The corresponding set of coupled wave equations for
KG ⊥ [001] and the light waves traveling in the (001) plane
is [7,8]:

dA1ξ(z)
dz

= (ρ− iκ0)A1ς(z)− iκ∗1(z)A2ς(z)

− α

2
A1ξ(z) (19)

dA1ς(z)
dz

= −(ρ + iκ0)A1ξ(z)− iκ∗1(z)A2ξ(z)

− α

2
A1ς(z) (20)

dA2ς(z)
dz

= −(ρ + iκ0)A2ξ(z)− iκ1(z)A1ξ(z)

− α

2
A2ς(z) (21)

dA2ξ(z)
dz

= (ρ− iκ0)A2ς(z)− iκ1(z)A1ς(z)

− α

2
A2ξ(z) (22)

The solutions to each set of beam coupling equations (7)
and (13) have to be self-consistent. This is because the
changes in the intensities of waves and phases cause changes
in the light modulation and in the refraction index and these,
in turn, induces new changes in the intensity of the waves.

We solved each set of equations with no restrictions on
the parameters (ρ, κo, κ1). We divided the sample in thin lay-
ers of thickness∆z [14] in such a way that within each layer,
κ1(z) is practically constant. In this way within each layer
we have analytical solutions [4] for the coupled equations of
sets (7) and (13). When a small change (larger than 0.1%) in
this variable occurred, we chose a smaller interval and cal-
culated the new corresponding set of values of constants for
the corresponding interval∆z. We started evaluating the ini-
tial set of constants for the first layer at the surface of the
sample by usingκ1(z = 0). Next, for the following layers,
the values of the complex amplitudes of the beams at the end
of each interval were used to evaluatem(z) and therefore a
new value ofκ1 at z where the following layer starts. The
analytical solutions for a constant,κ1(z) for the two sets of
equations (7) and (13) for KG ‖ [001] and KG ⊥ [001] are
given elsewhere [4].
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We used gratings with different spatial periodsΛ of 1,
2, 3, 4, 5, 7, and 10 microns light modulation at the surface
of the sample (m) of 0.9, 0.6, 0.3 and 0.1. We applied two
fields: 5.0 and 10.0 kV/cm The values of absorption and op-
tical activity used for BSO crystals are given in Table I We
also considered that the two beams were linearly polarized
and had the same polarization angles at the surface of the
sample. The polarization angle isφp, defined as the inclina-
tion angle of the electric field of light waves with respect to
the plane of incidence at the surface of the sample,

ϕpi = tan−1

[
Aiξ(z = 0)
Aiξ(z = 0))

]
, i = 1, 2 (23)

From the complex amplitudes of light waves, obtained
from the self-consistent solutions of each set of equations, we
calculated the intensities, phases of each wave and the corre-
sponding light modulationm(z) as a function ofz. For each
of the recording orientations we also obtained the two-wave
gain,Γij(z) defined as:

Γij(z) =
(

1
z

)
ln

Ii(z)Ij(0)
Ii(0)Ij(z)

, i, j = 1, 2; i 6= j (24)

This is related to the one-wave effective gainGk(z) de-
fined by:

Gk(z) =
Ik(z)
Ik(0)

− 1; k = 1, 2 (25)

whereIl(z) =|Al(z)|2 is the intensity of the corresponding
light beaml at the specific sample thicknessz, andIl(z=0) is
the intensity of this light beam at the surface of the sample.

Definitions (24) and (25) are related by:

Γij(z) =
(

1
z

)
ln

∣∣∣∣
1 + Gi(z)
1 + Gj(z)

∣∣∣∣ , i, j = 1, 2; i 6= j (26)

It is clear that:Γij(z) = −Γji

3. Results and discussion

All our calculations were performed using an absorption co-
efficient,α = 0.65 cm−1 and optical activityρ = 386◦ cm1.
In Fig. 1 we show the two-wave gain (Eq. (24)), as a func-
tion of the sample thickness, for four different values of grat-
ing spacing (1, 3, 4 and 10 microns) under an applied field
of 5 Kv/cm, with m = 0.1 KG ‖ [001], and initial polariza-
tion angles,Φp, of 0, for the writing beams. Note that the
value of the thickness for all fringe periods with the maxi-
mum magnitude of the gain, is around 2 mm. For this case
it is interesting to notice that, for this sample thickness, the
grating with the largest gain corresponds to a grating spacing
of 1.0 microns, and the value of the maximum magnitude of
the gain is around 1.5 cm−1. For samples with a thickness
larger than 1.0 cm, this same grating space becomes the one
with the minimum magnitude of the gain.

FIGURE 1. Results of the gain, along the sample thickness, for
different values of BSO grating spacing recorded with an applied
field of E0=5 Kv/cm,m0 = 0.1 for KG ⊥ [001] with absorption
(α=0.65) cm−1 optical activity (ρ=386◦ cm−1) and with initial po-
larization angles of 0 for the writing beams.

FIGURE 2. Results of the gain, along the sample thickness, for
different values of BSO grating spacing recorded with an applied
field of E0=5 Kv/cm,m0 = 0.1 for K G ⊥ [001], with absorption
(α=0.65) cm−1 optical activity (ρ=386◦ cm−1) and with initial po-
larization angles of for the writing beams ofπ/8.

FIGURE 3. Results of the gain, along the sample thickness, for
different values of BSO grating spacing recorded with an applied
field of E0 =10 Kv/cm,m0 = 0.1, for KG ⊥ [001], with absorp-
tion (α=0.65)cm−1 optical activity (ρ=386◦ cm−1) and with initial
polarization angles of 0 for the writing beams.
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FIGURE 4. Results of the maximum gain, as a function of the BSO
grating period, for different values of initial light modulation at
the surface of the sample,m0, recorded with an applied field of
E0 =5Kv/cm, for KG ‖ [001], with absorption (α=0.65) cm−1 op-
tical activity (ρ=386◦ cm−1) and with initial polarization angles of
0 for the writing beams.

FIGURE 5. Results of the maximum gain, as a function of
the BSO grating period, for different values of initial light
modulation at the surface of the sample,m0 (0.1, 0.3, 0.6,
0.9), recorded with an applied field ofE0 =5Kv/cm, for
KG ⊥ [001], with absorption (α=0.65) cm−1 optical activity
(ρ=386◦ cm−1) and with initial polarization angles ofπ/2 for the
writing beams.

FIGURE 6. Results of the maximum value of the gain, as func-
tion of BSO grating spacing recorded with an applied field of
E0 =10 Kv/cm, for different values ofm0 ( 0.1, 0.3, 0.6, 0.9)
for KG ‖ [001], with absorption (α=0.65) cm−1 optical activity
(ρ=386◦ cm−1) and with initial polarization angles ofπ/4 for the
writing beams.

In Fig. 2, we show results for the same conditions as those
of Fig. 1, but forΦp= π/8. Now the value of optimal sample
thickness, (the thickness required for the maximum magni-
tude of the gain) is around 1mm, which is a bit smaller than
the corresponding one in Fig. 1 and the maximum magnitude
of the gain is a bit larger (2.2 cm−1) that the corresponding
one in Fig. 1. Notice that the value of the gain forz = 0 is
not zero. This can be easily understood using a Taylor expan-
sion in Eq. (24). We have that forz ≈ 0 it is straightforward
to obtain:

Γij(z ≈ 0) ≈
(

d

dz

[
ln

(
Ii(z)
Ij(z)

)])

z=0

It is clear thatΓij(z = 0) may be different from zero.
Conditions for Fig. 3 are the same as in Fig. 1, but with

an applied electric field, E0, of 10 kV/cm. We can see that
the increase in the applied electric field implied an increment
of the magnitude of the gain from 1.5 to 1.9. However, this
increment is smaller than that obtained by changing the po-
larization angle of the recording beams as shown in Fig. 2.
Notice that, for a thickness larger that 5 mm, the largest value
of the gain is for the grating with the largest period.

In Figs. 4 to 7 we show results for the maximum mag-
nitude of the gain as a function of grating period for several
values of the light polarization at the surface of the sample.
In Fig. 4 we haveE0=5 kV/cm, KG ‖ [001] andΦp = 0
for the writing beams The maximum magnitude of the gain
is 1.4 cm−1 and corresponds to a grating period of 2 microns,
with m = 0.9, and the gain, for all values ofm decreases by
a factor of around 3.5 when the grating period goes from 2 to
10 microns.

For Fig. 5 we haveE0=5 kV/cm KG ⊥ [001], and
Φp=π/2. The maximum magnitude of the gain is 1.8 cm−1,
for a fringe spacing of 2 microns, withm = 0.9 and the gain
in all cases decreases as fringe spacing increases.m = 0.9
The gain values for fringe spacing between 1 and 5 microns
are very similar.

In Fig. 6 we haveE0=10 kV/cm KG ‖ [001], and
Φp = π/4. The maximum magnitude of the gain is around
4.5 cm−1, and it happens form= 0.9. The gain values are
very similar for all values ofm for fringe spacing between
1 and 2 microns. The largest maximum magnitude of the
gain remains approximately constant for fringe spacing be-
tween 2 and 4 microns andm = 0.9 Again, the maximum
magnitude of the gain in all cases decreases as fringe spacing
increases. With the exception of the casem = 0.9,the values
of the maximum magnitude of the gain are very similar for
all values of fringe spacing.

In Fig. 7 we haveE0=10 kV/cm KG ‖ [001], and
Φp = π/2. The maximum magnitude of the gain is around
5.2 cm−1. Again with the exception of the casem = 0.9,
the values of the maximum magnitude of the gain are very
similar for all values of fringe spacing, and the largest values
correspond to the casem = 0.9. However, for fringe spacing
between 1 and 2 microns the results are very similar in all
cases.
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FIGURE 7. Results of the maximum value of the gain, as a
function of the grating spacing recorded with an applied field of
E0=10 kV/cm, for different values ofm0 (0.1, 0.3, 0.6, 0.9)
for KG ‖ [001], with absorption (α=0.65) cm−1 optical activity
(ρ=386◦ cm−1) and with initial polarization angles ofπ/2 for the
writing beams.

FIGURE 8. Optimal values for sample thickness to get the max-
imum value of the magnitude for the gain, as a function of the
grating spacing, when KG ⊥ [001] and the initial polarization an-
gle of the incident beams is 0, for two values of the applied field:
10 kV/cm and 5 kV/cm. We show results for different values of the
initial light polarization:m0= 0.1, 0.3, 0.6 and 0.9.

Figure 8 shows the optimal sample thickness as function
of fringe spacing to get the maximum magnitude of the gain
with KG⊥ [001], andΦp = 0, for two possible values of the
applied field:E0=10 kV/cm andE0=5 kV/cm We mention
some relevant features. Notice that for fringe spacing below
3 microns the optimal thickness is, for all cases, around 2mm.
For fringe spacing between 3 and 5 microns, this value for
the optimal thickness remains the same except for the case
m = 0.3 withE = 10 kV/cm, which has an optimal thickness
of 8 mm. We can see the largest optimal thickness in this fig-
ure is around 1.6 cm form = 0.1 andE = 5 kV/cm and it is
for a fringe spacing of 8 microns. IfE =10 kV/cm the largest
optimal thickness is 8.3 mm form = 0.3 andm= 0.6 when
the fringe spacing is around 4 microns, and remains nearly

constant up to 10 microns; form = 0.9, the largest optimal
thickness is around 8 mm for a fringe spacing of 8 microns.

It is necessary to mention that, as pointed out in Ref. 15
the gain changes its magnitude when a sample rotation of
180◦ is made around the direction of propagation of the light
waves (ourz axis). In this case there is a change in sign of the
electro-optic coefficient and a weakening of the weak beam
occurs instead of a weakening of the strong beam [15].

4. Conclusions

We studied, under strong non-linear conditions the optimiza-
tion of the gain during two-wave mixing in non-uniform grat-
ings in BSO for thick samples with a small absorption coeffi-
cient. From the results of our self-consistent calculation, we
have exhibited how this optimization can be obtained Given
a BSO sample (with a fixed absorption coefficient and a fixed
value for optical activity), we have to combine adequately
sample orientation, fringe spacing initial light modulation,
optical activity, initial polarization angles, applied electric
fields and sample thickness. There is a complex relation-
ship among all these parameters, and the prediction of the
conditions for the optimum value of the gain is not simple
We can see cases where, with an applied field of 5 Kv/cm
(see Fig. 3), we obtain for the magnitude of the gain, values
larger than the corresponding ones obtained with an applied
field of 10 Kv/cm (see Fig. 3). From our results it is clear that
an adequate combination of sample thickness, sample orien-
tation, polarization angle of the incident beams and fringe
spacing can be more important for reaching a larger value for
the magnitude of the gain, than increasing the applied field. It
is convenient to stress that for a given set of these parameters,
if the electric field is increased, the gain will increase. The
maximum gain we obtained is around 5.2 for a fringe spacing
of 2 microns, KG ⊥ [001], applied field of 10 Kv/cm, light
modulation at the surface of the sample of 0.9, and initial po-
larization angle of the incident beams ofπ/2, with a sample
thickness of 0.3mm. On the other hand, we found for the
maximal amplification factor a value of 5.8 for KG ‖ [001].
Applied field = 10 kV/cm,Φp= π/2, andm0 = 0.1, for a
thickness of 1.9 cm, and a grating period of 2 microns.
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4. L.F. Magãna, I. Casar, and J.G. Murillo,Opt. Mater.30 (2008)
979.

5. S.L. Hou, R.B. Laurer, and R.E. Aldrich,J. Appl. Phys.44
(1973) 2652.

6. I. Foldvari, L.E. Halliburton. and G.J. Edwards,Sol. Stat. Com.
77 (1991) 181.

7. A. Marrakchi, R.V. Johnson, and J.A.R. Tanguay,J. Opt. Soc.
Am. B3 (1986) 321.

8. V.V. Shepelevich, N.N. Egorov, and V. Shepelevich,J. Opt. Soc.
Am. B11 (1994) 1394.

9. VV. Shepelevich, S.F. Nichiporko, A.E. Zagaorskiy, Yi Hu, and
A.A. Firsov,Ferrolectrics266(2002) 305.

10. B. I. Sturmanet al., Phys. Rev. E60 (1999) 3332.

11. N.V. Kukhtarev, G.E. Dovgalenko, and V.N. Starkov,Appl.
Phys. A33 (1984) 227.

12. N.V. Kukhtarev, T.V.Kuktareva, J. Jones, E. Ward, and H.J.
Caulfield,Opt.Comm.104(1993) 23.
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