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Numerical simulation of the dynamical properties of the human tympanum
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A numerical simulation of the dynamical properties of the tympanic membrane is presented. A simple and different simulation of the
vibratory patterns of the coupled system of the tympanum-malleus have been assessed by proposing the modeling of the tympanum through
the vibrations of a forced elastic membrane, whereas the effect of the manubrium is introduced through a forced semi-membrane. We
propose the superposition of these waveforms as a model for describing the vibrations of the coupled system of the tympanum-malleus. Both
waveforms have analytical representations leading to simple computations. The results of the simulation for the vibrational mode (1,1) show
an amplitude for the membrane larger than those for the handle of the malleus. The maximum amplitude obtained was around 1µm, at a test
frequency of 2 kHz. Also, level curves corresponding to the simulated vibrational modes were obtained. The numerical model presented can
be easily handled to change input parameters, such as sound pressure and frequency. Also, other situations such as the conical shape of the
tympanum or some asymmetries could be considered.

Keywords:Tympanum-malleus system; membrane vibrations; forced semi-membrane.

Una simulacíon nuḿerica de las propiedades dinámicas de la membrana timpánica es presentada. Un método simple y distinto de simulación
de los patrones de vibración del sistema acoplado tı́mpano-martillo ha sido evaluado proponiendo la modelación del t́ımpano a trav́es de las
vibraciones de una membrana elástica forzada, en tanto que el efecto del mango del martillo es introducido a través de una semi-membrana.
Se propone la superposición de estos dos estados como un modelo para describir las vibraciones del sistema acoplado tı́mpano-martillo.
Ambas soluciones tienen representaciones analı́ticas que llevan a ćalculos computacionales simples. Los resultados de la simulación para
el modo vibracional (1,1) muestran una amplitud para la membrana mayor que aquella para el mango del martillo. La máxima amplitud
obtenida fue de aproximadamente 1µm, a una frecuencia de prueba de 2 kHz. Además, curvas de nivel correspondientes a los modos
vibraciones simulados fueron obtenidos. El modelo numérico presentado puede ser fácilmente manipulado para cambiar los parámetros de
entrada, tales como la presión y frecuencia del sonido. Ası́ mismo, otras situaciones tales como la forma cónica del t́ımpano o algunas
asimetŕıas pudieran ser consideradas.

Descriptores:Sistema t́ımpano-martillo; vibraciones de membrana; semi-membrana forzada.

PACS: 01.55; 02.70; 87.15.Aa

1. Introduction

The study of the dynamics of the human tympanic membrane
(TM) is essential for a better understanding of the hearing
mechanism of the middle ear (ME). Experimental methods
for studying the TM vibrations and the sound transmission
through the normal ME have been performed on temporal
bones in human cadaveric and animals, by using different ex-
perimental procedures. Simultaneously, computerized the-
oretical modeling of the human ME have been extensively
carried out. Several pathological conditions such as stiffness,
fixation of the ossicular chain, chain disarticulation, etc., have
been also analyzed.

In recent years, finite-element models (FEM) of the ME
have become generally used, due in part to the modern com-
putational power and the feasibility of this technique of mod-
eling very complex systems such as the ME.

Three-dimensional FEMs of the ME including the TM,
external auditory meatus, ossicular chain, ME cavity and
ME ligaments and muscles, and also morphologic data and
boundary conditions have been developed [1-5].

Several FEMs have particularly emphasized the role of
both the geometric and mechanical properties of the TM and
the coupling of the manubrium on the eardrum. Bornitzet
al. [6] used a FEM of the human ME for parameter estima-
tion of the TM, by comparison of the natural frequencies and
mode shapes of the TM between the model and the speci-
mens. Drescheret al. [7] studied the geometric properties
of a human cadaver TM specimen and its coupling with the
malleus by using a finite shell model. The mechanical cou-
pling between the TM and the manubrium was also inves-
tigated by Funnell [8]. He demonstrated the critical role of
curvature in the behavior of the eardrum. Mechanical prop-
erties of the manubrium were examined by Funnellet al. [9]
by using a FEM of a cat eardrum. They found that a signifi-
cant degree of manubrial bending occurs in the model. Lesser
and Williams [10] applied FEMs in a two-dimensional cross-
sectional model of the TM and the malleus. The shape of
the displaced TM was found to be sensitive to several factors
such as the elastic modulus of the membrane and the presence
and position of the rotation of the malleus. Also, Decraemer
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and Khanna [11] found that the description of the motion of
the cat manubrium requires a rotational and a translational
component, instead of a pure rotation, as classically assumed.

Several studies, both experimental and theoretical, have
reported the importance that some parameters of the TM such
as shape [12-14], surface structure [15], mechanical proper-
ties [16] and distributed acoustical load [17], and also ME
cavity [18] and ME impedance [19], have for a better trans-
mission of vibrations from the eardrum to the ME.

Other descriptions of the ME including analog circuit
models [20,21] and lumped parametric models [22] have
been developed.

Most of these studies agree that the TM is a complex
structure, in which one of the main challenges for its mod-
eling is probably the coupling to the malleus.

In this paper a simple and different modeling of the TM
including the coupling to the malleus is presented. Vibrations
of a forced elastic membrane model the TM, whereas the ef-
fect of the manubrium is introduced through a forced semi-
membrane. We propose the superposition of these wave-
forms as a model for vibrations of the coupled system of the
tympanum-malleus. Both waveforms have analytical repre-
sentations leading to simple computations. Vibrations of this
system correspond satisfactorily to that observed experimen-
tally for the TM.

2. The mathematical model

2.1. Circular elastic membrane

Let an elastic membrane occupyD, the disk of radiusb cen-
tered at the origin, and letC its boundary. A model for vibra-
tions of this type of elastic membrane is the wave equation

∂2u

∂t2
=c2∇2u+w (x, y, t) ; (x, y, t) ∈ D× [0,+∞) , (1)

subject to initial conditions

u (x, y, 0) = f (x, y) ,
∂u

∂t
(x, y, 0) = g (x, y) ;

(x, y) ∈ D. (2)

In (1),w (x, y, t) is the forcing term andc2 = T/ρ, where
T is the tension andρ the density, both assumed to be con-
stants. If the membrane is fixed atC, the following boundary
condition holds:

u (x, y, t) = 0; (x, y, t) ∈ C × [0, +∞) . (3)

Solving the initial-boundary value problem (IBVP)
(1)-(3), we are led to the solution

u (x, y, t) =
∞∑

n=0

∞∑

k=1

(un,k (t) Φn,k (r, θ)

+ Un,k (t)Ψn,k (r, θ)) , (4)

whereΦn,k (r, θ) and Ψn,k (r, θ) are the vibration modes.
The functionsun,k (t) and Un,k (t) satisfy the equation
T
′′

(t) + c2µ2T (t) = 0,with an inhomogeneous right-hand
side.

2.2. Vibration of a semi-membrane

By cutting a sector of angleα, 0≤α<2π a semi-membrane is
obtained. It occupies the domain

Dα = {(r, θ) : 0 ≤ r ≤ b, α ≤ θ ≤ 2π} .

Now, we consider (1) and (2) for a functions (x, y, t) and
replace condition (3) by

s (x, y, t) = 0; (x, y, t) ∈ ∂Dα × [0, +∞) . (5)

We observe that inDα the functionΘ(θ) is no longer2π-
periodic. After some algebra we get

Θn (θ) = sin
nπ

2π − α
(θ − α) , n = 1, 2, 3, . . . (6)

Therefore, the modes of vibration for a semi-membrane
are

Fn,k (r, θ) = Jνn

(
δn,k

b
r

)
sin

nπ

2π − α
(θ − α) ,

n = 1, 2, 3, . . . (7)

whereJν is the Bessel function of orderν.
So, the solution of the IBVP (1), (2) and (5) can be writ-

ten in the form

s (x, y, t) =
∞∑

n=1

∞∑

k=1

sn,k (t)Fn,k (r, θ), (8)

where the functionF is just as defined in (2.7). As before,
sn,k satisfies the equationT

′′
(t) + c2µ2T (t) = 0, with an

inhomogeneous right-hand side.

2.3. A model for vibration of the TM

We assume that a circle is a good approximation to the ac-
tual geometry of the TM, as can be seen from Figure 1. Un-
der this assumption, it is reasonable to consider radial data.
Thus, considering that the initial conditionsf (x, y), g (x, y)
and the source termw (x, y, t) are independent ofθ, namely
f (x, y) ≡ f (r) , g (x, y) ≡ g (r) , andw (x, y, t) ≡ w (r, t)
then Eq. (4), which represents the solution of the membrane,
becomes

u (x, y, t) =
∞∑

k=1

u0,k (t)Φ0,k (r) ,

where only the terms withn = 0 are non-trivial. Hence, as-
suming the representations

f (r) =
∞∑

k=1

fkΦ0,k (r), g (r) =
∞∑

k=1

gkΦ0,k (r),
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and

w (r, t) =
∞∑

k=1

wk (t)Φ0,k (r),

where

fk =
1∫

D
(Φ0,k)2

∫

D

fΦ0,k

and similarly forg (r) andw (r, t), the solution becomes

s (x, y, t) =
∞∑

n=1

∞∑

k=1

s2n−1,k (t)F2n−1,k (r, θ) . (9)

A model for vibration of the TM is the superposition of
the waveforms (9) and (9).

2.4. Superposition of leading modes

It is well known that in linear elastic systems, the leading
term represents satisfactorily the vibration of the whole sys-
tem. In light of this, the model we propose is the superposi-
tion of the leading terms in (9) and (9).

In polar coordinates, vibrations of the TM are represented
by

z (r, θ, t) = u0,1 (t)J0

(
λ0,1

b
r

)

+ s1,1 (t)J1/2

(
δ1,1

b
r

)
sin

1
2
θ. (10)

To derive an explicit expression ofz (r, θ, t), let us spec-
ify the initial data and source term. In the absence of sound,
the equilibrium position of the TM is shaped as a cap with
a rather small curvature (see Fig. 1). Hence, the initial
deformation of the circular membrane is taken of the form
f (r) = m

(
b2 − r2

)
, with m = 0.05 corresponding to the

natural shape of the tympanum. Vibration is a result of sound,
which is external. Consequently, the initial velocity is zero,
g (r) ≡ 0.

For the source term,w (r, t), a periodic pressure of the
form P0 sin ωt is considered. Here,P0 is a constant pres-
sure determined by both the intensity and the frequencyω
of the sound that impinges on the tympanum. With re-
gard to the semi-membrane, the source term is that of the
membrane. Furthermore, we assume that it begins at rest:
f (r) ≡ 0, g (r) ≡ 0.

During vibration, the coupling to the malleus manifests
itself as a damping mechanism in the area surrounding it,
where vibrations are significantly smaller. We shall see that
simulations of (10) model this behaviour satisfactorily.

FIGURE 1. A simple diagram of the middle ear anatomy, showing
the tympanic membrane and the malleus.

2.5. Model parameters

The small deflectionw (x, y) of a thin membrane under uni-
form tensionT , fixed to a boundaryC and subject to a net
uniform pressurep, satisfies

∇2w (x, y) ≡ ∂2w (x, y)
∂x2

+
∂2w (x, y)

∂y2
= − p

T
.

Herew is taken to be positive or “upward” in the direction
of increasingz, andp is the excess of upward pressure over
downward pressure.

Let us introduce a procedure to estimateT . Recall that
for a functionϕ (x) the curvatureκ (x) is defined by

κ (x) =
|ϕ′′ (x)|

[
1 + (ϕ′ (x))2

]3/2
; (11)

notice that ifϕ′ (x) is small, thenκ (x) ≈ |ϕ′′ (x)| .
Let the membrane occupy the discD of radiusb, centered

at (0, 0). Assume that the deflectionw (x, y) is spherical, and
w0 = w (0, 0) is known. Also

∂2w (0, 0)
∂x2

=
∂2w (0, 0)

∂y2
.

Becausew0 is small, we can approximate the tensionT from
the equation2κ0 = P

T , whereκ0 is the curvature of the circle
passing through the points (-b, 0), (0, w0), (b, 0) andκ0 is the
reciprocal of the radius of curvaturer, that isκ0 = 1/r; then
it is readily seen that

r =
1
2

(
b +

√
b2 + 2 (w2

0 + b2)
)

. (12)

3. Numerical simulation

In Sec. 2 we got a mathematical model to describe the be-
haviour of the coupled system of the tympanum-malleus. For
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the simulation we consider a membrane of radiusb = 0.5 cm,
which is approximately that of the tympanum and a sound
frequencyω = 2kHz, which corresponds to the range com-
monly employed in several tests. The pressure of the sound
wave used was in the range determined by the minimum au-
dible pressure, 2×10−5 Pa, and the maximum one, 20 Pa, just
when pain starts to appear. Maple 5.0 and Mathematica 8.0
softwares were employed.

From (10), expressions fors1,1 (t) and u0,1 (t) can be
found to be

s1,1 (t) = A
ω sin

(
cγ1/2,1t

)− sin ωt

ω2 − (
cγ1/2,1

)2 , (13)

where

A =
4P0

πcγ1/2,1b2J3/2

(
δ1/2,1

)2

b∫

0

J1/2

(
δ1/2,1

b
r

)
rdr

and

u0,1 (t) = f1 cos (cµ0,1t)+B
ω sin (cµ0,1t)− sin ωt

ω2 − (cµ0,1)
2 , (14)

where

B =
2P0

cµ0,1b2 (J1 (λ0,1))
2

b∫

0

J0

(
λ0,1

b
r

)
rdr.

Hence, the model for simulation is

z (r, θ, t) =

(
f1 cos (cµ0,1t) + B

ω sin (cµ0,1t)− sin ωt

ω2 − (cµ0,1)
2

)

× J0

(
λ0,1

b
r

)
+

(
A

ω sin
(
cγ1/2,1t

)− sin ωt

ω2 − (
cγ1/2,1

)2

)

× J1/2

(
δ1,1

b
r

)
sin

1
2
θ (15)

and

z (r, t) =
∞∑

m=1

Am1/2J1/2

(µm1/2

b
r
)

sin
(

θ

2

)
cos

(µm1/2v

b
t
)

+
4BmJ0

(
µm

b r
)

b2J2
1 (µm)

cos
(

µmct

b

)

+
4CmP0J0

(
µm

b r
)

ρµmbJ2
1 (µm)

ω sin
(

µmct
b

)− µm

b c sin ωt

ω2 − µ2
mc2

b2

, (16)

where

Am1/2 =
2

πb2J2
3/2

(
µm1/2

)
b∫

0

2π∫

0

rF (r, θ)

×J1/2

(µm1/2

b
r
)

sin
(

θ

2

)
drdθ,

Bm =

b∫

0

F (r) J0

(µm

b
r
)

rdr

and

Cm =

b∫

0

J0

(µm

b
r
)

rdr.

Results of the simulation of (16) performed in MAPLE
environment are shown in Figs. 2-4.

4. Discussion and conclusions

In this paper the vibratory patterns of the coupled system of
the tympanum-malleus have been assessed by a simple nu-
merical simulation.

The results of the simulation presented in Fig. 2 for the
vibration mode (1,1) show an amplitude for the membrane
larger than those for the handle of the malleus. The maximum
amplitude obtained was around 1µm, at a test frequency of
2 kHz (see Fig. 3). Also, Fig. 4 shows the level curves cor-
responding to the data in Fig. 2. It is important to emphasize
that this frequency was chosen for the simulation because, as
was demonstrated by Khanna and Tonndorf [23], the vibra-
tory patterns of the TM remain essentially unchanged in their
first mode up to a frequency of 2 kHz, with higher modes
occurring above that value.

FIGURE 2. First mode of vibration of the TM obtained in MAPLE
environment. An amplitude for the membrane (flexible region)
larger than those for the handle of malleus (rigid region) is ob-
served.
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FIGURE 3. Maximum vibration amplitude for the TM (≈ 1 µm) at
a test frequency of 2 kHz.

FIGURE 4. Level curves corresponding to the data shown in Fig. 2.

Our results for the vibrating amplitude are in reasonable
agreement with several measurements reported in the liter-
ature. Ruttenet al. [24], using a SQUID magnetometer,
measured the displacement amplitude in the temporal bone
of an isolated human ME. They found maximum values near
0.5 µm for the vibration amplitude, at frequencies of about
1 kHz, in response to a constant input sound level of 90 db
SPL.

Very similar results were also reported by Sosaet
al. [25,26], who performed TM vibration amplitude measure-
ments on excised human temporal bones, by using a mag-
netic probe based on the measurements of the magnetic flux
changes produced by the vibrations of a small magnet at-
tached to the TM. They found maximum values near 0.5µm
for the TM vibration amplitude, at frequencies up to 1.5 kHz,
in response to a constant input sound level of 100 db SPL.

On the other hand, in general, any pathology that affects
the ME results in changes in the vibration amplitude of the
TM. Otosclerosis, which is a fixation of the ossicular chain
of the ME, results in a stiffening of the TM, and therefore
in a decreasing of the displacement amplitude. On the other
hand, a disarticulation of the ossicular joints results in an in-
crease in compliance at the TM.

Finally, the numerical simulation can be easily handled
to change input parameters, such as sound pressure on the
TM and frequency, and also to introduce parameters that re-
flect different pathological conditions. Other situations such
as the conical shape of the TM or some asymmetries could
be easily considered.
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