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Absolute values of transport mean free path of light in non-absorbing media using
transmission and reflectance measurements
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We derived a relation between the transport mean free path of light, and transmittance and the reflectance in non-absorbing turbid media.
This allowed us to develop an experimental procedure to obtain absolute values for the transport mean free path of light just by measuring
in an integrating sphere both the transmittance and the reflectance in this kind of system. We determined how accurate our method was by
comparing our transport mean free path measurements with calculations made for colloidal suspensions of particles using Mie scattering
theory and with measurements made in colloidal suspensions of polystyrene microspheres using diffusive wave spectroscopy. The agreement
is excellent.
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En este trabajo se deriva una relación entre el camino libre medio de trasporte de la luz y la transmitancia y la reflectancia de un medio
turbio no absorbente. Esto nos permitió desarrollar un procedimiento experimental para obtener valores absolutos de los caminos libes
medio de transporte de la luz con sólo medir, en una esfera integradora, la trasnmitancia y la reflectancia en esta clase de sistemas. Hemos
determinado cúan preciso es nuestro método comparando nuestras medidas de camino libre medio de transporte con cálculos efectuados para
suspensiones coloidales utilizando la teorı́a de dispersión de Mie y con medidas hechas en suspensiones coloidales de microesferas utilizando
espectroscopia de onda difusa. El acuerdo es excelente.

Descriptores: Camino libre medio de trasporte de luz; DWS.

PACS: 82.70.Dd; 87.64Cc; 78.20.Ci

1. Introduction

Light scattering techniques had been widely used in several
fields to extract dynamical and structural information in com-
plex fluids. Initially, these techniques were limited to trans-
parent samples, where single scattering is a good approxi-
mation. However, in the past fifteen years, new develop-
ments made it possible to take into account multiple scatter-
ing, leading to diffusive wave spectroscopy (DWS) [1]. This
technique extends the single scattering experiment to multi-
ple scattering assuming that light transport in the sample can
be treated as a diffusive process. Using DWS, it is possi-
ble to measure the mean square displacement,〈∆r2(t)〉, of
embedded colloidal particles in a fluid, which makes it pos-
sible to obtain the response of viscoelastic materials to shear
excitations through the complex shear modulus,G∗(ω). This
modulus determines the stress induced on a material upon ap-
plication of an oscillatory shear strain at a frequencyω. Nor-
mally, G∗(ω) is determined using mechanical rheometers,
where viscoelastic properties are measured by application of
strain, while measuring stress or vice versa. This bulk me-
chanical susceptibilityG∗(ω) also determines the response
of colloidal particles embedded in a fluid. These probe par-
ticles, excited by thermal stochastic forces, move in Brow-
nian motion along the fluid. [2, 3]〈∆r2(t)〉 can be related
to G∗(w) by describing the motion of particles with a gen-
eralized Langevin equation incorporating a memory function
to take into account the viscoelasticity of the fluid where the
particles are embedded. In this way, the particle fluctuation

spectrum can be used to measure the relaxation spectrum of
the fluid. With DWS, there is no strain applied to the material
during the measurement. This is a useful characteristic for
complex fluids where even small imposed strains can cause
structural reorganization of the material and can change its
viscoelastic properties.

In a DWS experiment, a laser beam strikes a slab formed
by a turbid suspension made of the liquid under study and
probe colloidal particles that scatter light. The temporal au-
tocorrelation function of a small fraction of the light that
passes through the slab is measured. The transport of light
through the slab is treated as a diffusive process and pho-
tons are treated as random walkers, with a random walk step
length equal to the transport mean free pathl∗ and a resul-
tant diffusion coefficientD = vl∗/3, wherev is the speed of
light in the suspension. The diffusion approximation is valid
for calculating transport of light only over distances much
longer thanl∗ [1]. When scattering is not isotropic, which is
the case for particle sizes close to and larger than the photon
wavelength, the random walk step length is longer than the
photon mean free path lengthl. These lengths are connected
by l∗/l = 2k2

o/
〈
q2

〉
, whereko = 2πn/λ is the photon wave

vector in the solvent,λ is the laser wavelength in a vacuum,
n is the effective index of refraction in the sample, and

〈
q2

〉
represents the average angle for the squared scattering vector
for a typical scattering event experienced by the photon in the
medium.

l∗ is a key parameter that enters into the DWS analysis
and has to be determined independently. It is usually mea-
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sured by comparing the system transmittance with that of
calibrated suspensions of latex spheres in water wherel∗ is
known [1,4,5]. There are just a few experimental procedures
to determinel∗ without using a reference sample. Mitani
et al. [6] used coherent backscattering, Weitz and Pine [1]
used pulsed DWS wherel∗ is estimated by measuring the de-
lay time of a signal due to the multiple scattering. Garcia
et al. [7] developed a procedure where microwave radiation
power is measured in the forward scattering geometry, using
boundary conditions so that reflected waves from an integrat-
ing cavity can be neglected.

In this paper, we present a procedure to obtain ab-
solute values of the transport mean free path of light in
non-absorbing media made of a colloidal suspension of
polystyrene microspheres. In this procedure, the basic is-
sue is to measure the transmission and the reflectance of the
colloidal suspension under study using an integrating sphere.
We determined how accurate our method was by comparing
our results with calculations made for colloidal suspensions
of particles using Mie scattering theory and with experimen-
tal measurements made in colloidal suspensions using diffu-
sive wave spectroscopy. The agreement is excellent.

1.1. Transport mean free path

In this section, we present the basic equations to obtainl∗

from transmittance and reflectance measurements carried out
in turbid non-absorbing samples made of colloidal particles
dispersed in a fluid, using an integrating sphere as shown in
Fig. 1. The system is contained in a rectangular cell with par-
allel windows. Here, a collimated light of powerP 0 is sent
to an integrating sphere with an internal Lambertian surface.
Light is collected by a detector placed on the wall of the inte-
grating sphere, in the following conditions: one with no sam-
ple at entrance and reflectance ports (beam striking directly
on the sphere wall), one in transmission geometry (sample at
entrance port, shown in Fig. 1) and one in reflection geome-
try (sample at reflection port). As we shall show from these
measurements, by taking into account the transmission and
reflectance of the cell walls, it is possible to obtain reliable
values ofl∗.

FIGURE 1. Schematic diagram of the integrating sphere with an
amplification showing the light transmittances along the cell walls
and sample, from outside to the integrating sphere.

1.1.1. Transmittance and reflectance of a fluid sample ob-
tained using an integrating sphere

To obtain the transmittanceT ∗ of a turbid colloidal suspen-
sion, we need to analyze the transmission and reflection of
light when the suspension is placed in two different config-
urations: at the entrance port and at the reflection port of an
integrating sphere. The transmitted or the reflected light from
the sample is multiply reflected by the surface of the integrat-
ing sphere before reaching the detector. The collected light
is a function of the incident power and of the geometric and
reflection parameters of the sphere. Pickeringet al. [8, 9]
studied just this problem, so we shall use their derivation to
obtain some of our working equations. For transmittance, the
collected power at the detector,PT

d , is given by:

PT
d =

δ

A

[
mAeffTcd

1− [r δ
A + mAeff + Rd(s′′/A)]

]
P 0T . (1)

When the sample is in reflection geometry, light first strikes
the integrating sphere, thus, diffuse light irradiates the sam-
ple. The collected power,PR

d , at the detector can be ex-
pressed as:

PR
d =

δ

A

[
m

1− [r δ
A + mAeff + Rd(s′/A)]

]
P 0R. (2)

In these equations,P 0T andP 0R are the incident powers,δ
is the area of the detector,m is the reflection factor of the
sphere wall,Rd is the diffuse reflection factor of the sam-
ple for diffuse incident light,s′′ ands′ are the areas of the
transmission and reflection ports, respectively.A is the total
area of the sphere,Tcd is the diffusive transmission factor of
the sample for collimated incident light (sample including the
cell walls),Aeff = 1− (δ/A + d/A + h/A) is the area frac-
tion of the sphere wall relative to the total sphere area,h is
the area of the sphere open holes, andd is s′′ or s′ depending
on the measurement type. A baffle between the entrance port
and the detector was considered and the termrδ/A was not
neglected as it was in Pickeringet al. [8]. Equations 1 and 2
can be rewritten in the following manner:

PT
d = b

AeffTcd

1− cRd
P 0T , (3)

and
PR

d = b
1

1− cRd(s′/s′′)]
P 0R, (4)

where

b =
δ

A

[
m

1− [
r δ

A + mAeff

]
]

and

c =
s′′

A

[
1

1− (
r δ

A + mAeff

)
]

.
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Solving forTcd in Eq. 3 and substitutingRd using Eq. 4, we
obtain the following equation:

Tcd =
1

bAeff

[
1− s′′

s′

(
1− b

P 0R

PR
d

)]
PT

d

P 0T
. (5)

If collimated light,P 0, is allowed to enter the sphere directly,
striking the sphere wall, in a geometry where there is no sam-
ple in any port (Rd = 0), we find using Eq. 4, thatP 0

d = bP 0

and

Tcd =
1

Aeff

[
1− s′′

s′

(
1− P 0

d

PR
d

)]
PT

d

P 0
d

. (6)

Therefore, if the same incident light is used in all cases,
P 0 = P 0R = P 0T , Eq. 6 allows us to obtain,Tcd in just one
experiment by measuringP 0

d , PT
d andPR

d , i.e., the power as
measured with the detector at the sphere wall when there is no
sample, in transmission geometry and in reflection geometry,
respectively.

Some final considerations need to be mentioned, because
Tcd is the total transmittance through the sample and also
through the cell walls. We need the transmittance through just
the colloidal suspension alone. Therefore, a correction has to
be made. Observing Fig. 1, transmittances along the optical
path in the sample are related asTcd = T1T

∗T0, whereT0 is
the transmittance of the first cell wall in the path followed by
the light beam. It can be obtained from Fresnel coefficients
at normal incidence, producing

T0 =
16m13

(m12 + 1)2 (m23 + 1)2
≈ 0.95,

wheremij = ni/nj and ni are the refractive indices for
air (1), cell wall (2), and sample (3). T1 is the transmittance
for diffusive light coming from the sample through the exit
cell wall to the sphere.T1 can be approximated by consid-
ering multiple reflections for an infinite non-absorbing slab
with a transmittance given byT∞ = 1 − R∞. Now, we
shall consider an approximation where the ratio of the fi-
nite size transverse window reflectance to the infinite slab re-
flectance is an expression equal to the ratio used for the trans-
mittance,i.e., T0/T∞ ≈ R/R∞, since the index of refrac-
tion for microemulsions and cell wall are very close. Then,
T0 ≈ (R/R∞)(1 − R∞). An expression for calculatingR
will be given below in Eq. 16. Finally, using this correction
T ∗, the actual transmittance just through the colloidal sus-
pension can be calculated and related tol∗ as shown in the
following paragraph.

1.1.2. Equations relatingT ∗ with l∗

In this section, a derivation to obtain a relation betweenT ∗

and l∗ is presented. The suspension sample is considered a
slab of infinite transverse extent and thicknessL, placed in a
static transmission geometry at the front port of an integrat-
ing sphere as shown in Fig. 1. Here, laser light is coming
into the sample fromz < 0 direction and some diffuse light
passes through the sample. Some light is transmitted to the

integrating sphere and some diffuse light is reflected back to
the sample. In this configuration, the static transmission coef-
ficient can be calculated within the photon diffusion approx-
imation, modifying the procedure used by Pineet al. [3] and
by Kaplanet al. [10].

The transmission coefficient for the sample can be calcu-
lated using the diffusion approximation by dividing the trans-
mitted flux by the total flux:

T ∗ =
|J+(L)|

|J+(L)|+ |J−(0)| , (7)

whereJ± are the fluxes for the diffusing photons in the+z
and−z directions. In the absence of absorption, the photon
transport is described by the photon energy densityU . Solv-
ing the steady-state one-dimensional diffusion equation for
the photon energy densityU(z), we obtain

U(z) =
{

Al + Blz, z < zo

Ar + Brz, z ≥ zo
, (8)

wherezo = α∗l∗, andα∗ ≈ 1. The solutionU(z) must be
continuous atzo [10]; therefore,

Al + Blzo = Ar + Brzo. (9)

To define the boundary conditions for the one-
dimensional diffusion equation, the net flux on the sample
must be considered. Atz = 0, J+(0) = −RJ−(0). Nev-
ertheless, atz = L, it is necessary to take into account the
diffused light transmitted from the sample to the integrat-
ing sphere and reflected back to the sample. Actually, this
is the difference between our derivation and Eq. A8 given in
Ref.10. We consider two contributions for theJ−(L) calcula-
tion: the light reflected at the cell wall,RJ+(L), and the frac-
tion of light reflected back from the integrating sphere. The
last term comprises the light going from the sample through
the cell wall,TwoJ+, then reflected back from the integrating
sphere,Rsp(TwoJ+), and re-entering the sample through the
cell wall with a transmission coefficientTwb(Rsp(TwoJ+)).
Then, the net calculation produces the actual reflection coef-
ficient:

Ref = R + TwoRspTwb. (10)

The boundary condition for the sample atz = L is:

J−(L) = RefJ+(L) = (R + TwoRspTwb) J+(L).

The explicit expressions for

J− =
v

2

[
U(0)

2
+

l∗

3
∂U

∂z
(0)

]

and

J+ = −v

2

[
U(0)

2
− l∗

3
∂U

∂z
(0)

]

can be used with the boundary conditions atz = 0 andz = L,
to obtain [10]:

U(0)− C0
∂U

∂z
(0) = 0
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and
U(L) + CL

∂U

∂z
(L) = 0, (11)

where

C0 =
2
3

(1 + R)
(1−R)

and CL =
2
3

(1 + Ref )
(1−Ref )

.

Now, using Eqs. 8, 9, andJ± expressions, we obtain the
following expressions for the fluxes:

J−(0) =
v

2
Al

C0l∗

[
C0l

∗

2
+

l∗

3

]
=

vAl

12C0
(3C0 + 2) , (12)

J+(L) = −vAll
∗

12C0

(C0 + α∗) (3CL + 2)
(L + CLl∗ − zo)

, (13)

and

JT = |J−(0)|+ |J+(L)| = vAl

12C0

×
[
(3C0+2) (y+CL−α∗)+ (C0+α∗) (3CL+2)

(y+CL−α∗)

]
, (14)

wherey = L/l∗. Finally, the static transmission coefficient
is given by:

T ∗=
(C0+α∗) (3CL+2)

(3C0+2) (y+CL−α∗)+ (C0+α∗) (3CL+2)
. (15)

This final expression forT ∗ depends onα∗, L, andl∗ as well
as onR and onRef throughC0 andCL. As we shall show
below, all variables involved in this equation can be measured
to obtainl∗. α∗ can be obtained through a backscattering ex-
periment, as described in Appendix C, whileR is calculated
with the procedure given by Kaplanet al. [10], using:

R =
3C2 + 2C1

3C2 − 2C1 + 2
. (16)

where

C1 =

π/2∫

0

R(θ) cos θ sin θdθ

and

C2 =

π/2∫

0

R(θ) cos2 θ sin θdθ.

Ref can be calculated using the procedure presented in Ap-
pendix A, where the following formula is obtained:

Ref =
3D2 − 2D1

3D2 + 2D1 + 2
, (17)

with

D1 = −C1 + RspTwb

π∫

π/2

Two(θ) cos θ sin θdθ,

and

D2 = C2 + RspTwb

π∫

π/2

Two(θ) cos2 θ sin θdθ.

Finally, solving forl∗ in Eq. 15 and taking into account the
transmittance along the wall cells, we obtain:

l∗ =
(3C0 + 2) TcdL

(C0 + α∗) (3CL + 2) (T1T0 − Tcd) + (CL − α∗) (3C0 + 2) Tcd
. (18)

This expression is our basic working equation to obtainl∗

from experimental data.

2. Experimental section

Materials. Polystyrene microspheres (Bangs Labs Inc,
USA) of different diameters were used to prepare the water
suspensions and also functioned as microsphere tracers in the
DWS experiments to measurel∗ . Glass cells were supplied
by Hellma GmbH (Germany) and by Starna Cells Inc (USA)
with different optical paths (2 mm to 4 mm) and different
cross sections (3.0 × 4.2 mm and2.8 × 3.7 mm). Water was
milli-Q water (Nanopure-UV, USA;18.3MΩ). Microspheres
were added to water while stirring. Water suspensions were
usually prepared with volume fractions< 0.04.

Integrating sphere throughput. An integrating sphere
(Oriel Newport, USA) was used to obtainl∗ in the colloidal
suspensions. Here, light detection was carried out by a photo
multiplier tube (Hamamatsu Ltd, Japan) attached at the wall
sphere. We obtained the integrating sphere throughput by

measuring the incident power,P 0, at the front entrance port
of the integrating sphere, and then maintaining the laser light
power; constant the light power at the detection port of the
integrating sphere,P 0

d , was measured. The throughput is
b = P 0

d /P 0. The integrating sphere is part of the instrument
described below.

Transport mean free path, l∗. We measured transmit-
tance and reflectance for the suspensions under study with an
integrating sphere as shown in Figs. 1 and 2, where a laser
beam (λ = 514.5 nm) expanded and collimated with a2
mm pinhole was sent at normal incidence into the entrance
port of the sphere. To measurel∗, we followed Eq. (18),
where the total transmittanceTcd for a sample-cell system
was measured, as described in Eq. (6), using the light power
collected by the sphere detector in three different cases: when
the sample is placed at the entrance port (transmission geom-
etry, PT

d ), when it is placed at the reflection port (reflection
geometry,PR

d ), and when there is no sample on any port,P 0
d .
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FIGURE 2. Schematic diagram of the DWS instrument. A laser beam is sent through a filter and a beam expander (BE). The beam is
deviated by a mirror (M) depending on the experiment. In the case ofl∗ measurements, the beam is sent into the sample and the scattered
light is collected by an integrating sphere. In the case of DWS measurements, the beam is sent into the sample (S) that is in a temperature
controlled bath (TB). The scattered light is collected, with the aid of an achromatic doublet (AD) and a beam splitter (BS), by a couple of
photomultipliers in cross correlation and by a CCD camera to make multispeckle DWS.

Instrument . The integrating sphere is included in a
home-made instrument shown schematically in Fig. 2, which
is mainly used to make DWS measurements. A laser beam
(Coherent Innova300, Coherent Inc, USA) is filtered and
subsequently expanded to avoid sample heating and to en-
sure the plane wave approximation. The beam is sent at
normal incidence onto a square cell where the colloidal sus-
pensions made with microspheres that multiply scatter light
are placed. The scattered light is collected by photomulti-
plier tubes (Thorn EMI, England) through polarizing main-
taining optical fibers from OZoptics Inc (USA). Signals are
converted into TTL pulses using ALV preamplifiers (ALV
GmbH, Germany) and processed by an ALV/5000E multi-
tau correlator (ALV GmbH, Germany) to obtain the intensity
ACFs; most of our work was done in transmission geometry.

3. Results and Discussion

We determinedl∗ for different colloidal water suspensions
with the method described in the experimental section. We
also determined how accurate our method is for obtainingl∗,
comparing our results with other, both theoretical and exper-
imental ones ways to obtainl∗.

In Fig. 3, we present the results of ourl∗ measurements
for water suspensions of latex microspheres at different con-
centrations using the integrating sphere method that employs
Eq. (18); the sizes of the dispersed microspheres were also
varied. As may be observed,l∗ decreases as1/φ for the ex-
plored concentration range, whereφ is the volume fraction.
From Eq. (B.1) in Appendix B, a necessary consequence

of this concentration dependence is that the structure factor
S(q) ∼ 1 indicates that the interaction among microsphere
particles is negligible. The dependence ofl∗ on particle di-
ameter between 250 and 800 nm is not simple, as previously
shown by [4].

To assess the quality of ourl∗ measurements for colloidal
suspensions with microspheres with different sizes, we cal-
culatedl∗ using Mie scattering theory following the proce-
dures developed by several authors [5, 11, 12] and described
in Appendix B. Also, we measuredl∗ using DWS in trans-
mission geometry for suspensions where the properties of the
particles are known. Here, the field autocorrelation function
g1(τ), was obtained for water suspensions made of particles
with a known diameter and refractive index (nmic = 1.59
at 514.5 nm), at different particle concentration.g1(τ) is re-
lated to the

〈
∆r2(τ)

〉
of the particles through the fundamen-

tal working equation in DWS [1]:

g1(τ) =
L/l∗+4/3
α∗+2/3

[
sinh [α∗x] + 2

3x cosh [α∗x]
]

(
1 + 4

9x2
)
sinh

[
L
l∗x

]
+ 4

3x cosh
[

L
l∗x

] (19)

This equation is valid for the transmission of a plane wave
through a slab of thicknessL 1 l∗ and infinite transverse ex-
tent, made of the scattering particles immersed in the liquid.
x = [k2

o

〈
∆r2(τ)

〉
]1/2 andα∗ = zo/l∗; zo is the distance into

the sample from the incident surface to the place where the
diffuse source is located. Therefore, measuring the intensity
correlation functiong2(τ) allows us to obtaing1(τ) through
the Siegert relation:

g(2)(τ)t = 1 + β
∣∣g(1)(τ)t

∣∣2 ,
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whereβ is an instrumental factor determined by collection
optics. However, for microspheres moving in Brownian mo-
tion,

〈
∆r2(τ)

〉
can also be evaluated using the Einstein equa-

tion for hard-spheres corrected for concentration [13],i.e.,

D = (kBT/6πηwa)
(
1− 1.83φ + 0.88φ2

)
=

〈
∆r2(τ)

〉
/6t,

whereηw is the water viscosity,a is the microsphere radius,
T is the temperature andkB is the Boltzmann constant. Then,
using this

〈
∆r2(τ)

〉
in Eq. 19 and the known values fora and

L, we were able to calculatel∗ as a free parameter fitting the
experimentalg1(τ) given in Eq. 19 for a DWS experiment.

In Fig. 3, we included thel∗ values obtained by using
the integrating sphere method, the Mie scattering theory, and
the DWS measurements. The agreement between the mea-
suredl∗ using the integrating sphere andl∗ calculated with
Mie scattering theory is excellent. There is just a 3.8% mean
deviation between theory and experiment, except for the case
of the colloidal suspension made with microspheres with a
diameter of620 nm. This is because at this volume fraction
the requirement thatL À l∗ is not followed(L/l∗ ∼ 8);
in this particular case, the deviation was close to 12% . The
mean deviation between the measuredl∗ using the integrat-
ing sphere and DWS was less than2.5%. From these experi-
ments, it is clear that we have developed a reliable method to
obtainl∗.

4. Conclusion

We have developed a procedure to obtain absolute values of
l∗ measuring the static transmittance and reflectance of a col-
loidal suspension using an integrating sphere, and the agree-
ment with values coming from theory or from experiments is
excellent.

FIGURE 3. l∗ for suspensions of polystyrene microspheres in water
vs volume fraction. Microspheres of different diameters were used.
Circles correspond to DWS measurements (see text), and triangles
to measurements obtained using an integrating sphere. Lines were
obtained from calculations using Mie scattering theory for spheres
embedded in water.

Appendix A. Ref and calculation of R(θ) and
T (θ)

Estimation of Ref

Our derivation starts with expression 3.2 given in Ref. 14:

J(θ) =
v

2

[
U(0) + l∗ cos θ

∂U

∂z
(0)

]
cos θ sin θ. (A.1)

At z = L, the only diffusive flux in the−z direction comes
from the effective reflected light given by a reflective coeffi-
cientRef . Integrating along allθ for the+z semi-space, we
obtain:

J−(L) = −
π∫

π/2

Ref (θ)J(θ)dθ, (A.2)

where

Ref (θ) = R(θ) + RspTwbTwo(θ). (A.3)

As shown below,Rsp andTwb, do not depend onθ, so they
can be treated as constants. Continuity conditions for the en-
ergy density allow us to write, at the boundary:

v

2

[
U0

2
+

l∗

3
∂U0

∂z

]
= −

π∫

π/2

Ref (θ)J(θ)dθ, (A.4)

Here, the LHS is theJ− flux in the bulk. SubstitutingJ(θ)
from Eq. A.1 in Eq. A.4, we obtain atz = L,

U(L) + l∗
(

1
3 + D2

)
(

1
2 + D1

) ∂U

∂z
(L) = 0, (A.5)

with

D1 =

π∫

π/2

Ref (θ) cos θ sin θdθ

and

D2 =

π∫

π/2

Ref (θ) cos2 θ sin θdθ.

Equation (A.5) is the same as Eq. (11) atz = L. Using both
expressions we finally arrive at the following expression:

Ref =
3D2 − 2D1

3D2 + 2D1 + 2
.

Calculation of R(θ) and T (θ)

In Eq. A.3, Ref (θ) is given in terms ofR(θ) andTwo(θ).
Both terms are estimated considering multiple internal reflec-
tions at the cell wall [10] as shown in Fig. 4. Each reflectance
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and transmittance is calculated using Fresnel’s law [10, 14].
The total reflectance due to the cell wall is given by:

R(θ1) = R12(θ1)

+ T12(θ1)R23(θ2)T21(θ2)

× 1− (R21(θ2)R23(θ2))
N+1

1−R21(θ2)R23(θ2)
(A.6)

and the total transmittance through the cell wall is given by:

T13(θ1) = T12(θ1)T23(θ2)

×1− (R21(θ2)R23(θ2))
N+1

1−R21(θ2)R23(θ2)
, (A.7)

whereR12(θ1), T12(θ1), R23(θ2) and T21(θ2) are the re-
flectances and transmittances at the sample-wall(12) and
wall-air (23) interfaces, and

N =
[
D/2
h

]
=

[
D

4d tan θ2

]
,

with D the height andd the thickness of the cell walls.N is
included as a cutoff due to the finiteness of the cell transversal
extension.

Twb

Now, the transmittance through the cell wall, from the in-
tegrating sphere back to the sample, can be obtained using

FIGURE 4. Diagram showing reflection and transmission emerg-
ing beams form the sample at the cell wall.θ1, θ2, andθ3 are the
incident angle, transmitted in the cell, and angle transmitted out of
the cell, respectively.n1, n2, andn3 are the refraction indices for
the water, cell wall and air, respectively.d is the cell wall thick-
ness andD is the sample cell height; beyond this distance multiple
reflections are not taken into account.

Eq.(A.7) but now withθ3 as the incident angle and consider-
ing the transmittance from media 3 through media 1.

Twb(θ3) = T32(θ3)T21(θ2)
1− (R21(θ2)R23(θ2))

N+1

1−R21(θ2)R23(θ2)
.

If no preferred direction of incidence is assumed, the total
transmittance is calculated by integrating over all angles with
a constant probability distribution. Therefore:

Twb =
1
2π

2π∫

0

π∫

π/2

Twb(θ) cos(θ) sin(θ)dθdφ, (A.8)

which does not depend on the angular distribution ofJ±.

Rsp

Rsp is the fraction of light that enters the integrating sphere
and returns to the cell wall. This can be estimated in the same
way as in Pickeringet al. [8]. Light entering the integrating
sphere from the sample is reflected many times onto the in-
tegrating sphere, detector and sample; also some of the light
escapes through the empty ports. Taking this into considera-
tion, the total fraction of light incident on the cell wall is

Rsp =
s′′

δ
b

PT
d

P 0T
d

, (A.9)

whereb is a constant for the sphere in the geometry used.

Appendix B. l∗ from Mie and Percus-Yevick

Transport mean free path,l∗, is related to the mean free path
by [1]:

l∗ ≡ l

〈1− cos θ〉 =
1

ρ 〈1− cos θ〉σsca
,

whereθ is the scattering angle,〈〉 is the average over all scat-
tering angles,ρ = φ/(4πa3/3) the number density and

σsca =
2π

k4
o

2ko∫

0

P (q)S(q)qdq

is the scattering cross section [15] for multiple scattering in
the far field. Here,P (q) = k2

0(dσsca/dΩ) [11,12] is the Mie
scattering function for a single sphere,S(q) is the static struc-
ture function., andq = 2k0 sin(θ/2) is the scattering vector
magnitude. We can writel∗ as

l∗ =
k6

o

πρ
∫ 2ko

0
P (q)S(q)q3dq

, (B.1)

where we have used

2k2
0 〈1− cos θ〉 =

〈
q2

〉
=

2ko∫
0

P (q)S(q)q3dq

2ko∫
0

P (q)S(q)qdq

.
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If P (q) and S(q) are known,l∗ can be determined using
Eq. (B.1). To give an estimate, we calculatedP (q) with Mie
theory for anon-absorbingspherical particle immersed in a
non-absorbing medium using:

P (θ) = k2
oσdiff (θ) = π

[
|S1 (θ)|2 + |S2 (θ)|2

]
,

with

S1 (θ) =
∞∑

n=1

(2n + 1)
n (n + 1)

× [anπn (cos θ) + bnτn (cos θ)] , (B.2)

S2 (θ) =
∞∑

n=1

(2n + 1)
n (n + 1)

× [anτn (cos θ) + bnπn (cos θ)] . (B.3)

Here,τn (cos θ) = (d/dθ)P 1
n (cos θ) and

πn (cos θ) =
P 1

n (cos θ)
sin θ

,

with P 1
n (cos θ) theLegendre polynomials, andan andbn co-

efficients determined by the boundary conditions.

S(q) can be calculated for a system of hard spheres using
Percus-Yevick closure [16], which gives:

1
S(q)

= 1 +
p1

q3
sin (2q)− 2q cos(2q)

− p2

q3

((
1
q2
− 2

)
q cos(2q) + 2 sin(2q)− 1

q

)

+
φp1

2q3

[
3
q3

+ 4
(

1− 3
2q2

)
sin(2q)

]

− φp1

2q3

[
2

(
1− 3

q2
+

3
2q4

)
q cos(2q)

]
, (B.4)

wherep1 = 3φ(1+2φ)2

(1−φ)4
andp2 = (3φ)2

2
(2+φ)2

(1−φ)4
.

Appendix C. Estimation of α∗

α∗ = zo/l∗ can be estimated using a DWS experiment by fit-
ting the intensity autocorrelation function for the back scat-
tered light from a colloidal suspension made of particles of
the same size as those to be used in the fluid to be investi-
gated [4], using the expression:

(g2(t)− 1)pol = β exp

[
−2γpol

√
6t

τ

]
. (C.1)

Here,the subscriptpol is used to indicate the polarization de-
tection used in the experiment,V V for parallel andV H for
cross polarization. Here,τ =

(
k2

oD
)−1

is the relaxation time
andD is the diffusion coefficient, andγpol = α∗pol +2/3. As
D is known,α∗ ≡ 〈α∗〉 = (α∗V V + α∗V H) /2 can be deter-
mined from a fitting.
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