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Noise-assisted synchronization of the transition times
of a set of uncoupled bistable elements
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R.F. Rodŕıguez
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We study the noise-induced synchronization of the transition times of a set of non-interacting bistable systems undergoing an activation
process in the presence of an external periodic field. Starting from a collection of time series corresponding to these transition times, we
first explore graphically the extent of the synchronization for different values of the noise intensity and the frequency of the periodic signal.
Then we quantify this phenomenon by means of the fractional fluctuation of the transition times. We show that this quantity has an optimal
behavior when we plot it as a function of the noise intensity and the frequency of the periodic external force. Three-dimensional plots of the
fractional fluctuation versus these two parameters clearly exhibit the parameter region of optimal synchronization.
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En este trabajo se estudia la sincronización inducida por ruido, de los tiempos de transición de un conjunto de sistemas biestables. Estos
sistemas llevan a cabo un proceso de activación en presencia de un campo periódico externo. Se parte de un conjunto de series de tiempo que
corresponden a los tiempos de transición de los distintos sistemas y se explora en forma gráfica el grado de sincronización para diferentes
valores de la intensidad del ruido, ası́ como de la frecuencia de la señal períodica. Una vez hecho esto, se cuantifica este fenómeno por medio
de la fluctuacíon fraccional de los tiempos de transición. Se muestra que esta cantidad tiene un comportamientoóptimo al graficarla contra
la intensidad del ruido y la frecuencia de la fuerza periódica externa. En gráficas tridimensionales de la fluctuación fraccional contra estos
dos paŕametros, se observa con claridad la región de comportamientóoptimo en estos parámetros.

Descriptores:Sincronizacíon; ruido; procesos de activación.
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A great deal of interest has been generated by the fact that
noise and nonlinearity can produce unexpected organized
behaviors, as occurs in noise-induced phase transitions [1],
noise-induced pattern formation [2], noise-induced trans-
port [3], stochastic resonance [4,5] and in the synchronization
of sets of dynamical systems [6,7,9]. One topic of particular
interest in this last field is the analysis of the synchroniza-
tion of sets of bistable elements which are coupled through
some interaction mechanism, and are also subjected to the
influence of an external oscillatory field. In the linear re-
sponse regime the synchronization phenomenon is expected
to behave in a similar way to stochastic resonance; however,
they are different phenomena that do not always have a cause-
effect connection. As a matter of fact, in a bistable system the
synchronization is related to transitions, whereas stochastic
resonance is defined as a ratio of output-input amplitudes.

Short-range interactions have been thoroughly studied,
and more recently long-range interactions have also been
considered [6, 7]. The simultaneous consideration of a par-
ticular interaction mechanism, an external field, and the ef-

fect of noise, leads to very interesting, but also very complex
behaviors.

In the present communication we analyze the limit case
when the influences of the noise and the external field are
dominant, and the interaction among the bistable subsystems
may be neglected. Here the synchronization represents a
coupling of the mean-first-passage times for each subsystem,
with the periodic external force. We establish a measure of
the synchronization as the fractional fluctuation of the tran-
sition times. It is shown that the dependence of this quantity
as a function of noise amplitude and field frequency has a
well-defined structure which, to our knowledge, has not been
considered before [8]. It is expected that this structure will
manifest itself in any collection of bistable systems where
the interaction is sufficiently weak.

We shall assume that the behavior of each of the bistable
subsystems can be described by the Langevin equation of a
single particle moving in a one-dimensional double-well po-
tential in the presence of an additive, delta-correlated noise,
and driven by a periodic force. In the present communication
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FIGURE 1. Transition times for theN subsystems, forD= 0.02, 0.04 and 0.07from left to right.

FIGURE 2. Fractional fluctuationF vs. noise intensityD, for three
values ofω.

FIGURE 3. 3D plot,F vs. D andω.

we only consider the over-damped (non inertial) regime, and
consequently this equation will be:

ẋ = x− x3 + A0 sin(ωt) + ξ(t), (1)

wherex is the coordinate of the particle and the noiseξ(t)
has zero mean and a correlation

〈ξ(t)ξ(t′)〉 = 2D δ(t− t′). (2)

Then we consider N subsystems of this type, and we focus
on thetransition times(ttr) of each subsystem,i.e., the times
when each of these subsystems jumps from the left-side min-
imum over the barrier, reaches the opposite minimum, and
then goes back to the left-side minimum. This “double tran-
sition” could then be compared to the period of the applied
force, especially in the linear response regime. The synchro-
nization of these transition times can be considered a collec-
tive behavior that is particularly important in activation pro-
cesses, and therefore our goal here is to determine the de-
pendence of this synchronization on the values of the noise
instensity and the frequency of the external field.

In order to appreciate graphically that the noise may
have a constructive effect on the synchronization of the set
of bistable subsystems, we solved Eq.(1) numerically for
N = 50 subsystems by means of a fourth-order Runge Kuta
algorithm, using the same initial conditionx(0) = −1 (the
left side minimum) and plotted the sequence of transition
times for each of the subsytems (all of them measured with
respect to the same initial time). Here we fixed an external
frequencyω = 0.005, and then we repeated these calcula-
tions for three different values ofD (0.02, 0.04, 0.07). In
Fig. 1 we show the transition times of the N subsystems (plot-
ted in N columns) for the three chosen values forD.

What we see in these plots shows that there is a value of
D for which there is better synchronization of the N bistable
subsystems, Fig. 1b. In these graphs we observe that the syn-
chronization assumes a qualitative ordering effect. In order to
quantify and characterize more precisely this synchronization
phenomenon, it is necessary to define an adequate measure of
the synchronization. Here we recall that the phenomenon of
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stochastic resonance, very extensively studied in bistable sys-
tems [10, 11], is usually detected by measuring thespectral
amplification, which in the linear-response regime is defined
as [11]:

η(D, ω) =
[
A(D,ω)

A0

]2

. (3)

FIGURE 4. 3D plot,F vs. D andω.

FIGURE 5. Level plot in the plane (D, ω).

FIGURE 6. Fractional fluctuationF vs. frequencyω, for three val-
ues ofD.

FIGURE 7. Spectral amplificationη(D, ω) as defined from Eq.(3).
The value ofA(D, ω) was obtained by averaging the position of
the particles.

Here A0 is the amplitude of the periodic forcing, and
A(D,ω) is the amplitude of the mean position of the parti-
cle 〈x(t)〉 = A sin(ωt + φ0), where the average is taken over
an ensemble of noise realizations. However, if we are inter-
ested in the synchronization of thetransition timesof asetof
bistable subsystems, the use of the above spectral amplifica-
tion is not adequate, since this quantity might have significant
non-zero values even when no transitions occur at all. How-
ever, a good measure of the synchronization of the transition
times of a set of bistable elements is thefractional fluctuation
(F) of the sequence ofall the transition times,ttr, (of all the
subsystems), which is defined as follows:

F =

√
〈t 2

tr 〉 − 〈ttr〉2
〈ttr〉 . (4)

This quantity depends on the noise intensity and the fre-
quency of the external field, and in Fig. 2 we can see the
graphs ofF(D) for three different values ofω.
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This figure shows that for each value ofω, F(D) presents
a well-defined minimum which corresponds to the optimal
synchronization, and the position of the minimum depends
on the frequency of the external field. In order to appreciate
the dependence ofF on both parameters,D andω, in Figs. 3
and 4 we present the surfaceF(D, ω) as seen from two dif-
ferent angles. Fig. 5 shows the surfaceF(D, ω) as seen from
above, and therefore we can appreciate the shape of the level
curves.

These figures clearly show that the intersection of the sur-
faceF(D, ω) with a planeω = ω0 yields a curveF(D, ω0)
with a clear minimum. In fact, in Fig. 5 we can see that a
planeω = ω0, with ω0 < 0.02, intersects the lowest por-
tion of the surfaceF(D, ω). The existence of this minimun
is the analog of the maximum ofη(D, ω0), which is found
when the stochastic resonance phenomenon occurs in a sin-
gle bistable system. On the other hand, if we intersect the
surfaceF(D,ω) with a planeD = D0 we also obtain curves
F(D0, ω) with well defined minima for some values ofD0,
thus enabling us to select the frequency which leads to the
best synchronization of the set of bistable systems. In Fig. 6
we can appreciate the shape of three curves of this type.

It is important to emphasize that the existence of the min-
imum of the functionF(D0, ω) has no counterpart when the
function η(D0, ω) is considered (see Fig. 7). Indeed, this
function decreases monotonically withω (when a bistable
system is considered), and therefore, if we are interested
in the synchronization of a set of bistable subsystems, the
knowledge ofη(D,ω) does not allow us to choose an opti-
mal frequency for a given value of the noise intensity. This
fact implies that the optimal conditions for the synchroniza-
tion phenomenon studied in this work differs from the con-
ditions which optimize the stochastic resonance of a single
bistable system. As mentioned above, the fractional fluctua-
tion F(D, ω) is indeed an adequate measure to quantify the
synchronization of the transition times of a set of bistable el-
ements. The geometrical structure of the functionF(D, ω)
clearly shows the region (within the spaceD-ω) where the
synchronization is optimal, and therefore it contains useful
information for controlling a collection of bistable subsys-
tems.

In closing this letter, it is worth mentioning the follow-
ing points. It is essential to emphazise that the3D plots in
Figs. 3, 4 and 5 show that, in order to achieve good synchro-
nization, an interplay betweenD andω should be mantained.
That is, ifω increases,D should also be increased. With re-
gard to the influence of the noise intensity, we can appreciate
in Fig. 1 that for very small values ofD the transitions are
scarce and not coupled to the frequency. Therefore, synchro-
nization is not favoured in this case. We can also see that for
high values ofD, the transitions occur very frequently since
the noise dominates the transitions and the synchronization
also becomes very poor. However, for intermediate values of
D the system tends to the linear response regime (therows
that appear in Fig.1b are an average of one period apart) and
it is here that the synchronization can be enhanced depend-
ing, as mentioned above, on the frequency values.

Here we assumed that the interaction between the bistable
subsystems was negligible in comparison to the effects of
the external force and the noise; obviously this restricts the
usefulness and predictive value of the information given by
F(D,ω). Therefore, it would be important to study how this
function is modified when different interaction mechanisms
are taken into account. It should also be pointed out that in
the present letter we have considered the effect of white noise
only. The effect of colored noise is significantly more com-
plicated since it incorporates an additional parameter, the cor-
relation time of the noise, and this study is in progress. As a
final remark, we would like to point out that it would be inter-
esting to investigate how the present analysis should be mod-
ified if thenon-inertialassumption is removed. Although the
behavior of a set of bistable subsystems with inertia might
have some similarities when colored noise is considered, this
relationship merits further investigation.
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